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ABSTRACT Automatic recognition of human activities using wearable sensors remains a challenging
problem due to high variability in inter-person gait and movements. Moreover, finding the best on-body
location for a wearable sensor is also critical though it provides valuable context information that can be
used for accurate recognition. This article addresses the problem of classifying motion signals generated by
multiple wearable sensors for the recognition of human activity and localisation of the wearable sensors.
Unlike existing methods that used the raw accelerometer and gyroscope signals for extracting time and
frequency-based features for activity inference, we propose to create frequency images for the raw signals
and show this representation to be more robust. The frequency image sequences are generated from the
accelerometer and gyroscope signals from seven different body parts. These frequency images serve as the
input to our proposed two-stream Convolutional Neural Networks (CNN) for predicting the human activity
and the location of the sensor generating the activity signal. We show that the complementary information
collected by both accelerometer and gyroscope sensors can be leveraged to develop an effective classifier that
can accurately predict the performed human activity. We evaluate the performance of the proposed method
using the cross-subjects approach and show that it achieves an impressive F1-score of 0.90 on a publicly
available real-world human activity dataset. This performance is superior to that reported by another state-
of-the-art method on the same dataset. Moreover, we also experimented with the datasets from different body
locations to predict the best position for the underlying task. We show that shin and waist are the best places
on the body for placing sensors and this could help other researchers to collect higher quality activity data.
We plan to publicly release the generated frequency images from all sensor positions and activities and our
implementation code with the publication.

INDEX TERMS Human activity recognition, deep learning, sensor localisation, wearable sensors.

I. INTRODUCTION
The ubiquity and functionality of wearable devices such as
smartphones, smartwatches, and fitness wristbands equipped
with motion sensors (e.g. accelerometer and gyroscope) cre-
ate new opportunities for continuous monitoring of human
physical activities [1]. Since many human activities can be
reliably recognised based on the motion information, the
automatic and accurate classification of motion signals gen-
erated by the motion sensors can facilitate the development
of an effective automated human activity recogniser (HAR)
for human-centred monitoring systems [2]. The importance
of HAR in sectors such as healthcare, fitness, sports, and
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entertainment cannot be overemphasised [3]. For example,
HAR systems are used to monitor human activities to aid
medical diagnosis and assisting patients with impaired phys-
ical mobility [4]. Similarly, HAR systems are been incor-
porated in many home entertainment products such as the
Microsoft Kinect for the recognition of hand gestures and
body movements to enhance gaming experience [5].

Recently people (either for health or personal reasons)
have adopted the habit of carrying two or more wearable
devices such as smartwatch and smartphone. While the com-
plementary motion information gathered by these multiple
sensors can be combined to improve the accuracy of the
activity recogniser, the detection of the on-body position of
the sensors is important because the quality of automatic
activity recognition depends largely on the position of sensor
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providing the motion signals. This article deals with the
accurate recognition of both human activities and position
of the wearable device generating the motion information.
We explore the idea of converting raw motion signals into
frequency-based image sequences [6], [7] and developing a
cooperative two-stream convolutional neural network for the
prediction of the human actions and sensor location. The
contribution of this article includes:

• The design of a monolithic two-stream Convolutional
Neural Network (CNN) for predicting both human
actions and the different sensor locations referred to
as Deep Human Activity and Location Recognition
(DHALR). The device localisation allows examining the
impact of the position information on the accuracy of the
activity recognition.

• To the best of our knowledge, we contribute the first
approach for simultaneous recognition of both human
activity and sensor location using frequency images.

• Extensive experimentation that shows the effectiveness
of using the combination of complementary motion
information from multiple devices for improving the
recognition of activities in a real-world setting.

The rest of the paper is organised as follows: Section 2 pro-
vides the related work, Section 3 discusses the methodology,
Section 4 presents the dataset, Section 5 discusses the experi-
mental setup and Section 6 presents the discussion of results.
Section 7 concludes the paper.

