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ABSTRACT Dynamically dimensioned search algorithm (DDS) has been proved to be an effective algorithm
for solving optimization problems in actual applications, such as distributed watershed model calibration,
reservoir operation, pump-and-treat problem, and Radiation Therapy (IMRT) beam angle optimization.
However, it always traps in local optimal, especially for multimodal problems. To further improve the per-
formance of DDS, this article proposes a novel chaotic dynamically dimensioned search algorithm (CDDS)
by incorporating chaos theory into DDS. The improvement is performed by using three strategies: chaotic
initialization, a new Gaussian mutation operator, and a chaotic search. The chaotic map generates an initial
population to improve the quality of the initial solution. Chaotic initialization can enhance the exploration
ability of DDS because of its intrinsic ergodic and stochastic property. A new Gaussian mutation operator
is used to increase convergence speed and the exploitation ability. Meanwhile the chaotic search is utilized
to jump out of the local optimal. The optimal CDDS among 13 CDDS variants is compared with other
optimization algorithms on 20 classical benchmark test functions, 14 shifted rotated benchmark functions
from CEC2005, and 30 benchmark functions from CEC2014 in terms of exploitation and exploration.
We testify the applicability and effectiveness on a cascade reservoirs operation optimization problem in real
world tasks. The experimental results and analyses demonstrate the superiority of the proposed algorithm in
increasing the solution quality and accelerating the convergence.

INDEX TERMS Chaos theory, dynamically dimensioned search algorithm, exploration, exploitation.

I. INTRODUCTION
In the past decades, meta-heuristic optimization algorithms
have received growing attention due to their gradient-free,
simplicity, and flexibility. Some novel meta-heuristic opti-
mization algorithms were proposed such as simulated anneal-
ing (SA) [1], tabu search (TS) [2], genetic algorithm (GA)
[3], differential evolution (DE) [4], particle swarm optimiza-
tion (PSO) [5], ant colony optimization (ACO) [6], har-
mony search (HS) [7], gravitational search algorithm (GSA)
[8], cuckoo search (CS) [9], bat algorithm (BA) [10], krill
herd algorithm (KH) [11], Jaya algorithm(JAYA) [12], sine
cosine algorithm (SCA) [13], salp swarm algorithm (SSA)
[14], and harris hawks optimization (HHO) [15]. There are
also many hybrids to improve the performance of various
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algorithms such as self-organizing hierarchical PSO (HPSO-
TVAC) [16], distance-based locally informed PSO (LIPS)
[17], EPS-dPSO [18], ARAE -SOM+BCO [19], ensemble
particle swarm optimizer (EPSO) [20], and ensemble of dif-
ferential evolution variants (EDEV) [21].

Generally speaking, meta-heuristic optimization
algorithms can be classified into two main categories of
single-solution-based and population-based algorithms. The
single-solution-based algorithms generate only one solution
in each iteration throughout the search process. They have
the advantages of fast convergence speed, low computational
cost and few function evaluations, but they may be easy to fall
into local optimum. TS and SA are two typical representative
single-solution-based algorithms. TS has the characteristics
of a adaptive memory strategy and undertakes to jump from
the local optimum by using tabu lists. SA is inspired by the
annealing process and can accept a candidate solution which
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is worse than the current solution with a certain probability.
In recent years, iterated local search (ILS) [22], variable
neighborhood search (VNS) [23] and vortex search (VS)
algorithm [24] have been developed. The population-based
algorithms generate an initial population including diverse
solutions randomly and then improve solutions through dif-
ferent operators during the search process. They have the
advantages of self-organization, parallelism, and the superior
ability to avoid local optimum, accompanied by higher com-
putational costs and function evaluations. The most popular
population-based algorithms are: GA, which is inspired by
Darwin’s theory of biological evolution; PSO, which imi-
tates the intelligent social behavior of birds flocking; DE,
which finds the optimum by differential mutation opera-
tor. Recently, numerous novel population-based algorithms
were proposed, some representative algorithms are as follow:
grey wolf optimizer (GWO) [25], which is inspired by the
leadership and hunting behavior of grey wolves in nature;
whale optimization algorithm (WOA) [26], which mimics the
hunting behavior of humpback whales; wild goats algorithm
[27], which mimics wild goats’ mountain climbing; HHO,
which imitates the cooperative behavior and chasing style of
Harris’ hawks.

Every meta-heuristic optimization algorithm can divide
the search process into exploration and exploitation phases.
‘‘Exploration phase is the process of visiting entirely new
regions of the search space, while exploitation phase is the
process of visiting those regions of a search space within
the neighborhood of previously visited points’’ [28]. In fact,
an optimization algorithm randomly explores the search
space as vast as possible in the exploration phase, and
efficiently exploits the most promising regions in exploita-
tion phase. Notice that emphasizing on exploration will be
unable to find the global optimal and slow down the con-
vergence rate, while emphasizing on exploitation will make
the algorithm getting stick into local optimal. Owing to that
exploration and exploitation conflict each other, a success-
ful meta-heuristic optimization algorithm needs to properly
balance exploration and exploitation. Many strategies have
been employed to improve the performance and overcome
shortcomings, of which chaos theory is an effective method
to boost both exploration and exploitation.

Chaos is a bounded unstable dynamic behavior and has
been applied in many scientific fields such as mathematics,
geology, biology, computer science, economics, and engi-
neering. Introducing chaotic theory into the optimization
methods is one of the most famous applications. Chaos
optimization algorithms (COA) [29], [30] is proposed as
a novel optimization algorithm by using chaotic variables
instead of random variables in random-based optimization
algorithm. The search process of COA consists of the coarse
search and the fine search, which just plays the role of
exploration and exploitation. The chaos theory has also
been combined with meta-heuristic optimization algorithms
by using chaotic maps for parameter adaptation, such as
chaos embedded particle swarm optimization algorithms

(CEPSOAs) [31], chaotic bee colony algorithm [32], chaotic
harmony search algorithm [33], chaotic bat algorithm [34],
chaotic krill herd algorithm [35], and chaotic gravitational
search algorithm [36]. In addition, chaotic initialization and
chaotic search (chaotic perturbation) are utilized instead of
random initialization and random perturbation in [37]–[40] to
enhance the performance of the meta-heuristics algorithms.

A novel meta-heuristic optimization algorithm named
dynamically dimensioned search (DDS) algorithm was pro-
posed to find good global solutions for automatic calibra-
tion of watershed simulation models [41]. DDS is a simple
single-solution-based optimization algorithm with no algo-
rithm parameter tuning, furthermore, it has the advantages
of fast convergence speed, low computational cost and few
function evaluations. It has been proved its superior perfor-
mance compared to some well-known algorithms [42], [43].
According to the analysis above, DDS is particularly suitable
for actual applications, such as distributed watershed model
calibration [41], [44]–[49], reservoir operation [50], pump-
and-treat problem [51], and Radiation Therapy (IMRT) beam
angle optimization [52].

The search process of DDS is composed by two stages:
initial stage and updating stage. In initial stage, an initial
solution is obtained from initial population which is gener-
ated using uniform distribution. Then a candidate solution is
updated through mutation operator and reflection operator in
later stage. Mutation probability, which is decreasing with
the growing iterations, plays a significant role in balancing
exploration (global search) and exploitation (local search).
The conversion from global search to local search is executed
by dynamically and probabilistically reducing the number
of dimensions to be mutated of the current best solution.
To address the discrete andmixed optimization problems, dis-
crete dynamically dimensioned search (D-DDS) and hybrid
discrete dynamically dimensioned search (HD-DDS) algo-
rithm were presented in [53], [54].

