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ABSTRACT In this article, a new guidance law is proposed for impact angle constrained missile with
time-varying velocity against a maneuvering target. The proposed guidance law is based on model-based
deep reinforcement learning (RL) technique where a deep neural network is trained to be a predictive model
used in model predictive path integral (MPPI) control. Tube-MPPI, a robust approach utilizing ancillary
controller for disturbance rejection, is introduced in guidance law design in this work to deal with the
MPPI degradation of robustness when the deep predictive model differs with actual environment. To further
improve the performance, meta-learning is utilized to enable the deep neural dynamics adapt to environment
changes online. With this approach the model mismatch of the nominal controller is reduced to improve
tube-MPPI performance. Furthermore, a range-aware hyperbolic function is proposed as an adaptive function
in the MPPI performance index design. Thus, reduced initial acceleration command and increased terminal
velocity benefit guidance performance. Numerical simulations under various conditions demonstrate the
effectiveness of proposed guidance law.

INDEX TERMS Missile guidance, tube model predictive control, meta-learning, deep reinforcement
learning, impact angle constraint.

I. INTRODUCTION
Interception at a desired intercept angle help missile in
increasing penetration capability, warhead effectiveness and
reduce collateral damage. It may be necessary for modern
missile to intercept target not only at a small miss distance,
but also at a desired intercept angle. When facing these
new requirements, conventional guidance law design method
faced elevated difficulty, and deep reinforcement learning is
a powerful tool in tackling these problems.

Rising interest has been witnessed on the application of
deep RL in guidance design, with great potential shown
by deep reinforcement learning. Compared with guidance
designed using traditional control theory [1], deep RL is
a data driven method. Many recent works has utilized
deep RL in guidance law design for performance enhance-
ment [2], or for requirement traditional control theory hard
to satisfy [3], [4]. Many works in deep RL guidance laws
utilize model-free deep reinforcement learning. However,
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model-free RL lacks sample efficiency compared with
model-based methods, thus require large number of inter-
actions with environment. Deep model-based reinforcement
learning utilizes deep neural network as model, is gener-
ally considered data efficient [5] and is welcomed in many
real-world control tasks. MPPI is one of the typical methods
of model-based deep reinforcement learning which utilizes
a deep neural network as the dynamics model to obtain
the optimal control solution to the Hamilton-Jacobi-Bellman
(HJB) equation via Monte-Carlo sampling of path integrals,
thus solves the optimal control problem and is widely used
in many real-world tasks [6]. Ref [7] utilizes MPPI method
to solve the guidance problem under impact angle con-
straint. However, MPPI sometimes suffer from degradation
of robustness when the deep neural dynamics differs with
the real environment. Many work try to robustified the MPPI
method by ensemble models [8], L1 adaptive control [9], and
so on. Tube-MPPI method is also proposed by combining
an ancillary controller to keep the system states in the tube
centered at nominal state computed using MPPI as nomi-
nal controller [10]. In this work, the deep neural dynamics
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mismatch problem in Tube-MPPI is further improved using
meta-learning to adapt the deep neural dynamics to envi-
ronment changes online. Meta-learning provides learning-
to-learn capability to deep neural network and is thus essential
to real-world application of deep reinforcement learning to
adapt to changes in environment online. This is critical in
guidance problems since the target maneuver pose a large
perturbation to the engagement dynamics. Thus in this work
a Meta-learning Tube-MPPI method is proposed to tackle the
impact angle guidance problem intercepting a strong maneu-
vering target.

Impact angle constrained guidance law helps to increase
the missile capability, however in most of the existing guid-
ance laws, high acceleration is needed at the beginning of the
flight. The large acceleration command consumes excessive
missile momentum energy, and will result control saturation.
In [11], a hyperbolic tangent function weighted guidance law
is proposed trying to tackle this problem. However, the value
of proposed function grows exponentially with time, thus
penalizing mostly impact angle and miss distance error while
neglecting acceleration loss. Thus, utilizing the elegant satu-
ration property of hyperbolic tangent function, a variant of
hyperbolic function is proposed in this article that has an
adjustable value during final phase of guidance. Different
from [11] which use time as decision variable, range-to-go
is used in this article since it provides more accurate infor-
mation about current stage of guidance. Thus, in this work,
a novel range-aware hyperbolic tangent function is proposed
to reduce input saturation at the initial phase of guidance.

