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ABSTRACT In this article, we consider the estimation of angle of arrival (AoA) and angle of departure (AoD)
for mmWave MIMO channels. For mmWave systems, there is typically a large number of antennas but
limited radio frequency (RF) chains. The RF chain limitation indirectly restricts the effective number of
antennas or the effective array size. In radar applications, it is known that a larger array size leads to more
accurate AoA estimation or more resolvable paths. It is also known that with sparse arrays, which places
antennas in a nonuniform sparse manner, an enlarged virtual array can be constructed when the sources
are uncorrelated. We show that the idea of sparse arrays can also be used in mmWave systems to have
augmented array sizes. The main difficulty in applying sparse arrays to mmWave MIMO channels lies in the
fact the signals of different paths can be correlated in mmWave system, but uncorrelatedness is necessary for
applying sparse array results. We show that the paths can be decorrelated by employing random precoders
and combiners that are submatrices of banded Toeplitz matrices (SBT). When the precoder and combiner
are SBT that are designed according to the antenna spacing of a sparse array, we can construct enlarged
virtual transmit and receive arrays. With enlarged virtual arrays, accurate estimates can be obtained, as will
be demonstrated by simulation examples.

INDEX TERMS Angle estimation, hybrid precoder, massive MIMO, mmWave, submatrix of a banded
Toeplitz, sparse arrays.

I. INTRODUCTION
Recent advances show that it is feasible to pack a large
number of antennas in a small area, particularly in millimeter
wave (mmWave) communication systems that use small
wavelengths. However cost and power constraints often
prohibit having one dedicated radio frequency (RF) chain
for each antenna [1]–[3]. Hybrid precoding that employs
RF analog processing and baseband digital processing has
been proposed to overcome the RF limitation [4]. The RF
limitation also places a restriction on the effective number
of antennas, i.e., effective array size, for the estimation
of angle of arrival (AoA) and angle of departure (AoD).
In radar applications, it is known that a larger array size
can improve the estimation accuracy [5] or increase the
number of resolvable paths [6], [7]. Array augmentation
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can be achieved through the use of sparse arrays when the
sources are uncorrelated [8], [9]. By placing N antennas in a
nonuniform sparse manner, a virtual ULA array with a size
in the order of N 2 can be constructed [6]. The ULA structure
of the virtual array lends itself to subspace-based methods
for angle estimation such as MUSIC [10] or ESPRIT [11].
The use of sparse arrays usually needs a large number of
training vectors as it requires the sources be uncorrelated
and sample covariance matrix of the sources be close to a
diagonal matrix. Having insufficient training vectors leads
to partial correlation in the sample covariance matrix, which
in turns causes interference in subsequent angle estimation.
The problem addressed in sparse linear arrays bears some
similarities to the problem of direction finding in mmWave
systems, but there are important differences. In the former
case the number of antennas is limited, whereas in the latter
case there is usually a large number of antennas but limited
RF chains. For mmWave channels, signals of different paths
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can be correlated, so the condition of uncorrelated signals that
is assumed in sparse linear array literature is not satisfied.
Furthermore, in addition to the estimation of AoA, the AoD
needs to be estimated as well for mmWave systems.

Many methods have been proposed to estimate AoA/AoD
subject to hybrid structure [12]–[24]. In these works,
the channels are assumed to be either time-invariant or time-
varying. In the case of a time-invariant channel, the path gains
and angles remain the same throughout training, i.e., training
completed within the channel coherence time [12]–[19].
The precoder and combiner are designed in [12] so that an
augmented matrix consisting of the received vectors becomes
a submatrix of the channel and 2D unitary ESPRIT is applied
for subsequent channel estimation. The channel reciprocity
in time division duplexing systems is exploited to estimate
the signal subspace in [13]. A two-step AoA estimation is
given in [14] by first applying 2D-DFT to obtain a coarse
estimation, which is then improved through angle rotation
on a finer grid. Hierarchical multi-resolution estimation
using successive beams of different beamwidth is considered
in [15]. It is shown in [16] that auxiliary beam pairs
can be used to provide high resolution channel estimates.
With the feedback of initial AoD estimates, beamforming
can be applied to improve the SNR for high resolution
estimation [17]. Compressed sensing based methods have
been shown to be a useful tool for angle estimation [18]–[20].
Accurate channel estimation is achieved using orthogonal
matching pursuit (OMP) in [19]. Based on OMP, gener-
alized block OMP is developed in [20] to take advantage
of the block sparsity property of mmWave channels for
better channel estimation. In the case of a time-varying
channel [21]–[24], the angles remain the same while the
path gains are time-varying due to fading that is caused
by user movement. Such a channel model is valid if the
training period is longer than the channel coherence time.
An ESPRIT based estimation of AoA, AoD and path delays
is given in [21] for MIMO-OFDM systems. A channel
estimation method using subspace fitting of signal subspace
is proposed in [22]. Simultaneous estimation of AoA and
AoD using 2D beamspace MUSIC method is proposed
in [23] by exploiting uncorrelated path gains. When the path
gains are uncorrelated, the received covariance matrix has a
Toeplitz structure, which has been shown to be useful for
denoising and improving the estimation accuracy [24]. For
estimation methods developed for a time-invariant channel,
the performance can be degraded when there is fading. On
the other hand, for methods designed for a time-varying
channel, the performance can be considerably affected when
there is little user movement and the channel is almost
time-invariant.

In this article, we show that sparse arrays can be
incorporated in the estimation of AoA and AoD for mmWave
channels. The precoder is a submatrix of a banded Toeplitz
(SBT). In this case, the coefficients in each column vector
of the precoder are obtained by shifting the coefficients of
a prototype beamformer. We show that when the shifts are

designed according to the antenna spacing of a sparse array,
array augmentation can be achieved. Suppose linear arrays
are used, and there are N̄r RF chains at the receiver and N̄t RF
chains at the transmitter. We can construct a virtual uniform
linear array (ULA) of size in the order of N̄ 2

t at the transmitter,
and a virtual ULA of size in the order of N̄ 2

r at the receiver. By
designing the prototype beamformer to have random phase,
we can decorrelate signals of different paths and apply sparse
array results whether the channel is time-invariant or time-
varying. This means angle estimation can be decoupled from
the channel coherence time. Like earlier sparse array results,
the decorrelation of the paths needs a large number of training
vectors as correlation among the paths leads to interference in
angle estimation. When a large number of training vectors is
not available, we develop an interference cancellation scheme
based on initial estimates of the angles. With the aid of
interference cancellation, more accurate angle estimates can
be obtained, as will be demonstrated in simulations.
Notation: The variance of a random variable x is denoted

as σ 2
x and the expectation of x by E[x]. The 2-norm of a

vector f is denoted as ||f|| and the k-th entry of f as [f]k . The
notation AT , A∗, and AH denote, respectively, the transpose,
the conjugate, and conjugate transpose of a matrix A. In
denotes an n × n identity matrix. Given an m × n matrix X,
the notation vec(X) denotes the mn × 1 vectorized version
of X. The notation A � B denotes the Khatri-Rao product
and A ⊗ B the Kronecker product of two matrices A and B.
A useful property concerning the two products is as follows.
Let X = ABC, then vec(X) = (CT

⊗ A)vec(B). When B
is a diagonal matrix, we have vec(X) = (CT

� A)b, where
b is a column vector that consists of the diagonal elements
of B.
Outline of the Paper: A system model is given in Sec. II.