In addition, there are some strategies employed to improve
the performance of DDS. In [55], the only algorithm param-
eter r was set to 0.2 at the beginning of the search process to
highlight exploration, and then it decreased gradually to 0.05
in the light of different mutation probability values to enhance
its exploitation. [45] updated the current best solution accord-
ing to a certain dynamic probability while new best solution
quality is no better than the previous one. To improve the
exploitation, mutation probability was integrated into r and
the value of r reduces from 0.3 to 0.05 to accelerate the
rate of convergence. DYCORS-DDSRBF, an RBF-assisted
modification of DDS, was originally proposed in [44] for
surrogate-based optimization of high-dimensional expensive
black-box functions. Numerical results verified the effective-
ness of DYCORS-DDSRBF on a 14-D watershed calibration
problem, eleven 30-D and 200-D test problems. A dynamic
change in the current standard deviation based on successive
successful or unsuccessful iterations was introduced in [52].
In [46], two selection of sampling distributions and differ-
ent sampling ranges were utilized in DDS for hydrologic
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and water quality predictions to improve the performance of
DDS. Then the DDS algorithm combined with filter method
to solve nonlinear, non-smooth and non-convex constrained
global optimization problems in [56]. In [43], a new muta-
tion probability function and a Gaussian mutation operator
were employed in DDS to boost the exploitation of DDS,
respectively.

Based on the above researches, we can find that the per-
formance and convergence of DDS are affected by several
factors. For example, the proper initial solution can help fast
find the global optimal solution,mutation probability controls
the transition between exploration and exploitation, different
mutation operators and parameter settings enable DDS to
perform different exploitation and exploration capabilities.
We have utilized some mechanisms in the preliminary exper-
iments to find a appropriate approach to improve the perfor-
mance of DDS. Then, we compared the experimental result
obtained by DDS with different mechanisms under the same
experimental condition. By analyzing the experimental data,
we found that a new DDS variant with chaotic initialization,
a new Gaussian mutation operator, and chaotic search per-
forms best. Firstly, we use a new Gaussian mutation operator
to improve the exploitation ability and the local search of
DDS based on the previous research [43]. The experiments
prove that the new Gaussian mutation operator can obtain
good performance but may be relaxed to fall into local opti-
mum for some multi-modal functions. Thus, we need to
increase the ability of exploration of DDS. According to the
mechanism of DDS, we consider the improvement in two
ways: initial stage and updating stage. For the improvement
of the initial solution, chaotic initialization performs best.
Chaotic search (chaotic perturbation) can help the algorithm
to jump from local optimum and enhance the ability of
exploration. Therefore, we select these three technologies to
improve DDS.

In this article, a novel chaotic dynamically dimensioned
search algorithm (CDDS) is proposed. As we know, this is the
first attempt to introduce chaos theory into DDS to improve
the performance. Considering the non-repetition and stochas-
tic of the chaos, we use a chaoticmap for generating an initial
population to enhance the exploration of DDS, then an initial
solution is selected from the initial population. To enhance
the exploitation of DDS, a new Gaussian mutation operator
is employed to make full use of the information of current
best solution for perturbation and obtains high accuracy solu-
tion and fast convergence. Because strong exploitation ability
makes the algorithm easily trapped in local optimal, chaotic
search (chaotic perturbation) is utilized to escape from the
local optimal and improve the exploration ability.

To verify the efficiency of the CDDS algorithm, we choose
13 one-dimensional chaotic maps to construct CDDS, and
find Neuron map is the best chaotic map for improving the
performance of DDS significantly. The optimal CDDS is
compared with some well-known optimization algorithms
on 20 classical benchmark test functions, the first 14 bench-
mark test functions from IEEE CEC2005 and 30 benchmark

functions from CEC2014, respectively. The results of exper-
iments demonstrate that the overall performance of CDDS
is superior to that of the compared algorithms in terms of
solution accuracy and convergence speed. We also study
the influence of three strategies through two aspects by a
series of experiments. In order to investigate the availability
and effectiveness of CDDS, a cascade reservoirs operation
optimization problem in the real world is conducted as a case
study.

The remainder of the paper is organized as follows.
Section II presents the main inspiration and motivation of
the proposed algorithm. Section III presents a brief intro-
duction to the DDS algorithm and chaotic maps. The detail
of the proposed algorithm is provided in Section IV and a
set of experimental results with various statistical analyses
are given in Section V. Section VI discusses the effect of
three strategies through a series of experiments. The optimal
operation problem of cascade hydropower stations is solved
by CDDS in Section VII. Eventually, Section VIII includes
the conclusions and future works.

II. NEED FOR RESEARCH
Hydropower is a type of clean, stable, renewable and green
energy. As cascade reservoirs develop, hydropower is sig-
nificant for national economy construction. The operation
of cascaded hydropower stations do not only base on com-
pensation coordination among the reservoirs, but also on
each hydro-generating unit’s efficiency. It is an intricate task
affected by many factors. Thus, cascade reservoirs operation
optimization (CROO) has become a popular research area all
over the world.

Numerous conventional optimization methods have been
employed for CROO, such as Linear Programming (LP),
Nonlinear Programming (NLP), Dynamic Programming
(DP), Quadratic Programming (QP). However, with the grow-
ing size of reservoirs, the "curse of dimensionality" is pre-
sented in the solving procedure. In recent years, various
meta-heuristic optimization algorithms have been applied
to avoid the "curse of dimensionality", such as GA, PSO,
ACO, and DE. Nevertheless, the performance of these
meta-heuristic algorithms is unsatisfactory in some cases.
Consequently, researchers constantly develop new algorithms
to seek better performance in terms of accuracy and effi-
ciency. In view of the fact that CROO is a high-dimension,
nonlinear constrained, complicated optimization problem,
it is necessary to introduce other strong feasible, practicable
and applicable meta-heuristic algorithms.

III. PRELIMINARIES
This section briefly provides an introduction about the
dynamically dimensioned search (DDS) algorithm and the
chaotic maps.

A. THE DDS ALGORITHM
DDS is a single-solution based heuristic neighbor-
hood search algorithm and has been produced by
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Tolson and Shoemaker [41]. It is designed for finding good
global solutions within a specified maximum function eval-
uation limit, and requires no algorithm parameter tuning. It
searches globally at the start of the search and transits to
a more local search as the number of function evaluations
increases. The adjustment from global to local search is
achieved by dynamically and probabilistically reducing the
number of dimensions in the neighborhood. The candidate
solution is created by perturbing the current best solution in
the randomly selected dimensions only. Reflection operator
in Algorithm 1 ensures decision variable boundaries are more
easily respected. DDS is a greedy algorithm because the best
solution is never updated with a candidate solution that has
an inferior value of the objective function.

Algorithm 1 Reflection Operator of DDS

1: Input: xnewj , xminj and xmaxj
2: if (xnewj < xminj ) then
3: if (U(0,1)≤0.5) then
4: xnewj = xminj + (xminj − x

new
j );

5: else
6: xnewj = xminj ;
7: end if
8: if xnewj > xmaxj then
9: xnewj = xminj ;
10: end if
11: end if
12: if (xnewj > xmaxj ) then
13: if (U(0,1)≤0.5) then
14: xnewj = xmaxj − (xnewj − xmaxj );
15: else
16: xnewj = xmaxj ;
17: end if
18: if xnewj < xminj then
19: xnewj = xmaxj ;
20: end if
21: end if
22: Return xnewj .