In this article, we develop a new range-aware meta-
learning tube-MPPI guidance law with impact angle con-
straint. Given the limitations of prior work, the proposed
approach is more sample efficient and impact angle con-
straint when compared with existing deep RL guidance
laws. It also improves ancillary controller robustified MPPI
method by reduced model mismatch using meta-learning,
and benefit guidance performance by range-aware adaptive
weighting compared with existing error shaping guidance
laws. The main contribution of our work is as follows:
1) A meta-learning tube-MPPI control method is proposed.
With this approach, the tube-MPPI performance is improved
through reduced model mismatch of nominal controller using
meta-learning model adaption. 2) A range-aware hyperbolic
function is designed as an adaptive error shaping function in
guidance law performance index design. This method ben-
efits guidance performance by reduced initial acceleration
and increased terminal velocity. 3) A new guidance scheme
is formulated with aforementioned techniques for a varying
velocity interceptor intercepting maneuvering target with
desired terminal impact angle.

This article is organized as follows. Section II reviews
existing works on deep RL guidance laws, weighted opti-
mal guidance laws, MPPI and meta-learning. Section III
details a novel guidance scheme based on model-based RL
and meta-learning tube-MPPI. Numerical simulations are

conducted to show the effectiveness of the proposed method
in Section IV. Finally, conclusion is offered in section V.

II. RELATED WORK
A. DEEP RL IN GUIDANCE LAW DESIGN
Deep RL has proven to be successful in many control tasks.
With fast evolving capability and good performance of deep
RL, a growing trend emerges that modern guidance strategy
incorporated deep RL framework to tackle guidance problem.
Both model-free and model-based methods are incorporated
in guidance design. For model-free methods, in [2], RL is
used to design a missile guidance law in homing-phase, and
it gives superior performance compared with guidance law
design using Lyapunov theory. To tackle challenging envi-
ronment and unknown highly variable dynamics, an adaptive
guidance law and integrated navigation is proposed in [3]
with deep meta-RL. Meta-learning can provide adaption
to unforeseen environment changes through online learning
while most traditional adaptive guidance is limited to specific
faults [1], [14]. In Ref. [4], [12], Deep RL is also used to
design a novel guidance lawwith solely seeker LOS angle and
angular rate measurement for a mid-course exo-atmospheric
interception. In [13], a deep RL based guidance law with
missile attitude loop is proposed using PPO. Our work uti-
lizes model-based RL techniques, thus has higher sample
efficiency than these model-free RL guidance laws, and also
achieves impact angle constrained guidance. Model-based
RL is also used in guidance law design. In [7], a novel
adaptive intercept angle guidance law with deep meta-RL is
proposed for missile with actuator failures. Our work differs
with [7] in the tube-MPPI approach and range aware hyper-
bolic functions that enhance the guidance performance.

B. OPTIMAL ERROR SHAPING GUIDANCE LAWS
Over the years, various efforts have been made to design
improved optimal guidance law using different performance
index [15]. Weighted cost function is utilized to shape the
missile trajectory and distribute acceleration command dur-
ing the engagement. Time-to-go [16], range-to-go [17] and
generalized formulation [18] of weighted cost are used to
alleviate initial high acceleration and highly curved trajectory
problems in impact angle constraint guidance law. Other
functions such as sinusoidal function [15], Gaussian func-
tion [19] have also been utilized in designing weighted opti-
mal guidance laws. Ref. [11] employ hyperbolic tangent
function as weighting in guidance design. However, the value
of this variant of hyperbolic function in [11] grows exponen-
tially with time. A range-aware hyperbolic tangent function
is designed in this work to tackle this problem. Recent work
in [20] also use error shaping to trade off acceleration against
rate of error convergence. Our method inspired by this trade-
off but differs by the range-aware weighting function that
is adaptive respect to different stage of engagement, which
benefit guidance performance.
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C. MODEL-BASED RL
Model-based reinforcement learning is welcomed in many
real-world control tasks for its high efficiency since a deep
neural networks model is learned to solve the control task.
MPPI is a typical method of model-based reinforcement
learning to solve the control problem using the deep system
model. MPPI is firstly used on real hardware in aggressive
driving of rally vehicles in Ref. [22], and is implemented
in a wide range of real control tasks including complex
robot manipulation [23], missile guidance [7] and so on.
Many attempts have been made to robustifies MPPI method.
Ref [8] utilized model ensemble to tackle this problem,
however, the ensemble of models normally deteriorate com-
putation speed and may be inefficiency for real-time sys-
tem. In [9], a L1 adaptive control method is combined with
MPPI to address this problem and validated in multirotor
racing. The Tube-MPPI in [10] utilize tube-based model
predictive framework and robustifies MPPI by combine an
ancillary controller as the tracking controller of nominal
MPPI controller. Still, large difference between deep neural
dynamic and true environment will impact central path and
deteriorate ancillary controller tracking performance. Thus,
meta-learning Tube-MPPI method is proposed in this work
to address this problem. By utilizing meta-learning deep
network dynamics is able to learn changes in environment
online via learning to learn [24]. This is usually done by an
update rule to the learner [25]. In this work, the tube-MPPI
performance is improved through reduced model mismatch
through meta-learning constantly adapting neural dynamics
to changes in environment.