Sec. III introduces SBT precoding. In Sec. IV, a review of
sparse arrays is given and the proposed array augmentation
using sparse array spacing for mmWave MIMO systems
is presented. Simulation results are given in Sec. V and a
conclusion in Sec. VI.

FIGURE 1. A MIMO communication system with hybrid precoding.

II. SYSTEM MODEL
Consider the wireless system with Nt transmit antennas and
Nr receive antennas in Fig. 1. The transmitter is equipped
with N̄t RF chains and the receiver N̄r RF chains. For the
kth training block, the channel is modeled by an Nr × Nt
matrix Hk . We adopt the geometric channel representation
that is useful for modeling mmWave propagation. Suppose
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the channel has L paths, then [25]

Hk = ArDα,kAH
t , (1)

whereDα,k is an L×L diagonal matrix with the i-th diagonal
element [Dα,k ]i,i = αk,i, which is the complex gain of the
i-th path. The two matrices At and Ar consist of antenna
response vectors at, respectively, the transmitter and receiver
sides. In particular, Ar =

[
ar,1 ar,2 · · · ar,L

]
and At =[

at,1 at,2 · · · at,L
]
, are of dimensions, respectively, Nr × L

and Nt × L, where ar,i and at,i are antenna response vectors
that depends on the array. We assume ULA is used. For an
ULA, ar,i can be given in terms of the angles of arrival (AoA)
θ ri and at,i in terms of the angles of departure (AoD) θ ti .
Define the N × 1 vector

aN (u) =
[
1 eju ej2u · · · ej(N−1)u

]T
, (2)

then ar,i = aNr (ui) and at,i = aNt (pi), where ui = ξ cos θ
r
i ,

pi = ξ cos θ ti , ξ = 2πd/λ, d is the antenna spacing and λ the
wavelength.
Assumptions:Weassume the channel stays the same during

one training block of N̄t training vectors. The AoA and AoD
remain unchanged during the training period. For the path
gains, we consider two cases. (1) The path gains are fixed
during training, i.e., αk,i = αi. In this case we say the channel
is time-invariant. (2) The path gains αk,i vary from block to
block, in which case the channel is said to be time-varying.
The channel is time-invariant if the entire training period is
less than the channel coherence time.

For the kth training block, the transmit precoding matrix
Fk =

[
fk,0 fk,1 · · · fk,N̄t−1

]
is of dimensions Nt × N̄t and

||fk,`|| = 1. The receive combining matrix is Gk =[
gk,0 gk,1 · · · gk,N̄r−1

]
, of size Nr × N̄r , and ||gk,`|| = 1.

Consider a block of N̄t training vectors S =
[
s0 s1 · · · sN̄t−1

]
,

which is used for all training blocks. The kth received block
Yk =

[
y0 y1 · · · yN̄t−1

]
is given by1

Yk = GH
k ArDα,kAH

t FkS+GH
k Nk , (3)

where Nk is the Nr × N̄t channel noise matrix. The channel
noise is assumed to be additive white Gaussian with zero
mean and variance σ 2

n .

III. SBT PRECODING
Consider the following class of matrices. Let B be an N ×M
matrix with N ≥ M and n0, n1, · · · , nM−1 be integers such
that 0 = n0 < n1 < n2 < · · · < nM−1 ≤ N − 1. Suppose B
satifies [B]n,0 = 0 for n > N − 1− nM−1 and

[B]n,i=

{
[B]n−ni,0, n≥ni,
0, 0≤n<ni,

for i=1, 2, · · · ,M−1. (4)

Such a matrix is lower triangular and it is anN×M submatrix
of an N ×N banded Toeplitz (SBT) by keeping only the col-
umn vectors corresponding to the integers n0, n1, · · · , nM−1.
Fig. 2 gives an example of an SBT precoder with N̄t = 3,

1In the presence of mutual coupling among the antennas, the output of
one antenna can be affected by other antennas. We assume there is no mutual
coupling.

FIGURE 2. An SBT precoder, where the vector fk denotes the prototype
beamformer for the kth precoder.

n1 = 1, and n2 = 3, i.e., 3 column vectors. The nonzero
coefficients of each column vector are identical. The nonzero
part, denoted as fk in Fig. 2, will be referred to as the
prototype beamformer. For example, the first column vector
of Fk is equal to fk,0 =

[
fTk 0

]T . When the precoder
Fk is SBT with {n0, n1, · · · , nN̄t−1}, the i-th column vector
fk,i is the same as the prototype beamformer fk except for
a shift of ni. Similarly, when the combiner Gk is SBT
with {m0,m1, · · · ,mN̄r−1}, the k-th column vector gk,i is
the same as the prototype gk except for a shift of mi. Let
Fk (ω) =

∑Nt−1
n=0 [fk ]ne−jnω and Gk (ω) =

∑Nr−1
n=0 [gk ]ne−jnω

be, respectively, the discrete-time Fourier transform of the
beamforming prototype fk and the combining prototype gk .
We have the following lemma.
Lemma 1: When the precoder Fk is SBT with {n0, n1, · · · ,

nN̄t−1}, then

AH
t Fk = Df ,k ĀH

t , (5)

whereDf ,k is a diagonal matrix with the i-th diagonal element
given by [Df ,k ]i,i = Fk (pi). The N̄t × L matrix Āt has the

ith column given by āt,i =
[
1 ejpin1 · · · ejpinN̄t−1

]T
. Likewise,

when the combiner Gk is SBT with {m0,m1, · · · ,mN̄r−1},
then

AH
r Gk = Dg,k ĀH

r , (6)

where Dg,k is a diagonal matrix with [Dg,k ]i,i = Gk (ui). The
matrix Ār is of dimensions N̄r×L and the i-th column is given
by ār,i =

[
1 ejuim1 · · · ejuimN̄r−1

]T
.

Proof. The (i, `)th entry of AH
t Fk is equal to aHt,ifk,` and

aHt,ifk,` = [fk,`]0 + e−jpi [fk,`]1 + · · · + e−j(Nt−1)pi [fk,`]Nt−1.
It can be rewritten as e−jn`piFk (pi) as fk,` is a shift of the
prototype by n`. It follows that the i-th row of AH

t Fk can be
written as

aHt,i
[
fk,0 fk,1 · · · fk,N̄t−1

]
= Fk (pi)

[
1 e−jpin1 · · · e−jpinN̄t−1

]T
.

The right hand side of the above equation is Fk (pi)āHt,i, where
āt,i is as defined in Lemma 1, and (5) follows. We can
derive (6) in a similar manner. 444
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Using the result in Lemma 1, the received block in (3) can
be simplified as

Yk = ĀrDk ĀH
t +GH

k Nk , (7)

where we have used S = σsIN̄t and Dk = σsDH
g,kDα,kDf ,k

with Df ,k and Dg,k as defined in (5) and (6). Notice that the
signal part ĀrDk ĀH

t is the same as that of a system with N̄r
receive antennas, N̄t transmit antennas and equivalent path
gains [Dk ]i,i = dk,i, given by

dk,i = σsαk,iFk (pi)G∗k (ui). (8)

With the use of SBT precoders and combiners, the system
behaves as if there is no precoding and combining. The effect
of precoding and combining is absorbed into the equivalent
path gains. In other words, we can use SBT precoders and
combiners to affect the equivalent path gains. Let us vectorize
the received matrix Yk and call it yk , we have

yk =
(
Ā∗t � Ār

)
dk + nk , (9)

where nk = vec(GHNk ) and dk =
[
dk,1 dk,2 · · · dk,L

]T is
an L × 1 vector. Consider the autocorrelation matrix Ry =

E[ykyHk ]. It is given by

Ry =
(
Ā∗t � Ār

)
Rd

(
Ā∗t � Ār

)H
+ Rn, (10)

where Rd = E[dkdHk ] and Rn = E[nknHk ]. When Gk is
statistically semi-unitary, i.e, E[GH

k Gk ] = IN̄r , the noise nk
in (9) is uncorrelated and Rn = σ

2
n IN̄t N̄r .