Over the course of iteration, the search process consists of
mutation operator, reflection operator, and selection operator.
The mutation operator, controlled by a mutation probability
(P), plays an important role in the search process. As to the
current best solution xbest = (xbest1 , xbest2 , · · · , xbestD ), a can-
didate solution xnew = (xnew1 , xnew2 , · · · , xnewD ) is generated
according to

xnewj =


xbestj + r(xmaxj − xminj )N (0, 1),

if r(j) < P(i) or j = rn(i)
xbestj , otherwise

(1)

In (1), r is recommended as 0.2, N (0, 1) is a standard nor-
mally distributed random number. r(j) ∈ [0, 1] is the jth
evaluation of a uniform random number in the ith itera-
tion. P(i) = 1 − ln(i)/ln(m) ∈ [0, 1] is a monotonically

decreasing function of iteration number i and m is the maxi-
mum number of iterations. rn(i) is a randomly chosen index
∈ {1, 2, · · · ,D} which ensures that xnew is different from
xbest in at least one dimension.
In order to ensure that each one-dimensional mutative

value in a candidate solution respects the bounds, the mini-
mum and maximum values of decision variable act as reflect-
ing boundaries. These details can be described as shown in
Algorithm 1.

To decide whether or not xbest should be updated, the cur-
rent best solution xbest is compared to the candidate solution
xnew using the greedy criterion as follows.

xbest =

{
xnew, if F(xnew) ≤ F(xbest )
xbest , otherwise

(2)

Finally, the DDS algorithm is terminated by satisfying a
stop criterion.

B. CHAOTIC MAPS
The chaotic systems are nonlinear deterministic dynamical
systems that they have important characteristics, including
(1) ergodicity, (2) stochasticity, (3) regularity, (4) initial value
sensitivity. Due to these characteristics, chaos is a reliable
source of randomness, which is non-period, non-converging
and bounded. In recent years, a lot of chaotic maps were
utilized for solving optimization problems. One-dimensional
non-invertible chaotic maps are the simplest systems with
capability of providing chaotic behaviors. Here, wewill intro-
duce some of well-known one-dimensional chaotic maps to
be used in later experiments.

1) LOGISTIC MAP
This classic logistic map was proposed by Robert M.May in
1976 [57], and can be written as

xk+1 = axk (1− xk ) (3)

In the equation, xk is the kth chaotic number where k
denotes the iteration number. Obviously, xk ∈ (0, 1) under
the conditions that the initial x0 ∈ (0, 1). In later experiments,
a = 4 is used and x0 6∈ {0.0, 0.25, 0.5, 0.75, 1.0}.

This map generates sequences in (0, 1).

2) CHEBYSHEV MAP
The Chebyshev map can be defined as follows [34]:

xk+1 = cos(kcos−1(xk )) (4)

This map generates sequences in (-1, 1).

3) CIRCLE MAP
This map is formulated as [58]:

xk+1 = xk + b− (
a
2π

)sin(2πxk )mod(1) (5)

For a = 0.5 and b = 0.2, it generates chaotic sequence
in (0, 1).
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4) GAUSS/MOUSE MAP
The Gauss map is represented by [59]:

xk+1 =

0, xk = 0
1

xkmod(1)
, otherwise

(6)

and 1
xkmod(1)

=
1
xk
− [ 1

xk
].

This map generates sequences in (0, 1).

5) ITERATIVE MAP
The interative map is defined as follows [36]:

xk+1 = sin(
aπ
xk

) (7)

where a ∈ (0, 1) is a suitable parameter, and a = 0.7 has been
used in the experiments.

This map generates sequences in (−1, 1).

6) PIECEWISE MAP
The piecewise map [60] can be written as:

xk+1 =



xk
a
, 0 ≤ xk < a

xk − a
0.5− a

, a ≤ xk < 0.5

1− a− xk
0.5− a

, 0.5 ≤ xk < 1− a

1− xk
a

, 1− a ≤ xk < 1

(8)

where a ∈ (0, 0.5) is a control parameter, and a = 0.4 has
been used in the experiments.

This map generates sequences in (0, 1).

7) SINE MAP
As a unimodal map, the sine map can be defined by [36]:

xk+1 =
a
4
sin(πxk ) (9)

where a ∈ (0, 4] and a = 4 is used in later experiments.
This map generates sequences in (0, 1).

8) SINGER MAP
The following equation defines the singer map [61]:

xk+1 = µ(7.86xk − 23.31x2k+28.75x
3
k−13.302875x

4
k ) (10)

where µ ∈ (0.9, 1.08) is a control parameter, and µ = 1.07
has been used in the experiments.

This map generates sequences in (0, 1).

9) SINUSOIDAL MAP
This map can be given by [31], [62]

xk+1 = ax2k sin(πxk ) (11)

In later experiments, a = 2.3 is used.
This map generates sequences in (0, 1).

10) TENT MAP
The map is represented by [35]:

xk+1 =


xk
0.7
, xk < 0.7

10
3
(1− xk ), xk ≥ 0.7

(12)

This map generates sequences in (0, 1).

11) CUBIC MAP
The equation of the cubic map [63] can be represented as:

xk+1 = ρxk (1− x2k ) (13)

ρ = 2.59 has been used in the experiments.
This map generates sequences in (0, 1).

12) SINUSOIDAL MAP
This map can be represented as [33]:

xk+1 = 2.3x2k sin(πxk ) (14)

This map generates sequences in (0, 1).

13) NEURON MAP
This map is defined as [30]:

xk+1 = η − 2tanh(γ )exp(−3x2k ) (15)

where η denotes the attenuation factor(0 ≤ η ≤ 1), γ is the
proportionality factor. η = 0.5 and γ = 5 have been used in
the experiments.

This map generates sequences in (−1.5, 0.5).

IV. CHAOTIC DYNAMICALLY DIMENSIONED SEARCH
ALGORITHM
The chaotic dynamically dimensioned search algorithm
(CDDS) is conducted through chaotic initialization, a new
Gaussian mutation operator, and a chaotic search. 13 chaotic
maps generate an initial population to enhance the explo-
ration of the algorithm and improve the quality of the initial
solution, respectively. The new Gaussian mutation operator
focuses on local search around the current best solution to
enhance the exploitation ability for higher precision solution
and faster convergence rate. Moreover, CDDS employs the
chaotic search in the process of search, which prevents the
algorithm from falling into local optima to some extent.
The stages of the proposed algorithm are described in
Figure 1.

A. INITIAL STAGE
In this stage, the initial solution is generated by iterating the
selected chaotic map as shown in Algorithm 2.

As the chaos has the characteristics of ergodicity and
non-repetition, the chaotic sequences provided by the
selected chaotic map were embedded into the original
DDS algorithm to generate the initial population. Therefore,
instead of generating the population using stochastic search,
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FIGURE 1. Flowchart of the CDDS algorithm.

13 one-dimensional chaotic maps are used to implement
global search using the following equations:

x(k)i = xmini + (xmaxi − xmini )c(k)i (16)

x(k)i =
(xmaxi + xmini )

2
+

(xmaxi − xmini )

2
c(k)i (17)

x(k)i =
(1.5xmaxi + 0.5xmini )

2
+

(xmaxi − xmini )

2
c(k)i (18)

Equations (16)-(18) are utilized to map the chaotic vari-
ables c(k)i into the optimization variables x(k)i in the light
of the chaotic map with different scaled values, where i =
1, 2, · · · ,D and k = 1, 2, · · · , p. (16) is suitable for most
chaotic maps except Chebyshev, Iterative and Neuron; (17)
is suitable for Chebyshev and Iterative, meanwhile (18) is
suitable for Neuron.