II. RELATED WORK
The problem of human activity recognition using wearable
sensors involves the characterisation of the body parts motion
using sensory data [8]. The motion data usually comprises
of the physical acceleration and orientations of movable
body parts, measured using accelerometer and gyroscope,
respectively [9]. Machine learning methods such as Sup-
port Vector Machine (SVM) [10], Random Forest (RF) [11],
Long Short-Term Memory Network (LSTM) [12] and Con-
volutional Neural Networks (CNNs) [6] have been used to
develop the characterisation model. Ortiz Jorge [13] char-
acterised the motion data obtained with the sensors in a
waist-mounted smartphone to recognise six human activities.
The method employed SVM to analyse the hand-crafted fea-
tures develop from the motion data. The method accurately
recognised dynamic activities such as walking and climbing
but missed recognising most of the static actions like sit-
ting and standing. Catal et al. [14] employed an ensemble
approach that combined multiple classifiers to improve the
accuracy of human activity recognition. Themethod also used
hand-crafted features estimated from raw acceleration data.
Inoue et al. [15] on the other hand, avoided the costly fea-
ture engineering process mentioned in the previous methods,
by directly using the raw accelerometer data as input to train a
deep recurrent neural network for human activity recognition.
The study recorded an improved recognition performance and
lower learning time. Nair et al. [16] also proposed a method

TABLE 1. Main characteristics of the existing human activity recognition
methods and their comparison with our proposed DHALR method.

that used temporal CNN for recognising human activities
from raw motion signals acquired using smartphone sensors.
Lawal and Bano [6] proposed a CNN-based model for recog-
nising human activities. In contrast to previously mentioned
approaches, the method [6] used two sets of frequency image
sequences generated from the raw accelerometer and gyro-
scope signals, respectively as inputs. The method [6] trained
two independent CNN models, one for each set of the image
sequences, and then combine two CNN models outputs to
recognise the human activities. Similarly to [6], Jiang and
Yin [7] used deep CNN to recognise human activities by
converting the raw acceleration signals into signal images and
providing these images as inputs.

All the human activity recognition studies mentioned
above have been conducted using a single wearable device
without any consideration about the device location on the
user’s body. But the position information of the wearable
device can facilitate in improving the accuracy of the activ-
ity recognition [17]. Kunze et al. [18] proposed a method
for classifying patterns of sensor readings to recognise the
walking activity, and then analyse the characteristics of the
walking motion to localise the sensor position. A draw-
back of this method is that changes in the sensor posi-
tion cannot be detected unless the device wearer is in
motion. Sztyler et al. [11] proposed a method for analysing
the motion data obtained from several wearable devices using
random forest classifier. Themethod also incorporated a tech-
nique to detect the position of the wearable device producing
the motion signal. The method achieved high accuracy but
required a costly feature engineering process. In this article,
we extend our previous work in [6] by proposing a technique
that trains two-stream CNN using frequency-based activity
images developed from accelerometer and gyroscope motion
data, to perform human activity recognition. Unlike [6], in the
present work, we develop a strategy to simultaneously predict
both the human activity and locations of the wearable device
producing the activity signal. Moreover, while in [6] we used
motion data from a single waist-mounted wearable device for
the evaluation of the HAR, in this work, however, we use a
much larger dataset consisting of motion data obtained from
seven wearable devices positioned in seven different parts
of the body including the chest, forearm, head, shin, thigh,
upper-arm, and waist. Table 1 compares the main characteris-
tics of the state-of-the-art human activity recognitionmethods
with those of our proposed approach.
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FIGURE 1. Illustration of the set-up for our activity image generation. We generate frequency-based activity
images (right) from tri-axial accelerometer and gyroscope signals (centre). We collected synchronised motion data
from the following locations (left): a- head, b- chest, c- arm, d- waist, e- wrist, f- thigh and g- shin.

FIGURE 2. Samples of the frequency images obtained from the tri-axial accelerometer signals for different human
activities from seven different on-body locations. Note for each row, the same activity results in different motion signals
from different locations.