Uniform SBT: FromLemma 1, we see that Āt is an antenna
response matrix corresponding to a hypothetical array,
whose elements are placed according to {n0, n1, · · · , nN̄t−1}.
Similarly Ār is an antenna response matrix corresponding to
a hypothetical array, whose elements are placed according to
{m0,m1, · · · ,mN̄r−1}. In the special case that the hypotheti-
cal arrays are uniform, i.e., ni = i andmi = i, both Āt and Ār
are antenna response matrices corresponding to ULA of sizes
N̄t and N̄r , respectively. In this case, the estimation of angles
from Ry is a two-dimensional direction finding problem [27]
with an effective N̄t -element ULA at the transmitter and N̄r -
element ULA at the receiver. In particular, we can compute
the eigen decomposition of Ry,

Ry =
[
Us Un

] [6s 0
0 6n

] [
Us Un

]H
. (11)

The signal subspace can be expressed asUs =
(
Ā∗t � Ār

)
W,

for some invertible matrix W. Based on the signal subspace
Us, the angles can be estimated using 2D MUSIC or 2D
ESPRIT. The number of identifiable paths is up to N̄r N̄t − 1
with 2D MUSIC [32] and up to N̄r N̄t − max(N̄r , N̄t ) with
2D ESPRIT [33]. In the following section, we will see that
the effective ULA size can be increased to O(N̄ 2

t ) at the
transmitter and O(N̄ 2

r ) at the receiver if we use sparse array
spacing to design the SBT precoder and combiner.

IV. DIRECTION FINDING USING SBT
It is known that for a uniform linear array (ULA) with
N antennas, subspace-based methods such as MUSIC can
identify up to N − 1 uncorrelated sources [10]. The number
of identifiable sources can be significantly increased through
the use of sparse linear arrays. By judiciously placing N
antennas, a virtual ULA of size in the order of N 2 can be
constructed and the number of resolvable sources increased.
For mmWave massive MIMO systems, the antenna array
can be large but the number of RF chains is limited. In
the following, we will see that for mmWave channels we
can construct virtual arrays of sizes in the order of N̄ 2

t for
the transmitter and N̄ 2

r for the receiver. This can be done
by designing SBT precoders and combiners according to
antenna spacing in sparse linear arrays. To make the paper
more self-contained, we review in Sec. 4.1 related material on
sparse linear arrays [6], [7] that is essential for our subsequent
discussion. In Sec. 4.2, we show how to take advantage of
sparse array results to increase the effective array sizes for
hybrid mmWave MIMO systems.

A. REVIEW OF SPARSE LINEAR ARRAYS
ConsiderN antennas that are placed at the following locations
{m0d,m1d, · · · ,mN−1d}, where d is the smallest distance
between any two antennas and mi, for i = 0, 1, · · · ,N − 1,
are integers. Let S = {m0,m1, · · · ,mN−1}.
Definition( [6], [7]):The difference coarray ofS is defined

as the set D = {mi − mj, 0 ≤ i, j < N }. Suppose D
contains consecutive integers−Mr ,−Mr +1, · · · ,Mr . Then
the sparse array is said to have degree of freedom (DoF) equal
to 2Mr + 1.

For example, let N = 4 and S = {0, 1, 4, 6}. Then
D = {n : −6 ≤ n ≤ 6}; it contains 13 consecutive
integers, from−6 to 6 and DoF= 13. Due to the consecutive
integers in the coarray, a virtual ULA of size 2Mr + 1 can be
constructed. Suppose there are L sources and the antennas are
placed according to S. The received vector is

yk = Arαk + nk ,

where αk is the L × 1 source vector, Ar is the antenna
response matrix with the i-th column given by ar,i =[
ejm0ui ejm1ui · · · ejmN−1ui

]T , ui is the AoA parameter of the
i-th source and nk is the channel noise, assumed to be white
and uncorrelated with the sources. The autocorrelation matrix
Ry = E[ykyHk ] is given by Ry = ArRαAH

r + σ
2
n IN , where

Rα = E[αkαHk ]. Assume the sources are uncorrelated, then
Rα is diagonal. The vectorized version of Ry is given by

ry = (A∗r � Ar )λ+ vec(σ 2
n IN ), (12)

where λ is an L×1 vector consisting of the diagonal elements
of Rα .
It turns out that A∗r � Ar contains an antenna response

matrix corresponding to an enlarged ULA of size 2Mr+1. Let
C = A∗r �Ar and its i-th column vector be ci, then ci is given
by ci = a∗r,i � ar,i, a vector of size N 2

× 1. As the elements
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of ar,i are ejm`ui for ` = 0, 1, · · · ,N − 1, the elements of
ci are ej(m`−mn)ui . Note that (m` − mn) are the elements in
D. For example, when S = {0, 1, 3} the numbers (m` − mn)
0 ≤ `, n ≤ N − 1 are

0, 1, 3, −1, 0, 2, −3, −2, 0

There are some repeated elements and thus C has some
repeated rows. We can select distinct rows of C that
correspond to the consecutive integers in D using a (2Mr +

1) × N 2 selection matrix. For the above example D =

{−3,−2, · · · , 3} and DoF is 7. We can use the 7×9 selection
matrix

Jr =



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0


.

Define Ãr as

Ãr = Jr (A∗r � Ar ), (13)

which is an antenna response matrix corresponding to
a (2Mr + 1)-element ULA with antennas located at
−Mrd,−(Mr − 1)d, · · · ,Mrd . Let r̃y = Jrry, then

r̃y = Ãrλ+ σ
2
n Jrvec(IN ), (14)

where the ith column vector of Ãr is given by ãr,i =[
e−jMrui e−j(Mr−1)ui · · · ejMrui

]T . We observe that r̃y is equiv-
alent to the output of a virtual ULA of size 2Mr + 1 with a
single transmit vector λ. By applying spatial smoothing on r̃y
as in [7], we can obtain a (Mr+1)×(Mr+1) squarematrix R̃y.
Thanks to the ULA structure in r̃y, the signal subspace can
be extracted from R̃y and the angles estimated using useful
subspace methods like MUSIC or ESPRIT. Up toMr sources
can be identified. Various sparse arrays have been proposed to
design the spacing of the antennas so thatMr is in the order of
N 2 e.g., minimum redundancy arrays [26], nested arrays [6].
Then the array size is enlarged fromN toO(N 2). The Cramér-
Rao bound (CRB) for sparse arrays have been analyzed
in [8], [9], [29].

There are some differences between the problem of
direction finding for mmWave channels and that typically
considered in sparse linear arrays for radar applications. For
the mmWave channel in (1), we need to estimate AoAs
as well as AoDs, not just AoAs. Furthermore, the signals
corresponding to different paths, can be correlated. We will
see that by using random SBT precoding, we can decorrelate
the paths so that sparse array results can be applied.
The decorrelation allows us to construct virtual arrays of
augmented sizes as in sparse linear arrays.

B. VIRTUAL ARRAY AUGMENTATION USING SPARSE
ARRAY SPACING
We use SBT precoder Fk and combiner Gk as in Lemma 1.
Suppose the sets of integers used to construct Fk and Gk are
given, respectively, by

St = {n0, n1, · · · , nN̄t−1}, and Sr = {m0,m1, · · · ,mN̄r−1}.