After that, the fitness function value of each initial vari-
able is computed, and the best variable that has the smallest
fitness function value is selected from the initial population
to represent the initial solution.

B. UPDATING STAGE
The solution is updated in this stage through two steps. A new
Gaussian mutation operator is used in the first step, and a
chaotic search is used in the second step.

1) UPDATING USING A NEW GAUSSIAN MUTATION
OPERATOR
The new Gaussian mutation adds a random Gaussian
vector to the current best solution by the following

VOLUME 8, 2020 152479



Y. Wu et al.: Chaotic DDS Algorithm

Algorithm 2 Chaotic Initialization of CDDS
1: p = the maximum number of chaotic initialization itera-

tion
2: Randomly initialize the first chaotic variable
3: for k = 1 : p do
4: Generate initial solution by chaotic variable using

(16)-(18)
5: Update chaotic variable ck according to the selected

chaotic map
6: end for
7: Sort the initial population and choose the best solution
xbest

8: Set x0 = xbest .

equation:

xnewj =


xbestj + r · xbestj N (0, 1),

if r(j) < P(i) or j = rn(i)
xbestj , otherwise

(19)

r is the scalar neighborhood size perturbation parameter
assigning the same variation to each decision variable, which
is recommended as 0.2.

The perturbation variance of CDDS in the randomly
selected dimensions makes full use of the information of
the current best solution for disturbance. The new Gaussian
mutation operator focuses on local search around the current
best solution. It can enhance the quality of candidate solu-
tion, improve the search speed and exhibit good local search
ability.

2) UPDATING USING CHAOTIC SEARCH (CHAOTIC
PERTURBATION)
In general, the new Gaussian mutation operator lends itself
strongly to exploitation. However, it could not always imple-
ment global search well. Sometimes it fails to find global
optimal solution in some cases [43]. Thus, the chaotic search
(chaotic perturbation) is used to enhance the exploration
ability. More details of the chaotic search are shown in
Algorithm 3.

Algorithm 3 Chaotic Search of CDDS
1: q = the maximum number of chaotic search iteration.
2: Randomly initialize the first chaotic variable.
3: for k = 1 : q do
4: Chaotic iteration variable is transformed into opti-

mization variable using (16)-(18)
5: Add chaotic perturbation to the candidate solution

using (20)
6: Update chaotic variable ck according to the selected

chaotic map
7: end for
8: Evaluate the fitness value of the candidate solution xnew.

Chaotic search, the fine search of COA, is a random
movement with ergodicity, pseudo-randomness and regular-
ity. It could escape from localminima and approach the global
minima. In the updating process of the current best solution,
the candidate solution would be perturbed sufficiently to
jump out local optimization using the following equation:

xnewj = xnewj + β · δj (20)

where β is a small positive number and δj is the chaotic
perturbation. We set β to be 0.00001 by some experiments
tests.

V. NUMERICAL SIMULATION AND RESULTS
In order to evaluate the performance of the proposed algo-
rithm, 64 benchmark functions are employed in this section.
Tables 1-4 present these functions, where ‘‘Search range’’
is the ranges of the variables, ‘‘Minimum’’ is the optimum
and D is the dimension. The test functions in Tables 1-2 are
classical test problems, which are classified in two groups:
unimodal and multimodal. Notice that the unimodal func-
tions have only one global optimum so they are suitable for
investigating the exploitation capability, and the multimodal
functions with several local optima are suitable to test the
exploration ability. CEC2005 and CEC2014 are shown in
Tables 3-4 to further testify the effectivity of CDDS.

A. CDDS WITH DIFFERENT CHAOTIC MAPS
Different chaotic maps have different mechanisms, thus dif-
ferent chaotic DDS variants have different performance. In
order to choose the optimal chaotic DDS, 13 chaotic DDS
variants are benchmarked using 20 well-known benchmark
functions. We set the dimension and the maximum number
of function evaluations(FEs) to 30 and 10000, respectively.
Tables 5 and 6 illustrate the average (mean), standard devi-
ation (std), success rate (SR) of the obtained best fitness
function values averaging over 100 independent runs. The
best results are indicated in bold type.

Success rate (SR) is defined as follows

SR = 100×
Nsuccessful
Nall

(21)

where Nall is the number of runs, and Nsuccessful is the number
of runs which can find the solution successfully. A run is
considered as a successful run if the solution meets |fbest −
f ∗| < ε, where fbest is the optimum provided by the algo-
rithm and f ∗ is the theoretical optimum. The value-to-reach
(VTR) is set to be 10−5. To evaluate the performance of
the algorithms, we ranked the algorithms in Tables 5 and 6,
which also offered the best/worst ranking, rank sum and
overall rank of each algorithm. Note that CDDS1 to CDDS13
utilized Logistic, Chebyshev, Circle, Gauss/Mouse, Iterative,
Piecewise, Sine, Singer, Sinusoidal, Tent, Cubic, Sinus and
Neuron, respectively.

As depicted in Tables 5 and 6, CDDS13 (Neuronmap) pro-
vides the best performance on the majority of the benchmark
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TABLE 1. Summary of classical unimodal benchmark functions.

TABLE 2. Summary of classical multimodal benchmark functions.

TABLE 3. Summary of the CEC2005 test functions.

functions and obtains the highest rank. For unimodal bench-
mark functions, CDDS13 performs best in 5 out 9 functions,
and provides two second-best results. The success rate of
CDDS13 is higher than those of other variants. Inspecting the
results in Table 5, all the CDDS variants significantly provide
better results than DDS in 7 out of 9 functions. The success

rates of different CDDS variants are higher than the success
rate of DDS, meaning that the chaotic maps can improve the
‘‘exploitation’’ of DDS.

For multimodal benchmark functions, CDDS13 performs
best in 4 out 11 functions and obtains the highest rank.
The success rate of CDDS13 is in the top three of all the
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TABLE 4. Summary of the CEC2014 test functions.

algorithms on multimodal benchmark functions except f13,
f15 and f16. It evidences that CDDS13 is capable of avoiding
local minima and can improve the ‘‘exploration’’ of DDS.
Comprehensive consideration suggests that we choose Neu-
ron map as the final optimal map to form the best chaotic
DDS (CDDS).

B. GENERAL PERFORMANCE OF CDDS ON CLASSICAL
BENCHMARK FUNCTIONS
In order to have an all-sided investigation of the performance
of the CDDS algorithm, three test sets were used to carry out
experiments. Firstly, we compare it with nine optimization
algorithms for solving 20 well-known benchmark functions
to prove the superiority of the proposed CDDS algorithm.
The compared algorithms are DE [4], PSO [5], BA [10],
SCA [13], GSA [8], KH [11], JAYA [12], EPSO [20], and
EDEV [21], noticing that JAYA is a parameter-less algorithm.
The parameter settings for these algorithms are shown in
Table 7. In experiments, population size and maximum num-
ber of function evaluations (FEs) were set to 50 and 10000,
respectively. The results after 100 runs were presented in
Tables 8 and 9. The best results were highlighted in bold.