III. PROBLEM FORMULATION
The missile-target engagement dynamics is established for
the purpose of guidance law development. Consider skid-
to-turn roll-stabilized missile, the three dimensional missile
target engagement geometry between missile M and target T
in the inertial coordinate frame OIXIYIZI is shown in Fig. 1,
where the missileM has a velocity VM , with direction defined
by θm and φm; the target has a velocity VT , with direction
defined by θt and φt ; line-of-sight (LOS) angles are denoted
by θL and φL and the relative range is denoted by R.
Then the three-dimensional relative kinematic dynamics

between missile and target can be expressed as follows [27]:

Ṙ = VT cosθtcosφt − VMcosθmcosφm, (1)

Rθ̇L = VT sinθt − VM sinθm, (2)

Rφ̇LcosθL = VT cosθtsinφt − VMcosθmsinφm. (3)

The maneuver dynamics for target can be expressed as:

θ̇t =
azt
VT
− φ̇LsinθLsinφt − θ̇Lcosφt , (4)

φ̇t =
ayt

VT cosθt
+ φ̇L tanθtcosφtsinθL

− θ̇L tanθtsinφt − φ̇LcosθL , (5)

where ayt and azt are target accelerations. The forces acting
on missile include thrust T , drag D, zero-lift drag D0 and

FIGURE 1. Missile-target interception geometry.

induced dragDi. With missile mass denoted bym, andmissile
acceleration denoted by aym and azm, the dynamics of missile
motion can be expressed as follows [28]:

V̇M =
T − D
m
− g (cosφmcosθmsinθL + sinθmcosθL), (6)

θ̇m =
azm + g(cosφmsinθmsinθL − cosθmcosθL)

VM
− φ̇LsinθLsinφm − θ̇Lcosφm, (7)

φ̇m =
aym + gsinφmsinθm

VMcosθm
− θ̇L tanθmsinφm

+ φ̇L tanθmcosφmsinθL − φ̇LcosθL . (8)

The equations of the forces can be expressed as:

D = D0 + Di; D0 = CD0Qs, (9)

Di =
Km2(a2ym + a

2
zm)

Qs
, (10)

K =
1

πAre
, (11)

Q =
1
2
ρV 2

M , (12)

where CD0, K , Ar , e, ρ, s and Q are zero-lift drag coeffi-
cient, interceptor, induced frag coefficient, aspect ratio, effi-
cient factor, atmosphere density, reference area and dynamic
pressure.

The objective of the guidance law is to achieve the inter-
ception of missile and target, with desired impact angle θLD
and φLD. The impact angle is defined to be the LOS angles as
in [27], [28]. As nullifying the LOS angular rates θ̇L and φ̇L
can lead to the interception, the solution to this problem is
to design the missile accelerations to guarantee the following
equations:

θ̇L = φ̇L = 0, θL = θLD, φL = φLD. (13)

Thus we can see the problem of guidance law with desired
impact angle can be reduced to the problem of controlling
the LOS angles and angular rates as described in the above
equation.
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IV. DESIGN OF PROPOSED GUIDANCE LAW
In this section, a range aware impact angle guidance law is
proposed with model-based RL and range-aware hyperbolic
tangent function. By utilizing model-based RL and meta-
learning, better data efficiency and online adaption capabil-
ity is achieved. Meta-learning tube-MPPI approach which
combine online adaption sampling based RL and disturbance
rejection ancillary controller is constructed as model-based
RL approach. Range-aware hyperbolic tangent function is
then constructed as adaptive function used in performance
index design to alleviate large initial acceleration command
and highly curved trajectory problem in impact angle con-
strained guidance law. The schematic diagram of proposed
guidance scheme with meta-learning tube-MPPI is shown
in Fig.2.