III. METHODOLOGY
The proposed DHALR method consists of two main parts,
namely, activity image generation and classifier modelling.
The tri-axial accelerometer and gyroscope signals are con-
verted into activity images (Sec. III-A) which forms the input
to our two-stream CNN classification network (Sec. III-B).

A. ACTIVITY IMAGE GENERATION
Frequency-based features are shown to be more effective
compared to time-based features [19] for HAR. Therefore,
we created frequency (activity) images from the raw tri-axial
accelerometer and gyroscope signals by applying Short-time
Fourier Transform (STFT) using a window size of one second
with an overlap of 0.5 seconds. STFT is commonly used
to determine the frequency content in local sections of a
signal that continuously changes over time. We used Matlab
Spectrogram function for obtaining the frequency images.
A window size of one second is most effective in HAR as
it can cover one cycle of most of the repetitive dynamic

activities (running, climbing, jumping and walking) [13].
A frequency image from each tri-axial signal is created by
applying the STFT to each 1-dimensional signal followed
by concatenating the three images to obtain a three-channel
image. These are then resized to 28 × 28 × 3 to be used
as input to our CNN model. The generated activity images
and implementation code are published online for research
purposes.1 Figure 1 shows the setup for collecting the signals
from the accelerometer and gyroscope and converting them
to their respective frequency images.

In this article, we used the multi-sensor multi-modal
human activity dataset from [11], described briefly in
section IV. We used accelerometer and gyroscope data from
all seven different sensor mounting locations (as shown in
Fig. 1). Figure 2 shows some samples of the frequency images
generated using the accelerometer signals obtained for the
five dynamic activities and all sensor positions.

1Activity Images for HAR [online]. https://isahalawal.github.io/
IsahALawal/datasets/
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FIGURE 3. The proposed cooperative two-stream CNN architecture which takes as input both accelerometer and
gyroscope frequency images and predicts the activity labels or location labels or both activity and location labels.

B. CLASSIFIER MODELLING
CNN is a type of deep neural network that is commonly
used for analysing imaging data [20]. CNN-based meth-
ods are shown to be more robust than hand-crafted feature
classification methods [21]. Unlike natural image classifica-
tion problem, frequency images are low-resolution simplistic
images with less natural texture information. These images
encode signals and need relatively fewer convolutional layers
for distinguishing between activities and locations. There-
fore, we designed a simplified two-stream VGG-like [22]
architecture for human activity and location recognition. The
proposed DHALR network architecture is shown in Figure. 3.
The network takes the two 28× 28× 3 dimensional tri-axial
accelerometer and tri-axial gyroscope frequency images as
input and predicts the activity or sensor location or both
activity and sensor location Y . We use both accelerometer
and gyroscope images as input because the related works
on sensor-based human activity recognition [6] showed that
combining the motion information from both accelerometer
and gyroscope improves the recognition accuracy.

The proposed DHALR consists of three cascaded convo-
lutional blocks, where block 1 is composed of 32, 3 × 3
filters, block 2 is composed of 64, 3× 3 filters and block 3 is
composed of 128, 3× 3 filters. Each convolution is followed
by the 2×2 max-pooling and dropout. The convolutional and
max-pooling layers are used to learn the local spatial structure
in the training images. The outputs of block 3 from the two
streams are concatenated, flattened and passed through two
fully connected layers, followed by a dropout and final dense
layer (with softmax) equal to the number of output predic-
tions required. The fully-connected layers help to integrate
global information from across the images and to accurately

classify the human activity or/and sensor location. Dropout
is a regularisation term added to avoid over-fitting during
training [23]. The dropout helps to deactivate some of the
nodes in the network at random during training, which helps
in improving its generalisation capability. We used ADAM
optimiser with a learning rate of 0.01 to train the network,
because of its good performance in deep neural network
learning [24].