Non-parametric Wilcoxon signed-rank test at 5% signifi-
cance level was conducted between the results of proposed
CDDS and the results of the compared algorithms. The sym-
bols ‘‘+’’ or ‘‘−’’ represent that CDDS is significantly better
than or significantly worse than the compared algorithms,

respectively. The symbol ‘‘=’’ represents that there is no
significant difference between CDDS and the compared algo-
rithms. The algorithms are ranked according to their mean
error values. The number of best/worst ranking and the num-
ber of ‘‘+’’ were counted for each algorithm. These statistical
results and the overall rank for each algorithm were both
summarized in the last four rows in Tables 8 and 9.

Table 8 shows that CDDS performs best in 8 out 9 func-
tions (f1-f7 and f9), which proves CDDS to have the good
exploitation ability. KH gets the best performance on f8. As to
Wilcoxon signed rank test, CDDS is significantly better than
DE, PSO, BA, SCA, GSA, KH, JAYA, EPSO and EDEV on 9,
8, 9, 9, 7, 8, 9, 9 and 8 test functions, respectively.

Table 9 shows that CDDS outperforms other algorithms
in 5 out 11 functions. GSA and EDEV both perform best
on two of the eleven functions. KH and EPSO have the
best performance on f15 and f20, respectively. With regard to
Wilcoxon signed rank test, CDDS significantly outperforms
DE, PSO, BA, SCA, GSA, KH, JAYA, EPSO and EDEV on 9,
9, 11, 10, 8, 6, 11, 7 and 6 test functions, respectively. Taken
together, CDDS performs better than other algorithms on the
majority of test functions, and has the highest rank. EPSO and
EDEV are the second most effective.

To investigate the convergence speed of the algorithms, the
convergence curves were depicted in Figures 2 and 3. The
values in these figures are the average best objective func-
tion values achieved from 100 independent runs. It should
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TABLE 5. Comparison of experimental results by CDDS algorithm with thirteen different chaotic maps on classical unimodal benchmark functions.

be noted that the most convergence curves are plotted in a
semi-logarithmic coordinate system except f5, f6, f9, and f20.

For unimodal test functions, CDDS is significantly supe-
rior to the other algorithms. As can be seen in Figure 2, the
quality of the initial solution obtained by CDDS is worse
than that of other algorithms. This phenomenon is caused
due to the difference between single-solution based search
algorithm and population-based search algorithm. CDDS
searches the optimal solution with the fastest convergence
speed in the early stage of the search process on f1-f2, f4-f7
and f9. Then CDDS acheives VTR except f2 and f8. For f3
and f5, GSA shows a faster convergence speed initially and
converges slowly as the search proceeds. For f8, KH and
CDDS have the fastest convergence speed at the beginning
of search process, and then KH finds the best solution at
the end of the process. In particular, we can find that the
convergence curves of CDDS on f1, f3, f4 and f7 disappeared
after some function evaluations. The reason is that the error
values obtained by CDDS are close to zero, then the values
go to negative infinity after taking logarithm. This illustrates

that CDDS has fast convergence rate and high accuracy. To
sum up, CDDS performs best in terms of accuracy and con-
vergence speed for unimodal functions. It proves that CDDS
improves the ‘‘exploitation’’ of DDS.

As shown in Figure 3, CDDS has the fastest convergence
speed on f10 and f15-f17. Meanwhile, GSA shows the fastest
convergence speed on f11-f13 and f19. For f14, CDDS has
the fastest convergence speed initially, then KH converges
fastest, EDEV finds the best solution on this function. With
regard to f17, the optimal value obtained by CDDS acheives
VTR rapidly, and therefore the convergence curve disap-
peared after about 1500 function evaluations. For f18, the
average best objective function values of DE, PSO, SCA,
JAYA, EPSO and CDDS are positive numbers, meanwhile
those of BA, KH, and GSA are negative numbers. Especially,
the average best objective function values of EDEV are pos-
itive numbers in the early stage of the search process, and
turn negative as the search proceeds. f18 is composed of a
great number of peaks and valleys, and it has a second best
minimum far from the global minimum. This may be the
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TABLE 6. Comparison of experimental results by CDDS algorithm with thirteen different chaotic maps on classical multimodal benchmark functions.

TABLE 7. Parameter settings for various algorithms.

reason that some algorithms are trapped in local optimal. For
f20, GSA, KH and CDDS have the fastest convergence speed
at the beginning of search process, and then they seem to
trap in local optimal. According to these analyses, it can be
concluded that CDDS is superior to or competitive with the
other heuristic algorithms on the multimodal functions.

C. GENERAL PERFORMANCE OF CDDS ON CEC2005
BENCHMARK FUNCTIONS
In this section, the first 14 functions from the CEC2005
benchmarks [64] are used to evaluate the performance of
CDDS, which are summarized in Table 3. In this test
suite, the 14 functions can be divided into three categories:
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TABLE 8. Comparison of experimental results by different algorithms on classical unimodal benchmark functions.

F1-F5 are shifted unimodal functions; F6-F12 are shifted
multimodal functions; F13-F14 are the expanded multimodal
functions. CDDS is compared with seven algorithms includ-
ing HPSO-TVAC [16], jDE [65], LIPS [17], EPS-dPSO
[18], ARAE -SOM+BCO [19], EPSO [20] and EDEV [21].
We reported the mean and the standard deviation of error
values over 25 independent runs in Table 10 where FEs is set
as 300000 and D = 30. For comparison purpose, the results
of the other compared algorithms were taken from the results
reported in relevant published literatures [18]–[21]. The best
results among them are marked in bold.

Table 10 shows that our algorithm is better than
HPSO-TVAC for 9 functions (F2-F8 and F11-F12), better

than jDE for 6 functions (F2-F3, F7-F8 and F11-F12), bet-
ter than LIPS for 8 functions (F2-F8 and F12), better than
EPS-dPSO for 5 functions (F3, F7-F8 and F11-F12), better
than ARAE -SOM+BCO for 5 functions (F3, F7-F8 and F11-
F12), better than EPSO for 4 functions (F3, F7-F8 and F12),
and better than EDEV for 3 functions (F3 and F7-F8). In fact,
CDDS yields the best solution on F3, F7-F8, while HPSO-
TVAC, jDE, LIPS, EPS-dPSO, ARAE -SOM+BCO, EPSO,
EDEV obtained the best values in 1 (F1), 2 (F1 and F9),
1 (F1),1 (F1), 3 (F1, F4 and F6), 4 (F1-F2, F9 and F14),
7 (F1, F5 and F9-F13), respectively. As for the expanded
multi-modal functions, the performance of CDDS is the worst
among the compared algorithms. Taken together, the overall
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TABLE 9. Comparison of experimental results by different algorithms on classical multimodal benchmark functions.

performance of EDEV is the best, followed by EPSO, ARAE
-SOM+BCO and CDDS.

Based on the deeply study of the performance of
CDDS, CDDS exhibits competitive overall performance
for CEC2005, but it does not constitute an overwhelm-
ing superiority. It should be noticed that CDDS per-
forms slightly worse than EPSO and EDEV for CEC2005,

contrary to the classical benchmark functions. This may
be because the exploration and exploitation ability of
CDDS can’t be well controlled for complex test func-
tions. It is mostly likely that CDDS just search one solu-
tion with strong randomness in every iteration and is
easy to trap in local optimum when handling the complex
problems.
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FIGURE 2. The convergence curves for unimodal benchmark functions.