(15)

For St , the corresponding difference coarray is Dt = {ni −
nj, 0 ≤ i, j < N̄t }. Suppose Dt contains consecutive
integers −Mt ,−Mt + 1, · · · ,Mt and the DoF= 2Mt + 1.
Similarly for the receiver side, the difference coarray Dr =

{mi − mj, 0 ≤ i, j < N̄r } contains consecutive integers
−Mr ,−Mr + 1, · · · ,Mr and DoF= 2Mr + 1. To illustrate
how sparse array results can be used in direction finding for
mmWave systems, we first consider the special case when
there is a single RF chain at the transmitter, i.e., N̄t = 1. The
autocorrelation matrix Ry in (10) reduces to

Ry = ĀrRd ĀH
r + Rn. (16)

When the equivalent path gain vector dk is uncorrelated, Rd
is a diagonal matrix. How the equivalent path gains can be
decorrelated will be addressed later in the design of precoders
and combiners. AssumingRd is diagonal and vectorizingRy,
we have

ry = (Ā∗r � Ār )λ+ rn, (17)

where λ is an L × 1 vector that consists of the diagonal
elements of Rd and rn = vec(Rn) is the vectorized version
of the noise autocorrelation matrix. Observe that the signal
part in (17) has the same form as that in (12). Suppose the set
Sr used to construct the SBT combiner is designed according
to a sparse array and the associated DoF is 2Mr + 1. Just like
in Sec. 4.1, we can apply a (2Mr + 1)× N̄ 2

r selection matrix
Jr on ry so that r′y = Jrry corresponds the output of a virtual
array of size 2Mr + 1. That is

r̃y = Ãrλ+ Jrrn,

where Ãr is as given in (13). Then the angles can be estimated
as in sparse arrays.

Now let us address the more general case N̄t ≥ 1.
Vectorizing the autocorrelation matrix in (10), we have,

ry =
(
Āt � Ā∗r � Ā∗t � Ār

)
λ+ rn, (18)

a vector of size (N̄t N̄r )2 × 1.
Theorem 1: Suppose the precoder and combiner are SBT

with associated sets of integers as in (15). Assume the
equivalent paths are uncorrelated and Rd is diagonal. Then
the autocorrelation matrix Ry of the received vector can be
vectorized as ry in (18). We can apply a selection matrix J on
ry so that r̃y = Jry, a vector of size (2Mr + 1)(2Mt + 1)× 1,
is of the form

r̃y = (Ãt � Ãr )λ+ q, (19)
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where Ãr is a (2Mr + 1) × L ULA antenna response matrix
with the i-th column vector ãr,i = [e−jMrui e−j(Mr−1)ui · · ·

ejMrui ]T . The (2Mt + 1) × L matrix Ãt is also a ULA
antenna response matrix with the i-th column vector ãt,i =[
e−jMtpi e−j(Mt−1)pi · · · ejMtpi

]T . The noise vector q is given
by q = Jrn.
A proof is given in Appendix A and a construction of the
selection matrix J is given therein. Now let us consider the
noise term q in (19). Suppose Gk is statistically semi-unitary
E[GH

k Gk ] = IN̄r and E[nknHk ] = σ 2
n IN̄t N̄r . In this case,

the noise vector q has a close-form expression as given in
the following lemma (a proof given in Appendix B).
Lemma 2: When the combiner Gk is statistically semi-

unitary with E[GH
k Gk ] = IN̄r , the noise vector q = Jrn in

Theorem 1 has only one nonzero element, right in the middle
of the vector, and it is equal to the channel noise variance σ 2

n .
Observe that r̃y in Theorem 1 is equivalent to

the received vector when the receiver is equipped
with a (2Mr + 1)-antenna ULA and the transmitter a
(2Mt + 1)-antenna ULA. The signal and noise subspaces
can be obtained from the vector r̃y by using 2D matrix
pencil [27] or 2D spatial smoothing [31], [37]. The spatially
smoothed matrix contains both signal and noise parts. The
signal part can be derived as in [27], [37]. But the noise part
is different as the autocorrelation matrix has been rearranged
as in Theorem 1; it is not the usual channel noise term and
additional derivation is needed. To explain the behavior of
noise after spatial smoothing is applied, we define the 1D
selection matrix Jxi =

[
0(Mx+1)×(Mx−i) IMx+1 0(Mx+1)×i

]
for

x ∈ {t, r} and i = 0, 1, · · ·Mx , and also the 2D selection
matrix

Ji,j=Jti ⊗ Jrj , (20)

for i = 0, 1, · · ·Mt and j = 0, 1, · · ·Mr . The 2D spatially
smoothed matrix is defined as [37]

Yss =
[
x0,0 x0,1 · · · x0,Mr x1,0 · · · xMt ,Mr

]
,

(21)

where xi,j = Ji,jr̃y and r̃y is as given in (19). It is a square
matrix of size (Mt + 1)(Mr + 1)× (Mt + 1)(Mr + 1). When
spatial smoothing is applied on r̃y, the noise part is spatially
smoothed along with the signal part. We have the following
expression of Yss.
Theorem 2: Suppose the combiner Gk is statistically

semi-unitary as in Lemma 2. When we apply spatial
smoothing on the vector r̃y in (19), the spatially smoothed
matrix Yss in (21) is given by

Yss = ( ˜̃At �
˜̃Ar )Rd (

˜̃At �
˜̃Ar )H + σ 2

n I(Mt+1)(Mr+1), (22)

where ˜̃At is an (Mt + 1) × L ULA antenna response matrix
with the i-th column given by ˜̃at,i =

[
1 ejpi · · · ejMtpi

]T and
˜̃Ar an (Mr + 1) × L ULA antenna response matrix with the
i-th column given by ˜̃ar,i =

[
1 ejui · · · ejMrui

]T
.

A proof is given in Appendix C. Theorem 2 means that
Yss is equivalent to the autocorrelation matrix of a system
with an (Mr + 1)-element ULA at the receiver and (Mt + 1)-
element ULA at the transmitter. The signal subspace, i.e,
the column space of Yss, can be obtained by applying eigen
value decomposition on Yss as in (11). Due to the embedded
ULA structure in the signal subspace, 2D subspace methods
such asMUSIC and ESPRIT can be used for angle estimation.
The number of identifiable paths is up to (Mt+1)(Mr+1)−1
when 2D MUSIC [32] is applied and up to max(Mt (Mr +

1),Mr (Mt +1)) when 2D ESPRIT is applied [33]. In the case
that sparse array spacing is used to construct the precoder and
combiner, Mt is in the order of N̄ 2

t and Mr in the order of
N̄ 2
r . After estimates of the angles are obtained, the path gains

can be estimated using least squares [27]. Notice that the
signal part of Yss in (22) is similar to that of Ry in (10) when
the integers used to construct the precoder and combiner are
uniform. The difference is that Ār and Āt in (10) correspond
to ULA of sizes N̄r and N̄t , respectively. But in (22), the two
matrices ˜̃Ar and

˜̃At correspond to ULA of sizes Mr + 1 and
Mt+1, respectively. By using sparse array spacing, the size of
the ULA at the transmitter is enlarged from N̄t to O(N̄ 2

t ), and
the size of the ULA at the receiver enlarged from N̄r toO(N̄ 2

r ).
In the above discussion we assume that the signals of

different paths are uncorrelated and Rd is a diagonal matrix
so that sparse array results can be used. The following lemma
states that Rd is a diagonal matrix if the path gains are
uncorrelated or when the prototypes are properly designed so
that the equivalent path gains becomes uncorrelated.
Lemma 3: The autocorrelation matrix Rd = E[dkdHk ] is

an invertible diagonal matrix if the following conditions are
satisfied: (1) the beamforming and combining prototypes fk
and gk are such that E[|Fk (ω)|2] 6= 0 and E[|Gk (ω)|2] 6=
0 for all ω, and (2) E[αk,iα∗k,j] = 0, for i 6= j or
E[Fk (pi)F∗k (pj)] = 0 for pi 6= pj or E[G∗k (ui)Gk (uj)] = 0
for ui 6= uj.