IV. DATASET DESCRIPTION
To evaluate the performance of our proposed approach,
we use the RealWorldHumanActivity Recognition (RWHAR)
dataset presented in [11].2 Table 2 summarises the main
characteristics of the original dataset. The dataset consists
of motion signals from seven different body parts including
chest, forearm, head, shin, thigh, upper arm, and waist (as
indicated in Figure 1), that are gathered by using seven
wearable devices (mainly smartphones and smartwatches)
attached to the said positions. Each of the wearable devices
contains six different sensors which include accelerometer,
gyroscope, GPS, light, magnetometer, and audio, that were
used to collect the motion signals. Fifteen people (8 male
and 7 females) participated in the data collection process and
each participant adorned with the seven synchronised wear-
able devices were instructed to perform 8 different activities
which include climbing stairs down and up, jumping, lying,
standing, sitting, running/jogging, and walking for approxi-
mately ten minutes (except for jumping which was performed
for only 1.7 minutes due to exhaustive nature of the activity).

2RealWorld HAR dataset [online]. http://sensor.informatik.uni-
mannheim.de/#dataset_realworld [Last accessed 18.07.2020]
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TABLE 2. Summary of the main characteristics of the RealWorld Human Activity Recognition (RWHAR) dataset from [11] which is used for analysing and
validating our proposed DHALR method.

TABLE 3. Summary of the frequency (activity) images dataset created from RWHAR dataset. Total number of samples obtained for each activity and each
sensor position for the 15 participants are reported. the images.

During the activities, the readings from both accelerometer
and gyroscope sensors were sampled at 50Hz. We use the
accelerometerand gyroscpe data to develop frequency-based
activity images for the different activities for our experiments
as discussed in Sec. III-A. We generated a total of 885,360
frequency-based activity images for five dynamic activities
over all the sensor positions. Table 3 shows the distribution
of the activity images. For each activity, we obtain 15,180
frequency images from each sensor position and sensor type
(accelerometer or gyroscope), except for jumping where
we obtained 2,520 images. In total, we obtained 855,360
frequency images across all dynamics activities and sensor
positions. We plan to publicly release these activity images
to support benchmarking and future researches in this area.

V. EXPERIMENTAL SETUP
Wedevelop the proposedDHALRusing Tensorflow, an open-
source machine learning library produced by Google [25].
We evaluate the performance of the proposed method
using a cross-subject validation approach, whereby we train
the human activity recogniser with activity data obtained
from 12 specific individuals in the dataset and then evaluate it
with data from other 3 different people that were not present
in the training set. We measure the accuracy of the DHALR
on the evaluation set using precision, recall, and F1-score per-
formance metrics. The F1-score ∈ [0, 1], gives an estimation
of the accuracy of the DHALR by computing the harmonic
mean of the precision and recall scores. An F1-score that
is close to 1 is desirable as it indicates a high recognition

performance. We adopted these metrics as they are the stan-
dard measures used for estimating the goodness of pattern
recognition models [26].

We compare the performance of the DHALR against
other classical CNN architectures such as LeNet5 [27] and
ResNet50 [28]. We also compare the best results of the
DHALR with those reported by Sztyler et al. [11], and Lawal
and Bano [6]; other state-of-the-art methods using the same
dataset. All our experiments were conducted on a PC having
the following specifications: AMD Fx-8370,8-core processor
@ 4.0GHz, 32GB of RAM, Nvidia GeForce GTX1050 6GB
GPU,and Microsoft Windows 10 operating system.

VI. RESULTS AND DISCUSSION
Weconducted six extensive experiments such that each exper-
iment was designed with specific goals including finding the
best sensor location for activity recognition, comparison with
existing activity recognition methods and validation of the
robustness of the proposedDHALR against other CNN-based
methods. The specifications of each experiment are sum-
marised in Table 4 and discussed below are the obtained
results.