FIGURE 2. Schematic diagram of the proposed approach.

A. META-LEARNING NEURAL NETWORK DYNAMICS
MODEL
A deep neural network dynamic model is built to be the
predictive system dynamics model in model-based RL. Such
neural dynamic model can be learned from observation data
from real system. The neural network dynamics is noted as
x̂t+1 = fθ (xt ,ut), where xt and ut are system state and input
at time t, θ is the weight coefficients in the neural network,
and x̂t+1 is the predicted system state at time t+1. The neural
network utilized is a multi-layer dense network with ReLU
activations. This deep neural dynamic is verified in [7] to
have a neglectable prediction error, which will make failure
of proposed deep RL controller unlikely.

Using meta-learning, deep neural dynamics can adapt to
changes in environment online which solve the changing
environment problem deep model-based RL facing. The
meta-learning approach we adopted from [26] has two phases
to make the neural dynamics optimized to the training dataset

and also adapted to environment online. These two phases,
the meta-training step and online adaption step are reviewed
in the rest of this session.

In the meta-training step, the optimized deep neural
dynamic model parameter θ∗ is trained to be further adapted
online. Themodel is trained using normalized training dataset
by minimizing the mean square error of the prediction and
actual value with 12 hours of offline training. The data is
normalized to help the gradient flow in the training. Adam
optimizer [29], a stochastic gradient descent optimization
method, is employed to tackle this optimization problem.

In the online adaption phase, the meta-trained model
fθ∗ (xt ,ut) is adapted using recent experience τε(t−M , t−1)
gained through environment to be a more accurate predictor.
The adaption rule is selected to be gradient ascent of the like-
lihood of mean square error between prediction and ground
truth using the recent experience:

Nψ (τ (t −M , t − 1) , θ)

= θ+α∇θ (
1
M

t−M∑
m=t−1

∥∥∥(q̇m+1−q̇m)− f̂θ (xm,um)∥∥∥2), (14)

where α is the learning rate.

B. TUBE-MPPI CONTROLLER
Based on the meta-learning neural dynamic model trained
above, a tube-MPPI controller can be built for the guidance
problem. Tube-MPPI is a variant of tube-MPC which consist
of a nominal controller and an ancillary controller [10]. The
nominal considers general costs and generates nominal state:
the central path, while the ancillary controller tracks the
actual system state in a tube centered at the central path.
The actual state is bound in a tube centered at the central
path. Since in this guidance law we are more concerned with
the robust ability of tube-MPPI and there are no other state
constraints, therefor we do not concern with the computation
of this bound in this work.

The nominal system can ignore system disturbances, like
in [10], [30], two copies of the nominal controller are run with
one from the actual state and the other one from nominal state.
The mechanism accepts the MPPI solution of actual state if
its cost is lower than the cost of solution from nominal state
plus some threshold. In this way disturbances that are not
catastrophic are feedback to the nominal controller to replan.

1) NOMINAL CONTROLLER
The MPPI controller, which is a sampling based optimal
control method solving the stochastic HJB equation [22],
is used as the nominal controller and is given in Alg. 1.
In MPPI, we consider the optimal control problem to find a
control sequence that minimize the cost functions:

U∗ = argmin
U

EP[φ (xT )+
T−1∑
t=0

ct (xt ,ut)], (15)

where the c and φ are positive definite running and termi-
nal cost function respectively, and P denote the distribution
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Algorithm 1 Nominal Controller (MPPI) at Each Time
Stamp

Given: f̂θ (xt ,ut ): transition model with parameter θ of
a prior;

Nψ : update rule of parameter θ ;
τ (t −M , t − 1): experience;
N : Number of samples;
T : Horizon;
6, rt , φ: Control hyper-parameters

1: θ
′

∗← Nψ (τ (t −M , t − 1) , θ∗)
2: x0← SetNominalState()
3: for n = 0, . . . ,N − 1 do
4: x← x0
5: Sample Ent = {δu

n
0, δu

n
1, . . . , δu

n
T−1}

6: for t = 1, . . . ,T do
7: xt ← f̂θ ′∗ (xt−1,ut−1 + δu

n
t−1)

8: S
(
Ent
)
+= ct (xt ,ut)+ λuTt−16

−1δunt−1
9: end for
10: S

(
Ent
)
+= φ (xT )