Proof: For the i-th diagonal element, we have

[Rd ]i,i = σ 2
s E[|αk,i|

2]E[|Gk (ui)|2]E[|Fk (pi)|2],

which is positive if the first condition is satisfied. For the
off-diagonal elements, note that

[Rd ]i,j = σ 2
s E[αk,iα

∗
k,j]E[Fk (pi)F

∗
k (pj)]E[G

∗
k (ui)Gk (uj)],

which is equal to zero if condition (2) holds. 444

The second condition can be satisfied if the path gains
αk,i are uncorrelated random variables with zero mean.
It happens when the channel exhibits fading during training,
i.e., the separation of training blocks larger than the channel
coherence times [23]. ThenRd becomes a diagonal invertible
matrix and the paths are uncorrelated automatically even for
deterministic precoder and combiner. On the other hand, if the
channel coherence time is larger than the training period,
i.e., time-invariant channels, the path gains stay the same
during training and E[αk,iα∗k,j] 6= 0. In this case, the second
condition in Lemma 3, i.e, path decorrelation, can be satisfied
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by using random precoding and combining (to be discussed
next). Then the equivalent paths are uncorrelated, irrespective
of the channel coherence time.
Design of prototypes: For SBT precoders and combiners,

only the prototypes fk and gk need to be designed. From (4),
we see that the precoder prototype fk has Nt − nN̄t−1
coefficients and the combiner prototype gk has Nr − mN̄r−1
coefficients. Lemma 3 shows that the path gains can be
successfully decorrelated if the prototype Fk (ω) or Gk (ω)
is uncorrelated in frequency, i.e., E[Fk (pi)F∗k (pj)] = 0 for
pi 6= pj or E[G∗k (ui)Gk (uj)] = 0 for ui 6= uj. This can
be satisfied approximately by designing the prototypes as
follows. Let us choose the coefficients of the prototype to be
binary random phases. That is,

[fk ]i = γβk,i, for i = 0, 1, · · · ,Nt − nN̄t−1 − 1, (23)

where βk,i are independent and βk,i = 1 or −1 with equal
probability, and γ = 1/

√
(Nt − nN̄t−1) is a normalizing

factor so that the prototype has unit norm. In this case, it can
be shown that (a proof given in Appendix D)

|E[Fk (pi)F∗k (pj)]| =
1

(Nt−nN̄t−1)

×
| sin( 12 (pi − pj)(Nt − nN̄t−1))|

| sin( 12 (pi − pj))|
, (24)

which is approximately zero when (Nt − nN̄t−1) is large. The
above equation also implies that

E[|Fk (ω)|2] = 1, for all ω. (25)

That is, condition (1) of Lemma 3 is satisfied. When the
prototype combiner gk is designed in the same manner,
we can verify that the statistically semi-unitary property
E[GH

k Gk ] = IN̄r used in Lemma 2 and Theorem 2 is satisfied.
From (24), we see that there is significant correlation between
Fk (pi) and Fk (pj) if two AoDs are close such that |pi − pj| <
2π/(Nt − nN̄t−1). In this case, the path gains can still be
decorrelated if the AoAs are sufficiently separated, i.e., |ui−
uj| > 2π/(Nr − nN̄r−1). As long as the AoAs and AoDs are
not close at the same time, we can use random beamforming
and combiner to decorrelate the path gains. When two paths
have close AoAs and AoDs, they can be merged as one path
and there is no need of decorrelating the two. With the design
in (23), the coefficients of the precoder are 1,−1, or 0, which
can be implemented using phase shifters and switches [35].
Proposed Algorithm: The proposed angle estimation using

random SBT precoding is as follows. For the k-th training
block, we use random precoder Fk and random combiner
Gk with prototypes designed according to (23 ). Given Nb
received training blocks Y1,Y2, · · ·YNb , we vectorize them
to y1, y2, · · · yNb . The empirical autocorrelation matrix is
computed as

Ry,e =
1
Nb

Nb∑
k=1

ykyHk

=
(
Ā∗t � Ār

)
Rd,e

(
Ā∗t � Ār

)H
+ Rn,e, (26)

where Rd,e =
1
Nb

∑Nb
k=1 dkd

H
k and Rn,e =

1
Nb

∑Nb
k=1 nkn

H
k +

nkdHk
(
Ā∗t � Ār

)H
+
(
Ā∗t � Ār

)
dknHk . The ith equivalent

path gain is given by

[Rd,e]i,i = σ 2
s
1
Nb

Nb∑
k=1

|αk,i|
2
|Gk (ui)|2|Fk (pi)|2.

We can vectorize Ry,e, and apply selection matrix as in
Theorem 1 and spatial smoothing as in (21) to obtain Yss,e,
the empirical version of the spatially smoothed matrix Yss
in (22). Based on Yss,e, 2D subspace based methods like
MUSIC or ESPRIT can be applied to estimate the angles. The
above procedure is summarized in Steps 1-5 of Algorithm 1.

Notice that, with finite number of training vectors, Rd,e is
not diagonal and the off-diagonal entries will interfere with
the estimation of angles later. The problem can be greatly
alleviated if estimates of the angles are available so that the
interference can be estimated and canceled. We observe that
the vectorized Ry,e is given by

ry,e =
(
Āt � Ā∗r

)
⊗
(
Ā∗t � Ār

)
rd,e + rn,e,

where rd,e = vec(Rd,e). In the above expression, one of
the Khatri-Rao product in (18) is replaced with Kronecker
product as Rd,e is not diagonal. We can rewrite ry,e as

ry,e =
(
Āt � Ā∗r � Ā∗t � Ār

)
λe

+
(
Āt � Ā∗r

)
⊗
(
Ā∗t � Ār

)
λoff + rn,e, (27)

where λe is an L × 1 vector that consists of the diagonal
elements of Rd,e, λoff = vec(R′d,e), and R′d,e is the same as
Rd,e except that the diagonal elements are replaced by zeros.
The first term is the desired signal part, while the second
is the interfering term due to the off-diagonal entries of
Rd,e. Using ry,e, we can obtain estimates of the angles as
in Steps 1-5 of Algorithm 1. Suppose the estimates of ui
and pi are, respectively, ûi and p̂i. Based on these estimates,
we form the antenna response matrices Ār,e and Āt,e. Then
the least-square estimate of rd,e can be obtained by solving
the problem

r̂d,e=argmin
rd,e
||ry,e−

(
Āt,e � Ā∗r,e

)
⊗
(
Ā∗t,e�Ār,e

)
rd,e||2.