D. GENERAL PERFORMANCE OF CDDS ON CEC2014
BENCHMARK FUNCTIONS
In this section, 30 rotated unimodal, shifted and rotated multi-
modal, hybrid, and composition functions from the CEC2014
benchmarks [66] are utilized to evaluate the effectiveness
of CDDS, which are summarized in Table 4. In the test
suite, the 30 functions can be divided into four categories:
F1CEC2014-F3CEC2014 are unimodal functions; F4CEC2014-
F16CEC2014 are simple multimodal functions; F17CEC2014-
F22CEC2014 are hybrid functions; F23CEC2014-F30CEC2014
are composition functions.

In this experiment, CDDS was compared with SOS
[67], GSA [8], CS [9], CMA-ES [68], HAPS-PS [69], and
L-SHADE [70] on the CEC2014 test suit with D = 30.
The maximal number of function evaluations (maxFEs) was
set to 10000D. To reduce the randomness, the experimental
results were calculated from 51 independent runs. The mean
and standard deviation of function error value f (Xbest ) −
f (X∗) were used to evaluate the optimization performance,
where Xbest is the best solution found by the algorithm in
a run, and X∗ is the theoretical global optimum of each
function. For convenience, the results of the other compared
algorithms were cited from the published literatures [69].

The experimental results are shown in Table 11, and the
overall ranking values were recorded in the last row.

From the overall rank in Table 11, we can find CDDS ranks
the top three among 30 CEC2014 functions while HAPS-PS
and L-SHADE rank second and first, respectively. Again 6
compared algorithms, CDDS is better or equal on 24, 16,
21, 27, 9 and 4 functions than SOS, GSA, CS, CMA-ES,
HAPS-PS, and L-SHADE, respectively. The detailed com-
parison results shows that CDDS was superior to SOS,
GSA, CS, and CMA-ES on most test functions. CDDS is
the best performer only for F3CEC2014. CDDS shows the
best performance for 6 functions(F1CEC2014, F3CEC2014-
F4CEC2014, F17CEC2014, F21CEC2014 and F30CEC2014),
besides L-SHADE. With regard to HAPS-PS, it is a
quite recently proposed algorithm and provides the best
results on 6 functions(F12CEC2014, F23CEC2014-F26CEC2014
and F28CEC2014). L-SHADE ranks first for 22 CEC2014
functions (F1CEC2014-F4CEC2014, F6CEC2014-F10CEC2014,
F13CEC2014, F15CEC2014-F22CEC2014, F25CEC2014-
F27CEC2014 and F30CEC2014) because it is the winner of the
CEC2014 competition.

According to the above intensive study, CDDS has a
good comprehensive performance for CEC2014. In order
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FIGURE 3. The convergence curves for multimodal benchmark functions.

to analyze the deep reasons, we provide a detailed anal-
ysis. Firstly, we can find that CDDS confirms its superi-
ority on unimodal functions due to its strong exploitation
ability. As a single-solution-based optimization algorithm,
CDDS searches the design space with a single point so it
makes full use of global optimal solution information, which
enhance the exploitation capability. For simple multimodal
functions, CDDS obtains the top three mean values for six
functions (F4CEC2014-F6CEC2014, F12CEC2014, F14CEC2014,
and F16CEC2014 ). The superiority may be because CDDS
has good exploration capability due to chaotic initialization
and chaotic search. Then, with regard to hybrid functions,
CDDS gets the top three mean values for three functions
(F17CEC2014, F20CEC2014, and F21CEC2014 ). It means that

CDDS can jump from local optimal solution when dealing
with complex problems. This may be because of chaotic
search which can increase the probability of CDDS escap-
ing local optima. Finally, CDDS obtains the top three
mean values for five functions (F23CEC2014-F24CEC2014,
F26CEC2014, F29CEC2014, and F30CEC2014 ) for composition
functions. In summary, CDDS can effectively balance explo-
ration and exploitation, thereby it is a competitive algorithm
for CEC2014.

VI. THE EFFECT OF THREE STRATEGIES
In this section we will discuss the effect of chaotic initializa-
tion, Gaussian mutation operator and chaotic search through
two aspects.
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TABLE 10. Comparison of experimental results of the CDDS algorithm for the 30 dimensional CEC2005 benchmark functions.

A. THE ADVANTAGES OF THREE STRATEGIES (Chaotic
INITIALIZATION, GAUSSIAN MUTATION OPERATOR AND
CHAOTIC SEARCH)
First of all, we investigated the advantages of chaotic ini-
tialization, Gaussian mutation operator and chaotic search.
We removed one strategy and remained the other two strate-
gies to obtain three modified variants of CDDS, which were
comparedwith the full version on the previous 20well-known
benchmark functions. The experimental parameter settings
are the same as before. The average (mean), run times (Time),
standard deviation (std), and success rate (SR) of the optimal
solutions are shown in Table 12.

In the first case, chaotic initialization was removed and
the initial population was randomly generated, while the
new Gaussian mutation operator and the chaotic search were
used to balance the exploration and exploitation abilities.
The results of this case are shown in Table 12 named CI.
According to the results, the mean, Std and SR of the pro-
posed algorithmwithout chaotic initialization decrease on the
large majority of the test functions, meanwhile the CPU time
increases in most cases. It means that chaotic initialization
can improve the quality of initial population.

In the second case, the new Gaussian mutation operator
was removed and replaced by original mutation operator
while the chaotic map was utilized to generate initial pop-
ulation and the chaotic search was used in the updating
stage. The results of this case marked MO. In general, the
performance of the proposed algorithm in this case is worse
than the performance of CDDS. The mean, Std and SR of the

proposed algorithm in this case are the worst on unimodal test
functions except f3, which is contrary to somemultimodal test
functions. Meanwhile, the CPU time increases compared to
CDDS. This means the new Gaussian mutation operator can
enhance the exploitation of the proposed algorithm.

In the last case, the chaotic search was removed, while
chaotic initialization and new Gaussian mutation operator
were employed. The tag of this case is CS. From the results
in Table 12, the mean, Std, SR and the CPU time of the pro-
posed algorithm in this case decrease. It means that chaotic
search can effectively jump from local optimal and enhance
the exploration ability, but the chaotic search may be time
consuming.

B. INFLUENCE OF THE STARTING ITERATION OF THE
CHAOTIC SEARCH
According to the analyses in Subsection VI-A, we find that
the starting iteration of the chaotic search is important for
CDDS. The results of f3, f5, f15 and f19 in Table 12 indicate
that the chaotic search plays a major role when the search
is trapped in local minima. In order to find the best starting
iteration of the chaotic search, we have tested 20 benchmark
functions in Tables 1 and 2 with different starting iteration
of the chaotic search for CDDS. The results were shown in
Tables 13 and 14.

Table 13 includes the average of 20 classical benchmark
function values with different starting iteration for CDDS.
Here ‘‘0.0*FEs’’ means the chaotic search is used at the
beginning of the search process, and ‘‘1.0*FEs’’ indicates
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TABLE 11. Comparison of experimental results of the CDDS algorithm for the 30 dimensional CEC2014 benchmark functions.
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TABLE 11. (Continued.) Comparison of experimental results of the CDDS algorithm for the 30 dimensional CEC2014 benchmark functions.