11: end for
12: S ′

(
Ent
)
= S

(
Ent
)
− minn[S

(
Ent
)
]

13: λ = σ (S ′
(
Ent
)
)

14: η =
∑N−1

n=0 exp(− 1
λ
(S ′
(
Ent
)
))

15: for n = 0, . . . ,N − 1 do
16: wnt ←

1
η
exp(− 1

λ
(S ′
(
Ent
)
))

17: end for
18: for t = 0, . . . ,T − 1 do
19: ut +=

∑N
n=1 w

n
t δu

n
t

20: end for
21: X ← Simulate(x0,U)
22: PublishSolution(X,U)
23: for t = 0, . . . ,T − 1 do
24: ut−1← ut
25: end for
26: uT ← Initialize(uT−1)

corresponding to the dynamics F (x, u+ δu), δu is a
Gaussian noise vector. The noise is essential to use sampling
method originated from stochastic optimal control and also
as a way of exploration. Denote V as perturbed input into the
system, h as the input sequence of uncontrolled system and
p as the open-loop control sequence, the free energy of the
dynamic system is defined as follows:

F (V ) = −λlog(EP[exp(−
1
λ
S(V ))]), (16)

where λ is a positive scalar. According to [31], the cost of
optimal control problem is bounded below from this free
energy. Further derivation using Jensen’s inequality can get
the optimal distribution of the control sequence:

p∗ (V ) =
1
η
exp

(
−
1
λ
S (V )

)
h (V ), (17)

where η is the normalizing factor. Then we can get the
optimal control solution by minimizing the gap measured by
Kullback-Leibler divergence:

U∗ (V ) = argmin
U

DKL(P∗||P). (18)

After expanding out the KL divergence, and analyzing the
concave result, the optimal control sequence can be derived as
follows. Since the optimal distribution Q∗ cannot be directly
sampled, importance sampling technique is taken to get the
sequence

u∗t =
∫
p∗ (V ) vtdV , (19)

= EP [w (V ) vt], (20)

where the importance sampling weight w (V ) is:

wt (V )=
p∗ (V )
h (V )

exp(
T−1∑
t=0

(−vTt 6
−1ut +

1
2
uTt 6

−1ut)),

=
1
η
exp

(
−
1
λ

(
S(U+E)+λ

T−1∑
t=0

1
2
uTt 6

−1(ut+2δut)

))
.

(21)

The temperature coefficient λ of this softmax distribution
is designed to be as follows to normalize the cost function
distribution as in [7]:

λ = λ∗σ (S (V )), (22)

Then the control sequence of MPPI is updated using N sam-
ples as iterative update law:

ui+1t = uit +
N∑
n=1

wnt δu
n
t . (23)

Remark 1: The MPPI framework can be viewed as a
stochastic optimal control (SOC) approach. With inspira-
tion from [32]–[34], the stability is discussed as follows.
If we denote the corresponding continuous dynamical system
which is the guidance dynamics as:

dxt = (f (xt)+ G (xt)ut) dt + Bdw, (24)

where B defines the covariance of the system, and w is a
Brownian disturbance. If we denote the value function as V,
then the continuous time value function is:

V (xt) = min
u

Ew

[
φ (xT )+

∫ T

t

(
q (xt)+

1
2
uTt Rut

)
dt
]
,

then the stochastic HJB equation is given as:

−∂tV = c (xt)+ VTx f (xt)−
1
2
VTx G (xt)R

−1GT (xt)Vx

+
1
2
Tr
(
BBTVxx

)
(25)

with the boundary condition V (x) = φ (x) and optimal
control expressed as:

u∗ (xt , t) = −R−1GT (xt)Vx . (26)
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According to [21], this control can be computed using
Feynman-Kac formula to the transformed Chapman-
Kolmogorov equation, and (26) can also be expressed as:

u∗dt = G(xt , t)B
EP[exp(− 1

λ
S(V ))dw]

EP[exp(− 1
λ
S(V ))]

, (27)

where G(xt , t) = R−1GTc (xt)
(
Gc (xt)R−1GTc (xt)

)−1
.