(28)

We unvectorize r̂d,e back to a L × L matrix R̂d,e, whose
off-diagonal elements R̂d,e are now the undesired part that
will cause interference. Let λ̂off = vec(R̂′d,e), where R̂′d,e
is the same as R̂d,e except that the diagonal elements are
replaced by zeros. We can cancel the interference due to the
off-diagonal entries of R̂d,e using

r̂y,e = ry,e −
(
Āt,e � Ā∗r,e

)
⊗
(
Ā∗t,e � Ār,e

)
λ̂off . (29)

The cancellation procedure is given in Steps 6-8 of Algo-
rithm 1. After removing the interference, we can use r̂y,e in
place of ry,e and proceed with Steps 3-5 of Algorithm 1.
Due to the removal of interference, we can obtain better
angles estimates. The new estimates can also be used for
another iteration of interference removal, after which angle
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TABLE 1. Complexity of Algorithm 1.

Algorithm 1 Angle Estimation Using SBT Precoding and
Combining

1. Collect Nb received block of vectors

Yk = GH
k ArDα,kAH

t Fk +GH
k Nk ,

and form the vectorized versions yk = vec(Yk ) for k =
1, 2, · · · ,Nb.

2. Compute the empirical autocorrelation matrix

Ry,e =
1
Nb

Nb∑
k=1

ykyHk

and its vectorized version ry,e.
3. Apply a selection matrix J on ry,e as in Theorem 1 to

obtain r̃y,e = Jry,e.
4. Apply spatial smoothing on r̃y,e as in (21) to obtain

Yss,e.
5. Obtain estimates û1, û2, · · · , ûL of AoAs and estimates

p̂1, p̂2, · · · , p̂L of AoDs fromYss,e using 2D estimation
methods like MUSIC or ESPRIT.
————interference cancellation——————–

6. Use the estimates obtained in Step. 5 to form antenna
response matrices Āt,e and Ār,e. The i-th column of

Āt,e is given by
[
1 ejp̂in1 · · · ejp̂inN̄t−1

]T
and the i-th

column of Ār,e by
[
1 ejûim1 · · · ejûimN̄t−1

]T
.

7. Compute the least square estimate r̂d,e =

(THT)−1THry,e, where T =
(
Āt,e � Ā∗r,e

)
⊗(

Ā∗t,e � Ār,e
)
.

8. Cancel the interference due to the off-diagonal entries
of R̂d,e using

r̂y,e = ry,e −
(
Āt,e � Ā∗r,e

)
⊗
(
Ā∗t,e � Ār,e

)
λ̂off .

9. Set ry,e = r̂y,e and repeat Steps 3-5.

estimation can be performed again. Table 1 gives the order
of complexity for the steps in Algorithm 1 that require
computations. In Table 1, ESPRIT is used for Step 5 and the
order of complexity is obtained from [34], [39].
Single RF Chain: The proposed method can not be directly

applied if the transmitter or receiver has only one RF chain.

For example, when there is only one transmit RF chain,
AoD can not be estimated. One way around this is to use
extra training time to compensate for a single RF chain.
For example, suppose there is only on transmit RF chain.
Wewould like the transmitter to behave as if there were N̄t RF
chains and the hypothetical precoder Fk is Nt × N̄t . With the
training input block S = IN̄t , the ith transmitter output vector
is precisely the ith column vector of Fk . For the first training
vector of the kth block, the first column vector fk,0 of Fk is
used as the actual beamformer. For the next training vector,
the next column vector fk,1 is used as the actual beamformer.
Preceding in thismanner N̄t times, we have N̄t transmit output
vectors that are equal to the output vectors of the hypothetical
transmitter Fk with N̄t RF chains. Thus, by using extra N̄t−1
training vectors, we can obtain a transmitter that acts as if
there were N̄t RF chains. We can use the same trick too when
the receiver has only one RF chain.

V. SIMULATIONS
Consider the channel model in (1) with antennas spaced
by half wavelength. We use 104 channel realizations in
the Monte Carlo evaluation. The channel is time-varying in
Example 2 and time-invariant in the rest of the examples.
The following setting is used, unless otherwise indicated. The
numbers of transmit and receive antennas are Nt = Nr = 64,
the numbers of RF chain are N̄t = N̄r = 4, and 100 training
blocks are used in the simulation. The AoA and AoD are
uniformly distributed over [−π, π]. In Algorithm 1, we use
2D ESPRIT to estimate the angles and four iterations of
interference cancellation are applied.
Example 1:With the use of randombeamforming, the beam

pattern is different for every training block. Upon collecting
Nb training blocks, we can compute the equivalent path gains
using the empirical autocorrelation matrix given in (26).
Suppose the actual path gains are time-invariant αk,i = αi and
the combining prototype is fixed for all training blocks. The
ith equivalent path gain is given by σ 2

s |αi|
2
|G1(ui)|2Fave(pi),

where

Fave(ω) = 1/Nb
Nb∑
k=1

|Fk (ω)|2

is the average beam pattern at the transmitter and Fk (ω)
denotes the discrete-time Fourier transform of the prototype
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FIGURE 3. Average beam pattern of the transmit beamformer.

for the kth training block. Fig. 3 plots the average beam
pattern Fave(ω) when the number of training blocks Nb is
1, 10, 100, and 5000. The average beam pattern approaches
a constant as Nb increases. This is consistent with the fact
that with binary random coefficients, the prototype satisfies
E[|Fk (ω)|2] = 1 for all ω, as given in (25).
Example 2: In this example, we examine the case when

the number of training blocks Nb is finite. For a time-varying
channel, Fig. 4 plots the mean squared error as a function of
Nb for different SNR σ 2

s /σ
2
n = −10 dB, 0 dB, and 10 dB.

The mean squared error 1
L

∑L
i=1 E[(p̂i − pi)2] for AoD and

1
L

∑L
i=1 E[(ûi − ui)2] for AoA are computed for L = 2

paths, where pi = π cos θ ti and ui = π cos θ ri . We have
used θ t1 = 20◦, θ t2 = 40◦, and θ r1 = −20

◦, and θ r2 =
−40◦. We see that the error decreases steadily with Nb. Good
estimates can be obtained even when there is only a moderate
number of training vectors. For example, when Nb = 100,
the error is around−40dB for SNR= 0 dB. As a benchmark,
the CRB [8] of the estimation error has been plotted. The
estimation error is close to the CRB except when the SNR is
low and the number of training blocks is small. Therefore the
CRB provides an accurate characterization of the estimation
error.
Example 3: For time-invariant channels, the equivalent

path gains can be approximately decorrelated by properly
designing the random prototype when Nt is large. In this
example we examine the performance as a function of Nt
when the beamforming prototype have random coefficients
as in (23) while the combining prototype is a deterministic
vector gk =

[
1 0 · · · 0

]T with Nr = 64. Fig. 5(a) shows the
normalized mean squared error (NMSE) of the channel and
SNR σ 2

s /σ
2
n = 5 dB. The NMSE of the channel is defined

as E[||Ĥ − H||2F/||H||
2
F ], where Ĥ is the estimated channel

matrix. The NMSE is shown for N̄r = N̄t = 4, 5, and 6.

FIGURE 4. MSE as a function of the number of training blocks Nb for
(a) AoA and (b) AoD.