FIGURE 4. The location of cascade reservoirs in the Qingjiang River.

that the chaotic search is removed. To have a better com-
parison, we ranked the results in Table 14. From Table 14,
CDDS obtains the best rank on 8 functions (f1, f3-f4, f7, f9,
f11, f15 and f17) when the starting iteration is ‘‘0.0*FEs’’;
CDDS obtains the best rank on 5 functions (f2, f5, f13, f16
and f19) when the starting iteration is ‘‘0.1*FEs’’; CDDS
obtains the best rank on 2 functions (f10 and f14) when the
starting iteration is ‘‘0.4*FEs’’; CDDS obtains the best rank
on 2 functions (f8 and f20) when the starting iteration is
‘‘1.0*FEs’’; CDDS obtains the best rank on 1 functions (f18)
when the starting iteration is ‘‘0.2*FEs’’; CDDS obtains the

best rank on 1 functions (f6) when the starting iteration is
‘‘0.3*FEs’’; CDDS obtains the best rank on 1 functions (f12)
when the starting iteration is ‘‘0.7*FEs’’. It is noteworthy that
the starting iteration of ‘‘0.1*FEs’’ has the best overall rank,
followed by the starting iteration of ‘‘0.0*FEs’’. To have an
integrative consideration, we select ‘‘0.0*FEs’’ as the best
starting iteration of the chaotic search.

Another point worth noticing is that the best rank is
obtained mostly when the chaotic search is used in the
early stage of the search, while CDDS only performs best
on 3 functions if chaotic search is utilized in the later stage of
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TABLE 12. The results of testing the influence of removing one
component.

the search process. These analyses prove the effectiveness of
the chaotic search.

VII. THE APPLICATION OF OPTIMAL OPERATION OF
CASCADE RESERVOIRS
In this section, the hydropower stations on the Qingjiang
River in China are used to evaluate the practical feasibility
and the capability of CDDS for solving the cascade reservoirs
operation optimization (CROO). CROO needs to consider
the hydraulic connection between upstream and downstream
reservoirs. It has a lot of equality and inequality constraints
which is a challenging task when the objective function
directly affects the candidate solution of the updating stage.
Thus, how to obtain the global optimal solution of CROO is
representative to demonstrate the feasibility and effectiveness
of CDDS for solving real-world optimal problems [71], [72].

A. QINGJIANG
The Qingjiang River [73]–[75], which is 423 km long,
is the largest tributary of the middle Yangtze River. It flows
through Enshi, Badong, Changyang and Yidu located in

Hubei province, China. The Qingjiang River Basin has a
moderate climate, the basin area of 17,000 km2, an aver-
age annual rainfall of about 1400 mm, and an average flow
of 440 m3/s. We select three hydropower stations as a case
study, including Gaobazhou hydropower station, Geheyan
hydropower station, and Shuibuya hydropower station, which
are in the midstream and downstream of the Qingjiang River
Basin. Three cascade reservoirs: Gaobazhou (GBZ) reservoir,
Geheyan (GHY)reservoir, and Shuibuya (SBY) reservoir are
shown in Figures 4 and 5.

FIGURE 5. Schematic diagram of cascade reservoirs in the Qingjiang River.

In Figure 5, Q1 is the streamflow into Shuibuya reservoir,
Q2 is the lateral inter-zone inflow between Shuibuya and
Geheyan, and Q3 is the lateral inter-zone inflow between
Geheyan and Gaobazhou. Notice the GBZ is a daily regulat-
ing and small storage reservoir, which plays an important role
in the reverse regulation of upstream Geheyan. The optimal
operation model used in this section is only applied to the
SBY and GHY. The main features of the two reservoirs are
shown in Table 15.

B. MATHEMATICAL MODELING OF THE CROO PROBLEM
Power generation is an important method to obtain the eco-
nomic benefit from a cascade reservoirs system. The benefit
from power generation depends on the utilization ratio of
water. Thus, the optimal operation of a cascade reservoirs
system is a vital and complex task for the society needs and
economic development.

CROO aims at maximizing the annual power generation
while satisfying all physical and operational constraints.
In the operation optimization, the whole operation time is
divided into 12 periods, which ranges from May to April of
the next year. The length of the operation period is set to
one month. Because the water level can be converted into the
inflow, the outflow and reservoir capacity according to some
curve equations, we choose the water level as the decision
variable.

The objective function can be expressed as follows:

Maximize F =
T∑
t=1

M∑
m=1

Nm,t∆t

=

T∑
t=1

M∑
m=1

kmqm,thm,t∆t

where T is the number of operation periods,M is the number
of the hydro plants, Nm,t is the power output of m-th plant
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TABLE 13. The average values of the classical benchmark function with different starting iteration for CDDS.

TABLE 14. Rank of the average values with different starting iteration for CDDS.

during operation period t(MW),∆t is the operation period(h),
km is the power coefficient form-th plant, qm,t is the release in
operation period t from plant m(m3/s) and hm,t is hydraulic
head of m-th plant during t-th operation period (m).

C. CONSTRAINS
There are several constraints proposed on reservoir operation
as follows.

(1)Water connection of cascade reservoirs:

Im+1,t = Qm,t + qm,t

where Im+1,t is the inflow of (m + 1)-th reservoir in t-th
operation period(m3/s), Qm,t is the outflow of m-th reservoir

in t-th operation period(m3/s), qm,t is the inter-zone inflow
into (m+ 1)-th reservoir in t-th operation period(m3/s).

(2) Water balance constraint:

Vm,t+1 = Vm,t + (Im,t − Qm,t − Sm,t )×∆t

where Vm,t+1 and Vm,t are the initial storage volume of
m-th reservoir in the beginning of (t + 1) and t-th operation
period(m3/s), respectively; Sm,t is the water spill of m-th
reservoir in t-th operation period(m3/s).
(3)Water level constraint:

Zminm,t ≤ Zm,t ≤ Z
max
m,t
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FIGURE 6. The convergence curves for the CROO problem.

TABLE 15. Parameters of the Shuibuya and Geheyan hydropower stations
in Qingjiang River.

where Zminm,t and Zmaxm,t are the minimum and maximum limits
of water level for m-th reservoir in t-th operation period(m),
respectively.

(4)Outflow constraint:

Qminm,t ≤ Qm,t ≤ Q
max
m,t

where Qminm,t and Q
max
m,t are the minimum and maximum limits

of outflow for m-th reservoir in t-th operation period(m3/s),
respectively.

(5) Power output constraint:

Nmin
m,t ≤ Nm,t ≤ N

max
m,t

where Nmin
m,t and Nmax

m,t are the minimum and maximum limits
of the power output for m-th hydro plant in t-th operation
period(MW), respectively.

(6)Boundary constraint:

Zm,1 = Zm,b, Zm,T+1 = Zm,e

where Zm,b is the water level of m-th reservoir in the begin-
ning of the whole operation time(m); Zm,e is the water level
of m-th reservoir at end of the whole operation time(m).

D. CONSTRAINT HANDLING AND PARAMETER SETTINGS
1) CONSTRAINT HANDLING
Due to complex constraint conditions of the whole operation
time, we choose penalty function methods to handle con-
straint. The fitness function can be expressed as follows:

F = −
T∑
t=1

M∑
m=1

[Nm,t − Hδ · (Nm,f − Nm,t )k ]∆t

and

δ =

{
1, N (m, t) < Nm,f
0, N (m, t) ≥ Nm,f

where H , δ and k are penalty parameters and Nm,f is the
guaranteed output form-th hydro plant. Note that Nm,f −Nm,t
must be positive. Furthermore, k usually takes the value of
either 1 or 2. In our experiments it is set to 1, and H is set
to 1.
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TABLE 16. The optimal operation results of Qingjiang cascade hydropower station by using GA, BA, KH and CDDS.