As the importance sampling is an unbiased estimate [37]
and the universal approximation theorem of the feed-forward
neural network used in our work, the noise adopted from the
MPPI control method is zero mean. If we denote the variance
of noise profile as 6, the noise enters the system through
control is B = G

√
6. Thus after discretization, and set 1t

as the unit time, the control command of (27) can be derived
as:

u∗ = G(xt , t)B
EP[exp(− 1

λ
S(V )) ε

√
1t

]

EP[exp(− 1
λ
S(V ))]

=
EP[exp(− 1

λ
S(V ))

√
6ε]

EP[exp(− 1
λ
S(V ))]

, (28)

where ε is the Gaussian noise vector. Thus this is equivalent
to the solution of the path integral approach in (20) and the
resulting control command is the solution to the stochastic
HJB equation, which can also be expressed in (26), which is
also shown in [38].

If we choose the value function V as the stochastic
control Lyapunov function (SCLF) [35], according to proof
of Lemma 3.14 in A.1.4 in [39], V is positive definite in
Lyapunov sense such that V(0, t) = 0,V(e, t) ≥ µ(|e|)
∀t > 0, µ ∈ K. Then recall (25) and (26),

L (V) = ∂tV+ VTx (f (xt)+ G (xt)ut )+
1
2
Tr(BBTVxx),

= −

(
1
2
VTx G (xt)R

−1GT (xt)Vx + c (xt)
)
. (29)

Since by definition, c is positive definite and R is positive
definite matrix, thus the value function is a strict SCLF with
L (V (x, t)) ≤ 0. According to theorem 5.3 in [36], the cor-
responding system (24) is stable in probability and the MPPI
controller is a stabilizing controller.

2) ANCILLARY CONTROLLER
The ancillary controller acts as a tracking controller, which
keep the actual system state in the tube, centered at the
central path computed by the nominal controller. This is
a standard tracking problem with small initial error and
quadratic cost. With many solution exist, a nonlinear MPC
utilizing iLQG is selected as the ancillary controller as
in [10], [30], with the state convergence in finite time shown
in [41], this widely used control method provide relative good
performance.

C. RANGE-AWARE HYPERBOLIC TANGENT FUNCTION
The hyperbolic tangent function can be expressed as
follows:

tanh (x) =
ex − e−x

ex + e−x
, (30)

and its figure is drawn in fig.3.

FIGURE 3. Hyperbolic tangent function.

Different from time, range-to-go provide more accurate
information about the current stage of guidance, thus relative
range is used as the decision variable of the adaptive function.
We also want an adjustable saturated value at the end of
guidance, thus the elegant property of hyperbolic function is
necessary. Utilizing the above analysis, a variant of hyper-
bolic tangent function is designed as:

fRA−tanh (R) = KRAtanh
(

σ

R+ ϕ

)
, (31)

where KRA, ϕ, σ are positive coefficient. If we select them
as 1, 1, 300 respectively, its figure can be drawn below:

From the figure we can see the function value is low when
the interceptor is far from the target. The value then increases
faster and faster as range closes and saturate at KRA at the
end. The saturated value, initial value and increasing speed
can be adjusted using KRA, ϕ, σ . Thus using this function,
we can adjust the trading off between acceleration command
and error approaching rate, and thus achieve error shaping in
the objective function.

As in [7], based on (13), the derivative of LOS angular rates
reference planning algorithm is defined as:

e0 = [θL − θLD, φL − φLD]T , (32)

e1 = ė0 + K1e0, (33)

where K1 > 0,K2 > 0, and the planned reference is:

ė1 = −K2e1. (34)

In this way, adjustable approaching rate make the error
variables change more smoothly, and the convergence of the
error variable to zero can be proved by selecting a Lyapunov
function V = 1

2e
2
1, then:

V̇ = e1ė1, (35)

= −K2e21 ≤ 0. (36)
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Thus the error variable will converge to zero and control
objective is satisfied.

As we know, ė1 is the derivate of the LOS angular rate that
is proportional to the acceleration command. Thus the trade-
off between error approaching rate and acceleration com-
mand can be utilized using proposed range-aware hyperbolic
function. The state dependent cost function of MPPI is then
selected as:

ė2 = ė1 + fRA−tanh (R) e1, (37)

c (x) = ‖ e2 ‖2. (38)

V. NUMERICAL SIMULATION
In this section, numerical simulations for the proposed
meta-learning tube-MPPI guidance law and other two guid-
ance laws are conducted for comparison. The other two
guidance laws taken into account for comparison are the
meta-MPPI guidance law from [7] and a guidance law con-
structed using tube-MPPI in [10]. Monte Carlo simulation
of the proposed guidance law is also utilized to verify the
robustness and effectiveness of proposed guidance law.