The set St , taken from the table for minimum redun-
dancy array in [36], are {0, 1, 4, 6}, {0, 1, 4, 7, 9}, and
{0, 1, 4, 5, 11, 13} for N̄t = 4, 5 and 6, respectively. We
can see that the error reduces with Nt and N̄t . Without
interference cancellation (IC), the performance for different
N̄t can be close for small Nt . For example, when Nt =
16, there is no difference between N̄t = 5 and N̄t = 6.
This can be understood as follows. The prototype has Nt −
nN̄t−1 coefficients. When Nt = 16, the number of nonzero
coefficients are 7 and 3 for N̄t = 5 and N̄t = 6, respectively.
When the prototype has few nonzero coefficients, the gain
from enlarged virtual arrays can be offset by the loss due
to a lack of design freedom for decorrelating the paths. But
when interference cancellation is applied, increasing N̄t still
lowers the NMSE for a small Nt . This is because interference
cancellation reduces the interfering off-diagonal terms of
Rd,e, i.e., decorrelating the equivalent path gains.
Example 4: For a finite number of training vectors,

the empirical autocorrelation matrix of the effective path
gains Rd,e is not diagonal, which causes interference in
angle estimation. In Fig. 6, we examine the usefulness of
interference cancellation when the precoder and combiner
prototypes are random, as designed in (23). The NMSE
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FIGURE 5. NMSE of the channel as a function of Nt .

FIGURE 6. NMSE with and without interference cancellation (IC), (a) for
different Nb when L = 2 and (b) for different L when Nb = 1000.

is plotted with and without interference cancellation for
L = 2 in Fig. 6(a). The effect of interference cancellation
is particularly significant for high SNR range when the
number of training blocks is small, e.g., Nb = 50. For high
SNR, the noise is small and the remaining path correlation

plays a major role in angle estimation. With cancellation,
the interference is largely removed and the estimation
accuracy greatly improved. Fig. 6(b) shows the NMSE for
different number of paths L whenNb = 1000. As L increases,
the L × L empirical autocorrelation matrix Rd,e has more
off-diagonal terms and thus more interfering terms in angle
estimation. A satisfactory NMSE can be achieved even for a
larger L when interference cancellation is applied.
Example 5: When two angles are close, they may not be

resolved correctly. Consider two AoAs, θ r1 = 30◦ −1θ and
θ r2 = 30◦ + 1θ . The two AoAs are considered successfully
identified if |θ̂ ri −θ

r
i | < 1θ , for i = 1, 2 [9]. Fig. 7 shows the

probability of resolution, i.e., the probability when the two
AoAs are successfully identified for SNR= 5 dB. The AoDs
are chosen as θ t1 = 15◦, and θ t2 = 45◦. We plot the probability
as a function of 1θ . When 1θ is 1◦, the two AoAs can be
successfully identified with high probability, around.86,.93,
and.95, respectively for Nb = 128, 256, and 1000.

FIGURE 7. Probability of Resolution for Nb = 100,256,1000.

Example 6: In the data transmission to be followed after
channel estimation, the precoder and combiner are designed
according to the estimated channel, which results in a
degradation. Fig. 8(a) shows the achievable rate, which is
given by

R = log2(det(IN̄r + ρR
−1
g GHHFFHHHG)),

where ρ = σ 2
s /σ

2
n and Rg = GHG. The result is

compared with [15], [19] and [20] for L = 3 paths. In [15],
a multi-resolution training codebook of beamforming vectors
is used for multi-stage closed loop angle estimation; feedback
is required before the training of the next stage. In Fig. 8
four stages, i.e., three feedbacks, are used and in each stage
the resolution is increased by a factor of four, resulting in
a total of 432 training blocks. For [19], [20], the angles
are estimated using compressive sensing, OMP in [19] and
generalized blockOMP in [20]. For both compressive sensing
curves, the dictionary size is 100 for AoA and AoD. The
resolution increases with the dictionary sizes, and so does the
complexity, which increases with the product of dictionary
sizes. The number of training blocks used is 256 for [19], [20]
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and the proposed method. The proposed ‘SBT’ is very close
to ‘Perfect CSI’ in middle and high SNR range. It enjoys
a much lower complexity compared to compressive sensing
based methods. In terms of complexity, it is in the order of
1.8 ∗ 105 for ‘SBT’ (computed from Table 1), 6.4 ∗ 107

for [15], and 4.1 ∗ 107 for both [19] and [20] (obtained
from [38]). Fig. 8(b) shows the NMSE comparison of the
systems considered in Fig. 8(a). We can see that a small
estimation error can be achieved with ‘SBT’.

FIGURE 8. (a) Achievable rate performance and (b) NMSE performance.

VI. CONCLUSION
In this article we consider the estimation of AoA and AoD
for mmWave massive MIMO communication systems using
SBT precoders and combiners. By designing SBT precoder
and combiner based on the spacing of sparse arrays, we can
construct augmented virtual ULA and reduce estimation
error. Due to random beamforming, the equivalent path gains
can be decorrelated even if the channel is time-invariant.
Complete decorrelation of different paths requires arrays of
infinite sizes and infinitely many training vectors. However,
with the aid of interference cancellation, simulations show
that the proposed method achieves high estimation accuracy
even for a finite number of training vectors and moderate
antenna sizes.

APPENDIX A
PROOF OF THEOREM 1
The expression of ry in the AoA-only case involves only the
Khatri-Rao product of two antenna response matrices and we
can apply a selection matrix to obtain a ULA matrix. In the
general case, eq. (18) involves the Khatri-Rao product of four
antenna response matrices Āt�Ā∗r �Ā

∗
t �Ār . We would like

to switch the ordering so that Ār and Ā∗r are next to each other,
and Āt and Ā∗t are also next to each other. This will allow us
to exploit the results from sparse arrays directly. The order of
the four matrices in the product can be changed with proper
permutation. The following fact is useful for constructing
such a permutation matrix.
Fact 1:Given two vectors a and b, the Khatri-Rao products

a � b and b � a are permutation equivalent [30]; one can
be obtained from the other through a permutation. That is,
a � b = P(b � a), where P is a permutation matrix. Let a
be M × 1 and b be N × 1. Then the (M`+ k)-th row of P is
eT`+kN for ` = 0, 1, · · · ,N − 1, and k = 0, 1, · · · ,M − 1,
where ei is the i-th column of IMN .

The noise vector q can be obtained by directly applying J
on rn, so we consider only the signal term in the following.
Using Fact 1, we can construct a permutation matrix P̄1 such
that P̄1(Ā∗t � Ār ) = Ār � Ā∗t . Let P1 = IN̄t N̄r ⊗ P̄1
and r1 = P1ry. Using the property (A ⊗ B)(C � D) =
(AC) � (BD) and the expression of ry in (18), the vector r1
can bewritten as r1 =

(
Āt � Ā∗r � Ār � Ā∗t

)
λ. Now treating

r1 as
((
Āt � Ā∗r � Ār

)
� Ā∗t

)
λ, we can use Fact 1 again to

construct a permutation matrix P2 so that r2 = P2r1 is given
by

r2 =
(
Ā∗t � Āt � Ā∗r � Ār

)
λ. (30)

Let

P = P1P2, (31)

then we have r2 = Pry. Now the four matrices in the above
expression of r2 are in the desired order.
As in the single transmit RF chain case, we can apply a

selection matrix Jr on Ā∗r � Ār so that Ãr = Jr (A∗r � Ar )
is an antenna response matrix corresponding to a (2Mr + 1)-
element ULA. Similarly, we can apply a selection matrix Jt
on Ā∗t � Āt so that Ãt = Jt (A∗t �At ) is an antenna response
matrix corresponding to a (2Mt + 1)-element ULA. Let us
apply the selection matrix Jt ⊗ Jr on r2, then

(Jt ⊗ Jr )r2 = (Jt ⊗ Jr )
(
Ā∗t � Āt � Ā∗r � Ār

)
λ

= (Jt (Ā∗t � Āt ))� (Jr (Ā∗r � Ār ))λ
= (Ãt � Ãr )λ.