FIGURE 7. Monthly water level process of Shuibuya and Geheyan obtained by different algorithms for three representative schemes.

2) PARAMETER SETTINGS
To demonstrate the practicability and effectiveness of CDDS
in the application of the CROO problem, CDDS is compared
with SSA [14], HHO [15], KH [11], and PSO [5].

The maximum number of function evaluation (FEs), here
set to 105, is selected as the stopping criterion for all algo-
rithms. The population size is 50 for all population-based
algorithms. The other control parameters of the compared
algorithms are given as follows: For SSA, parameter c1 is
defined as in the paper [14], c2 and c3 are random numbers
uniformly generated in the interval of [0,1]. For HHO, param-
eters r1, r2, r3, r4 and q are random numbers inside (0,1),
which are updated in each iteration. For KH, the foraging
speed is Vf = 0.02, the maximum diffusion speed is Dmax =
0.005, the maximum induced speed is Nmax

= 0.01. For
PSO, the inertia weight ω: 0.9 − 0.2, the learning factors
c1 = 2,c2 = 2.

E. RESULTS ANALYSIS AND DISCUSSION
Table 16 shows the results for the optimal operation of the
Qingjiang cascade hydropower stations in 10 runs by using
CDDS, SSA, HHO, KH, and PSO. It can be observed that
the mean annual power generation obtained by CDDS is
evidently excellent. Compared with SSA, HHO, KH, and
PSO, the mean annual power generation obtained by CDDS
increased by 1.88%, 7.55%, 1.49%, 0.68%. The results indi-
cate that CDDS can maximize the power generation by
hydropower station and increase the economic benefit. This
conclusion that the standard deviation (Std) of CDDS is
smaller than that of the other four algorithms reveals CDDS’s
good stability. It’s remarkable that HHO is unstable in terms
of the Std of HHO. The Wilcoxon signed-rank test with a 5%
significant level is used to further study the differences among
the compared algorithms, and the statistical results are shown
in the last row of Table 16. According to Wilcoxon signed
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FIGURE 8. Reservoir operation processes obtained by CDDS for three representative schemes.

rank test, CDDS significantly outperforms SSA, HHO, and
KH, while it has the same performance as PSO. The com-
parison results reveal that CDDS can effectively handle the
problem with a series of equality and inequality constraints.

In order to further investigate the performance of five
algorithms, the convergence curves of mean annual power
generation for reservoirs are shown in Figure 6. The con-
vergence curve of CDDS ascends fast in the early stage
and has rapid convergence during the middle and late stage.
At last, the convergence curve reaches the best in the con-
vergence stage. It reveals the improvement for CDDS can
effectively improve performance. In initial stage, the search
with a single point leads to poor inital solution. The new
Gaussian mutation operator, which improves the exploitation

of CDDS, leads to deeply search so that search curve presents
the behavior of rapid rise. The quality of the optimal solu-
tion obtained by CDDS wins the second place of the five
algorithms after 1000 FEs. But CDDS reduces to the third
owing to strong local search ability during middle stage.
Then the chaotic search is used to jump from local optimal
solution. CDDS is pulled up from the third to the second place
at 22000 FEs to about 26000 FEs, and it maintains the first in
the search process after 32000 FEs. Finally, the performance
of CDDS is still the best in the late stage. In sum, CDDS can
effectively enhance the exploration and exploitation ability so
as to obtain high-quality solution.

Then, the monthly water level processes of each reser-
voir obtained by different algorithms on three representative
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operation results (i.e., scheme 1, scheme 7, and scheme 10)
are shown in Figure 7. It can be observed that PSO, KH,
and CDDS operate at high water level for three schemes,
respectively. The high water level can take advantage of
the higher hydraulic head to improve power generation.
The data in Table 16 can confirm that fact. With regard to
three schemes, the performances of HHO are both the worst
primarily because the water levels obtained by HHO are
low.

To further verify the effectiveness of CDDS for handling
the CROO Problem, the reservoir operation processes of each
reservoir for three representative schemes (i.e., scheme 1,
scheme 7, and scheme 8) obtained by CDDS are presented
in Figure 8. From Table 16, in the light of annual power gen-
eration, there is slight difference between the three schemes.
With regard to 10 runs, scheme 8 gets the best annual
power generation, scheme 7 obtains the worst annual power
generation.

First of all, the monthly water levels are all in the bound-
aries of constraints, which means the complex constraints are
solved effectively. From Figure 8, the monthly water levels
of the two reservoirs for three representative schemes are
essentially uniform except for June and July. The principal
reason is that we have a rainy season from April to October
and the reservoir inflow is abundant which is conducive to
optimal operation.

Whereafter, we can analyze the power generation pro-
cesses and the power output processes. The power generation
and the power output present out the same change trend.
As can be noticed, the power output and the power generation
fromApril to September are all obvious more than those from
October toMarch. In fact, thesemonths are in the rainy season
thus the reservoirs can increase the inflow to increase the
power generation.

Finally, we pay attention to the outflow processes, the
power generation flow processes, and the water head pro-
cesses. The outflow processes are consistent with the power
generation flow processes, whichmeans nowater spill for two
reservoirs. We also realize that the trend of the power genera-
tion processes is in line with that of the outflow processes.
The outflow of SBY in May to July, September, and next
April is higher than that of other months, so a large quantity of
water is discharged from reservoirs to increase power gener-
ation, which can be seen from the monthly power generation
processes. The outflow of GHY in June, July, September, and
next April also can get more power generation. As regards
the water head processes, there is reasonable concordance
between themonthly water level processes and the water head
processes. It’s obvious that the water head processes satisfy
the practical requirement.

Thus, the experiment on cascade reservoirs operation
optimization problem shows that CDDS can perform well
in the constrained practical problems. CDDS is an effec-
tive method in solving the constrained problems because it
can effectively harmonize the exploration and exploitation
propensities.

VIII. CONCLUSION
In this article, we proposed a chaotic-DDS based on chaotic
initialization, a newGaussian mutation operator and a chaotic
search. Using the chaotic map to generate the initial pop-
ulation can enhance the exploration of the proposed algo-
rithm and improve the quality of initial solution. The strategy
updating the candidate solution by a new Gaussian mutation
operator can improve the exploitation ability of the proposed
algorithm and conduce to high accuracy solution and fast
convergence. Utilizing a chaotic search to jump out of the
local optimal can enhance the exploration. The performance
of CDDS and the influence of three strategies were testified
by a set of experiment series. 13 chaotic maps were employed
in CDDS on 20 classical benchmark functions to choose the
best version of CDDS. Then the best chaotic DDS was com-
pared with the state-of-art algorithms through 20 benchmark
functions, CEC2005, CEC 2014. Additionally, a series of
experiments are conducted to study the effect of three strate-
gies. The experimental results reveal that the proposed CDDS
algorithm outperformed the compared algorithms in terms
of solution accuracy and convergence speed, well balanced
exploration and exploitation. The statistical results prove the
enhancements of CDDS than other algorithms were signifi-
cant. Thereafter, a cascade reservoirs operation optimization
problem was used to further investigate the feasibility and
effectiveness. The experimental and graphical results indicate
that CDDS is a competitive algorithm for the constrained
practical problems.

We designed the algorithm by incorporating three strate-
gies into DDS. Due to the no free lunch theorem, our algo-
rithm gets better performance at little cost of time consuming.
In future works, other strategies and ideas can be employed
to overcome this weakness.
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