A. EXPERIMENT 1: SENSOR POSITION INFERENCE
INDEPENDENT OF THE ACTIVITY
This experiment aims to demonstrate the ability of the pro-
posed DHALR to predict the correct position of the sen-
sors based on the pattern in the activity data generated.
Thus, we train the DHALR with the activity data (both
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TABLE 4. Details of the six experiments performed for the evaluation of the proposed DHALR method. For each experiment, its goal, network input and
predictions are mentioned along with the Figures and (or) Tables numbers displaying the results.

TABLE 5. Experiment 1: DHALR results in predicting the sensor positions
independent of the activity.

accelerometer and gyroscope) from all the seven sensor posi-
tions and evaluate it using the evaluation set. We record
the performance of the DHALR in terms of the achieved
precision, recall and F1-scores. Table 5 shows the results
obtained by the DHALR in predicting the different positions
of the sensors. The DHALR achieves an impressive F1-score
of at most 0.99 for most of the sensor positions except for
thigh, where it obtains an F1-score of 0.84. Figure 4 shows
the confusion matrix of the DHALR prediction. The values in
the diagonal indicate the accuracy of the prediction, while the
values below and above the diagonal in the figure show the
error incurred. Overall, these results show that the patterns
of the activity data produced by the sensors positioned on
the seven body parts are distinctly different and can easily
be differentiated.

B. EXPERIMENT 2: ACTIVITY INFERENCE INDEPENDENT
OF THE SENSOR POSITION
We perform this experiment to evaluate the ability of the
DHALR to predict human activities independent of the posi-
tion of the sensor producing the activity data. We train
the DHALR with the activity data generated by all the
seven wearable sensors combined, and we deploy it to
predict the following activities: climbing up/down, Jump-
ing, Running and Walking. Table 6 shows the results on

FIGURE 4. Experiment 1: Confusion matrix showing the DHALR sensor
position prediction. The values in the diagonal indicate the
accuracy (recall) of the prediction.

the evaluation set. The DHALR achieved a significantly
high F1-score of 0.95 and 0.89 for running and jump-
ing activities compared to climbing down, climbing up
and walking activities that resulted in the F1-scores of
0.75, 0.71 and 0.68, respectively, irrespective of the sen-
sor position. The confusion matrix of the results is shown
in Figure 5, which highlights cases where some activities
are not correctly recognised. For example, walking is erro-
neously confused with climbing down/up activities. This is
partly because some of the participants walking and climb-
ing gaits are very similar, thus generating similar motion
signals that are difficult to differentiate. We showed in
Sec. VI-E, that by using complementary activity data, the
confusion between walking and climbing activities can be
improved.
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TABLE 6. Experiment 2: DHALR results in predicting the activities
independent of the sensor positions.

FIGURE 5. Experiment 2: Confusion matrix of the DHALR results using all
the sensor position data.

C. EXPERIMENT 3: ACTIVITY RECOGNITION AGAINST
SENSOR POSITION
Next, we are interested in finding the best sensor position
for accurately recognising the various activities. Therefore,
we conducted this experiment to understand how the different
sensor positions affect the DHALR accuracy. We train the
DHALR with all the activity data from the seven sensor
positions, one sensor position at a time. We evaluate and
record the performance of the DHALR in predicting the
activities in the evaluation set. Table 7 shows the F1-scores
of the DHALR for all the activities against the different
sensor positions. We observe that the DHALR performance
for each activity varies across all the sensor positions, which
indicates that there is no single optimal sensor position for all
of the activities. However, we noted that when the sensor is
positioned on the waist or shin, the DHALR perform much
better for all the activities with a mean F1-score of 0.86 and
0.88, respectively. Thus we can consider the shin and Waist,
as the best sensor positions for predicting dynamic activities.
Also, we observe from Table 7 that the activity recognition

performance for the thigh sensor is particularly low which
is in line with our findings of experiment 1 (section VI-A).
We investigate the cause of this low score by viewing the
videos of the data collection setup for all the participants.
We discover that unlike the other six on-body devices, the
one marked as the thigh is loosely placed in the front pocket
of the participants’ trouser. Thus, during the execution of the
physical activities, the wavering movement of the device can
cause the embedded accelerometer and gyroscope sensors to
generate erroneous motion signals that are different from the
real signals depicting the actual activities been performed.