The interceptor has acceleration limit AM−max = 200m/s2

in both directions, intercepting a strong maneuvering target
with and the initial conditions are listed in table 1. In the
simulation, a realistic interceptor velocity model from [28]
is used, where the value of zero-lift drag coefficient CD0,
induced frag coefficient K , aspect ratio Ar , efficient factor e,
atmosphere density ρ, reference area s can be found. The
interceptor thrust and mass are considered as:

T =

{
7500 0 ≤ t ≤ TB,
0 t > TB,

(39)

m =

{
90.035+ 3.31 (TB − t) 0 ≤ t ≤ TB,
90.035 t > TB.

(40)

TABLE 1. Case parameters.

The initial engagement parameters in the simulation is
given in table 1, where Unif means a uniform distribution,
and the interceptors have a max 200 m/s2 acceleration limit
in these cases.

The MPPI controller used as nominal controller has a
horizon 3 with control cycle 5ms, 1000 trajectories drawn,
temperature coefficient λ∗ set to 1. Ancillary controller has
control cycle of 2ms. The meta-learning neural network
dynamics has two hidden layers with 512 neurons, ReLU
activation, and is trained using twenty minutes of data. The
online learning rate α for meta-learning is set to 0.001. The
step size of simulation integration is adaptive and less than
0.01ms for the environment.

Table 2 shows the simulation result of case 1, where φLT
and φLT is terminal LOS angles respectively. The miss dis-
tance of proposed guidance law is smaller than the other
guidance laws. Which indicates a better LOS angular rate
tracking performance at the end of guidance. The error in ter-
minal impact angle is also smaller with the proposed guidance
law. With range-aware hyperbolic function, the proposed
guidance law has a smaller cumulative control effort that
results quicker impact and increased terminal velocity. Thus
the results demonstrate the proposed guidance law has better
performance than the meta-MPPI guidance law and the pro-
posed meta-learning MPPI method has better performance
than tube-MPPI in [10].

TABLE 2. Case 1 simulation result.

In case 1, the scenario setting is as listed in table 1. A com-
parison demonstration of the proposed guidance, meta-MPPI
law and tube-MPPI guidance law is conducted. As the simu-
lation result in table 2 shows, the proposed guidance achieves
better outcome than the other guidance law in miss distance,
terminal angle error and impact time. Fig. 4 shows the
trajectories of interceptor and target in these guidance laws,
all guidance laws drive the interceptor to interception, but
quicker impact is achieved through shaping of the trajectory
in the proposed guidance law. The LOS angles and angular
rates during the interception in this case are shown in Fig. 6.
The LOS angles of meta-MPPI guidance law diverge at the
end of the interception, due to the fluctuate in the LOS
angular rates which shows the guidance law has difficulty
in tracking the desired LOS angle and angular rates. The
proposed method achieves better tracking performance with
ancillary controller and tube method. LOS angles and angular
rates of tube-MPPI guidance law also fluctuate since nom-
inal controller diverge greatly with strong target maneuver
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FIGURE 4. Range-aware hyperbolic tangent function.

FIGURE 5. Trajectories of interceptors and target in case 1.

disturbance, and we can see the proposed method has better
tracking ability since online adaption to environment changes
is done by meta-learning. Better LOS angle and angular
rates tracking performance also result in better terminal angle
and miss distance as shown in table 2. Fig. 7 shows the
acceleration profile of the guidance law during engagement,
it can be seen that the acceleration command of meta-MPPI
guidance law chatters at the terminal phase of the guidance
law. From Fig. 6-8, the proposed guidance law consumes less
energy and poses larger terminal velocity than meta-MPPI
guidance law due to range-aware hyperbolic tangent function
as weighting function in guidance law design. Thus the
proposed guidance law achieves satisfactory performance
with range-aware hyperbolic tangent function, tube-MPPI
method and meta-learning.

Simulation using different setting in engagement scenario
is conducted in case 2 to further demonstrate the comparative
performance of the proposed guidance law. The simulation
results are listed in table 3. The results shows the proposed
guidance law achieves better performance than comparative
guidance laws. We can see the tube-MPPI method has a
worsen result than case 1. This is partly because the LOS
angles happens to fluctuate near the desired LOS angles in
case 1 which can be seen in Fig. 7. The range-aware hyper-
bolic tangent function result in a reduced cumulative control

FIGURE 6. LOS angles and angular rates in case 1.