Let

J = (Jt ⊗ Jr )P, (32)

where P is as in (31), then J is a selection matrix. Then,
the signal part of r̃y is

Jry =
(
Ãt � Ãr

)
λ,

as given in Theorem 1.
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APPENDIX B
PROOF OF LEMMA 2
As the noise nk is uncorrelated, rn = σ 2

n 1̃, where 1̃ =
vec(IN̄t N̄r ). We have q = Jrn = σ 2

n J1̃. Observe that 1̃
contains only N̄t N̄r identical nonzero coefficients. We can
obtain q by tracking the nonzero coefficients upon the
application of J. The matrix J in (32) contains two parts,
a selection matrix Jt ⊗ Jr and a permutation matrix P,
which in turns consists of permutation matrices P1 and
P2. We consider the application of Jt ⊗ Jr and the two
permutations separately.
Application of permutations. Let r2 = Pry, we have

r2 =
(
Ā∗t � Āt � Ā∗r � Ār

)
λ+ σ 2

nP1̃. (33)

Notice that 1̃ is the stacking of N̄t N̄r standard vectors ei, for
i = 0, 1, · · · N̄t N̄r − 1. For each i, we can find unique 0 ≤
ji ≤ N̄t − 1 and 0 ≤ ki ≤ N̄r − 1 such that

i = jiN̄r + ki.

Furthermore there is a one-to-one correspondence between i
and (ji, ki). Upon the first permutation, the location of the ‘1’s
move and we can verify that

P11̃ =
[
eT`0 eT`1 · · · eT`N̄t N̄r−1

]T
, (34)

where `i = kiN̄t + ji. To consider the second permutation, let
q1 = P2P11̃. It can be shown that the nonzero coefficient in
e`i will move to the `i-th entry of q1, where `i = jiN̄t N̄ 2

r +

iN̄r + ki. Using the expression i = jiNr + ki, we have `i =
N̄ 2
r ji(N̄t + 1)+ ki(N̄r + 1). The nonzero coefficients in q1 are

located at N̄ 2
r m(N̄t + 1)+ k(N̄r + 1) for 0 ≤ m ≤ N̄t − 1 and

0 ≤ k ≤ N̄r − 1.
Application of Jt ⊗ Jr . The noise term in (19) is q = (Jt ⊗

Jr )q1. As the selection matrix Jt ⊗ Jr is designed according
to the signal part, we turn our attention to the signal plus noise
vector r̃y. Using the expression of r2 in (33) and r̃y = (Jt ⊗
Jr )r2, we get

r̃y = (Jt ⊗ Jr )
(
Ā∗t � Āt � Ā∗r � Ār

)
λ+ (Jt ⊗ Jr )q1.

To consider the application of Jt ⊗ Jr , let us unvectorize r2
and shape it to an N̄ 2

r by N̄ 2
t matrix,

R2 =
(
Ā∗r � Ār

)
Rd

(
Ā∗t � Āt

)T
+Q1, (35)

where Q1 is an N̄ 2
r by N̄ 2

t matrix obtained by unvectorizing
q1. Using r̃y = (Jt⊗Jr )r2, we can unvectorize r̃y and shape it
to the (2Mr+1) by (2Mt+1) matrix R̃y = JrR2Jt . It follows
that

R̃y = Jr (Ā∗r � Ār )Rd
(
Jt (Ā∗t � Āt )

)T
+Q, (36)

where Q = JrQ1Jt . The noise vector q in (19) can be
obtained by vectorizing Q.
We can verify that when we unvectorize q1, the nonzero

unity coefficients in q1 move to (k(N̄r + 1),m(N̄t + 1))-
th element of Q1 for k = 0, 1, · · · , N̄r − 1, and m =
0, 1, · · · , N̄t − 1. Notice that the above row index k(N̄r + 1)

for k = 0, 1, · · · , N̄r − 1 are also the indices of the rows
of Ār � Ā∗r whose elements are all equal to unity. When we
apply the selection matrix Jr on Ār � Ā∗r we keep only one
row that corresponds to the unity rows of Ār � Ā∗r . Similarly,
the column index m(N̄t + 1) in (k(N̄r + 1),m(N̄t + 1)) for
m = 0, 1, · · · , N̄t − 1 are also the indices of the rows of
Āt�Ā∗t whose elements are all equal to unity.Whenwe apply
the selection matrix Jt on Āt � Ā∗t we keep only one row that
corresponds to the unity rows. Therefore we are left with only
one nonzero coefficient in the noise term. Now we only need
to determine where the nonzero coefficient is in the matrixQ.
As the unity row of Ãt is in the middle of the matrix, i.e.,Mt -
th row, and the unity row of Ãr is also in the middle of the
matrix, i.e., Mr -th row, the nonzero coefficient is moved to
the (Mr ,Mt )-th entry. UnvectorizingQ, we obtain q as stated
in the Theorem.

APPENDIX C
PROOF OF THEOREM 2
The signal part of Yss can be obtained using the result
from [27]. We will consider the noise part only. Let qi,j =
Ji,jq, where Ji,j is as defined in (20). Then the noise part of
Yss is[

q0,0 q0,1 · · · q0,Mr q1,0 · · · qMt ,Mr

]
.

(37)

We can obtain the expression in (22) if we can show that the
column vectors in the abovematrix are σ 2

n e0, σ
2
n e1, σ

2
n e2, · · · ,

where ei is the i-th column of the identify matrix
I(Mt+1)(Mr+1). Notice that qi,j = (Jti ⊗ Jrj )q can also be
expressed as

qi,j = vec(Qi,j),

where Qi,j = JrjQ(Jtj )
T and Q is the (2Mr + 1)× (2Mt + 1)

unvectorized version of q that is given in (36). As shown in
the proof of Lemma 2, the matrix Q has only one nonzero
coefficient, right at the center of the matrix. The expression
Qi,j = JrjQ(Jtj )

T means that Qi,j is a submatrix of Q.
An example of Q for Mt = Mr = 2 is as shown in Fig. 9.
The vector q0,0 is the vectorized version of Q0,0, which is
shown in the figure, and q0,1 is the vectorized version ofQ0,1,
also shown. Each Qi,j contains the nonzero entry of Q and
thus each qi,j is a standard vector scaled by σ 2

n . In particular,
q0,0 = σ 2

n e0, and q0,1 = σ
2
n e1. Notice that upon vectorization

FIGURE 9. An example of Q for Mt = Mr = 2.
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of Qi,j, the location of the nonzero entry in qi,j moves down
by onewhen j increases by one and the location of the nonzero
entry moves down by Mr + 1 when i increases by one.
Therefore the matrix in (37) is equal to σ 2

n I(Mr+1)(Mt+1).

APPENDIX D
PROOF OF (24)
Using the beamforming prototype in (23), we have Fk (ω) =

γ
∑Nt−1−nN̄t−1

n=0 βk,ne−jnω. Then

E[Fk (pi)F∗k (pj)]

= E

γ 2

Nt−1−nN̄t−1∑
n=0

βk,ne−jnpi
Nt−1−nN̄t−1∑

m=0

βk,mejmpj


= γ 2

Nt−1−nN̄t−1∑
n=0

Nt−1−nN̄t−1∑
m=0

E[βk,nβk,m]e−j(npi−mpj).

As E[βk,nβk,m] is equal to 1 for n = m and it is equal to 0 for
n 6= m, we have

E[Fk (pi)F∗k (pj)] = γ
2

Nt−1−nN̄t−1∑
n=0

e−jn(pi−pj).

Using the above expression, we can obtain |E[Fk (pi)F∗k (pj)]|
as given in (24).
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