D. EXPERIMENT 4: PERFORMANCE IMPROVEMENT BY
COMPLIMENTARY ACTIVITY DATA
In this experiment, we combine the activity data from the
shin and waist-mounted sensors to train the DHALR.We per-
form this experiment to show that by using complementary
activity data from the best sensor positions (discussed in
section VI-C), the recognition accuracy of the DHALR can
be improved. We evaluate the performance of the trained
DHALR using the evaluation set and record the obtained
F1-scores. The DHALR achieved an improved performance
with a mean F1-score of 0.90 for all the five activities pre-
dicted. Table 8 compares the performances of the DHALR
when trained with activity data from all the seven sensors
independent of their position, from waist-mounted sensor
only, and from both waist and shin mounted sensors. Note
that in most existing human activity recognition [13], waist is
considered an ideal position as it is closer to the centre ofmass
of the human body. We observed from Table 8 that jointly
using activity data from waist and shin mounted sensors
increases the recognition accuracy (F1-score) from 0.80 to
0.90; an impressive 10% improvement. Moreover, combining
the activity data from both sensors also helps to provide
additional discriminatory information about closely related
activities such as walking and climbing, thereby aiding the
DHALR to reduce the confusion between these two activities.
This reduction in the confusion of the walking and climbing
activities by the DHALR can be seen by comparing the
improved confusion matrix in Figure 6 with that of Figure 5.

E. EXPERIMENT 5: SIMULTANEOUS ACTIVITY AND
SENSOR POSITION RECOGNITION
We perform this experiment to evaluate the ability of the
DHALR to simultaneously predict both the activity and the
position of the sensor producing the activity signal. Given
the five activities and seven sensor positions, the DHALR
is expected to predict thirty-four different combinations of
both activity and sensor positions. From a pattern recognition
perspective, this is a difficult multi-label problem. Thus we
train the DHALR with the activity data from all the sensor
positions, whereby each of the training data is assigned two
labels i.e. the activity the data is depicting and position of the
sensor producing the data. We evaluate the performance of
the trained DHALR using the evaluation set. The evaluation
results show that the DHALR achieves a mean precision,
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TABLE 7. Experiment 3: DHALR F1-scores in predicting five activities from seven sensor positions.

TABLE 8. Experiment 4: DHALR activity recognition results for different combinations of sensor data.

FIGURE 6. Experiment 4: Confusion matrix of the results of the DHALR
trained with activity data generated from both shin and waist mounted
sensors. These results show significant improvement compared to when
training is done using all sensor position data as reported in Figure 5.

recall and F1-score of 0.77, 0.72 and 0.71, respectively. This
is an encouraging result considering the difficult nature of
the problem. Figure 7 shows the confusion matrix of the
thirty-four combinations of both activity and sensor positions.
The intensity of the colours in the diagonal of the confusion

matrix represents the level of the accuracy of the prediction.
We can observe that the DHALR correctly predicted most of
the activities with the corresponding positions of the sensors
generating the activity data. We also observe some instances
where the DHALR err, which include walking and climbing
activities where the activity data is generated by the sen-
sor positioned in the thigh. For example, Walking_Thigh is
wrongly classified as ClimbingDown_Thigh. This particular
case is not unexpected as we have shown in the previous
experiments that the thigh is not a suitable position for activity
recognition.