FIGURE 7. Interceptor accelerations command in case 1.

TABLE 3. Case 2 simulation result.

effort that also result in a reduced impact time and increased
terminal velocity than meta-MPPI guidance law.

The trajectories of interceptors and target, LOS angle and
angular rates, acceleration profile and interceptor velocity
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FIGURE 8. Interceptor velocity and relative distance in case 1.

FIGURE 9. Trajectories of interceptors and target in case 2.

is shown in Fig. 9-12. We can see from these figures that
guidance laws provide similar simulation result in case 1.
From Fig. 11, the control command of meta-MPPI guid-
ance law fluctuate at end, causing the LOS angular rate
to diverge. Control command of guidance law jump at 3s
which is caused by thrust burnout causing perturbation to the
system. Fig.11 also shows the tube-MPPI control command
sometimes deviate due to tracking performance, and cause
a slight increase in cumulative control command between
proposed control approach and tube-MPPI control method.
With range-aware adaptive function, the control command
in the initial of interception is reduced, which is shown
in Fig.11 when the meta-MPPI command saturate. The
reduced in initial command results increased terminal veloc-
ity and quicker impact time as in Fig.12. Thus the proposed
guidance law achieves better LOS angle, angular tracking
performance and consumes less energy which result in bet-
ter miss distance, terminal angle error, impact and terminal
velocity.

As the Monte Carlo method is powerful in analyzing
effectiveness and robustness, 5000 rollouts are conducted

FIGURE 10. LOS angles and angular rates in case 2.

FIGURE 11. Interceptor accelerations command in case 2.

to further verify the performance of proposed method. The
initial condition is listed in table 1, the initial LOS angle
and missile heading is set to be in a uniform distribution
ranging 0.6 rad to cover operating initial condition range. The
target acceleration changing rate is reduced to get a clearer
picture of result, and has 60 m/s2 max value. The Gaussian
measurement noise of LOS angle is set to zero mean, 8mrad
standard deviation. And standard deviation of LOS angular
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FIGURE 12. Interceptor velocity and relative distance in case 2.

FIGURE 13. Trajectories of interceptors (multi-color) and target (blue) in
Monte Carlo case.

FIGURE 14. Histogram of terminal LOS angles, miss distance, and impact
time in Monte Carlo case.

rates Gaussian noise is set to one percent its current measure-
ment value. The results are shown in Fig.13-16. In Fig.13,
all trajectories of interceptors and targets are transformed
into origin at interception point to make them easy to see.
The trajectories show all rollouts has successful hit. The
histogram of miss distance, terminal impact angle and impact

FIGURE 15. LOS angles and angular rates in Monte Carlo case.

FIGURE 16. Miss distance and missile velocity in Monte Carlo case.

time is shown in Fig.14, and we can see majority has a small
error. The deviation in mean is due to the consistency in target
maneuver. As LOS angles and angular rates of interceptors
shown in Fig.15, all LOS angles and angular rates converge
to desired value. In Fig.16, we can see the different terminal
velocity of missile caused by different engagement condition.

VI. CONCLUSION
In this article, we present a new range-aware impact guidance
law using model-based RL technique for a varying velocity
interceptor intercepting a maneuvering target with desired
impact angle. Model-based deep RL method is used in guid-
ance law design and a deep neural dynamic capable of online

152102 VOLUME 8, 2020



C. Liang et al.: Range-Aware Impact Angle Guidance Law With Deep Reinforcement Meta-Learning

adapting to environment change via meta-learning is used
as predictive model. The predictive model is then utilized in
MPPI to solve the optimal control problem via importance
sampling of path integrals to compute the nominal state and
control as central path. An ancillary controller tracks the
central path to keep system states in the tube. The benefit
of combing meta-learning and tube-MPPI method is that
the model mismatch of the nominal controller is reduced to
improve overall control performance. The benefit is verified
in simulation which shows the proposed approach achieves
better tracking performance than tube-MPPI method. Numer-
ical simulation clearly indicates the proposed method can
reduce acceleration at initial phase and increase terminal
velocity. Comparedwithmeta-MPPI guidance which acceler-
ation command and LOS angular rate chatters at end, the pro-
posed guidance law clearly shows more robust capability in
disturbance rejection. Monte Carlo simulation result verifies
the effectiveness and robustness of proposed guidance law
under operating conditions.
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