F. EXPERIMENT 6: ROBUSTNESS COMPARISON AGAINST
OTHER CNN-BASED MODELS AND EXISTING METHODS
We performed this experiment to compare the robustness
of the proposed DHALR against two classical CNN archi-
tectures commonly used for natural image classification.
Specifically we implement LeNet5 [27] and ResNet50 [28],
a shallow and deep CNN architectures, respectively. We train
both CNNs using the same activity data from shin mounted
sensor. Table 9 shows the performance of all the methods
on the evaluation set. The DHALR performed much better
compared to the other two methods with a mean F1-score of
0.88. The LeNet5 achieves a mean F1-score of 0.79, while the
ResNet50 obtain an average F1-score of 0.73. These results
support our assertion that unlike natural image classification
problem, frequency images which encode activity signals
can be accurately recognised using CNN architecture (like
the proposed DHALR) which incorporates relatively fewer
convolutional layers.
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FIGURE 7. Experiment 5: Confusion matrix of the DHALR results showing the prediction of both activity and sensor position. Note the acronyms
used, e.g. CD_Chest means climbing down activity with the sensor positioned in the chest. CD:Climbing Down, CU:Climbing Up, JP:Jumping,
RN:Running, and WK:Walking.

Finally, we also compare the performance of the DHALR
with [11]: another state-of-the-art method. We chose to com-
pare with this method because the authors reported their
evaluation on the same RWHAR dataset. Table 10 shows the
comparison of DHALR best results with those reported in
[11] and our previous work [6], respectively. The table clearly
shows that the proposed DHALR with a mean F1-score of
0.94 for position recognition and 0.90 for activity recogni-
tion achieves superior performance compared to [11] which

reported a mean F1-score of 0.89 and 0.87 respectively, and
[6] which obtained an average F1-score of 0.87 for activity
recognition. Unlike [11], the DHALR can effectively clas-
sify the various activities and device positions, due to the
transformation of the raw tri-axial accelerometer and gyro-
scope motion readings into frequency images that encode
the activity signals, and the use of a two-stream CNN clas-
sifier to capture the intrinsic similarities among the activity
images.
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TABLE 9. Experiment 6: Evaluation results of different CNN methods
using activity data from shin-mounted sensor.

TABLE 10. Experiment 6: Evaluation results of different methods for
position and activity recognition.

FIGURE 8. Samples of the corrupted activity data for climbing down,
climbing up and walking generated from thigh-mounted sensor.

G. SOURCES OF RECOGNITION ERROR
We observed that some activities are more difficult to differ-
entiate and/or recognise, due to the similarities in the manner
the activities are performed. Specifically, walking and climb-
ing up/down are often confused in our experiments. We stud-
ied the instances where some of these problems occur and
examine the affected activity data in the evaluation set. The
prediction errors can be attributed partly to the following
reasons

• Errors due to corrupted activity data. Figure 8 shows
samples of corrupted activity data which the proposed
DHALR misrecognised. Such samples occur at the start
or/and end of an activity. These erroneous data are
difficult for the DHALR because they are corrupted.
The solution could be to discard them from both the
training and evaluation set accordingly since they lack
information that will improve the recogniser.

• Errors due to the similarity in the manner closely related
activities are performed. Figure 9 shows samples of the
activity data for walking and climbing activities with
very similar movement patterns. This type of error can

FIGURE 9. Samples of the activity data for climbing down, climbing up
and walking showing very similar motion patterns.

be mitigated by using additional motion information
from a complementary sensor as input during the train-
ing of the recogniser as validated in Section VI-D.

VII. CONCLUSION
We proposed a novel method for human activity and sensor
location recognition by proposing a two-stream convolutional
neural network. We used frequency-based activity images
from both accelerometer and gyroscope sensors mounted
on several body locations as input to our network. The
network jointly encoded both accelerometer and gyroscope
frequency images, concatenated the two feature maps and
predicted either the activity or location or both activity
and location. We evaluate the performance of the proposed
method using real-world human activity dataset, and the
experimental results show that the proposed DHALR is
robust compared to other activity recognition methods and
CNN-based networks(commonly used in natural image clas-
sification). Unlike existing HAR methods, which mainly rely
on single (waist) sensor information for activity inference,
we showed that the shin position is more accurate than
the waist. Moreover, combining complementary information
from both waist and shin data helped in further improving the
activity recognition accuracy.
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