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ABSTRACT Trackers based on Siamese networks show great potential in tracking accuracy and speed.
However, it is still challenging to adapt offline training model to online tracking. In this paper, a Siamese
based tracker (SCRPN-CISA) is proposed, which integrates three attention mechanisms and a novel
Cascaded Region Proposal Networks (RPN) architecture, for improving the feature extraction ability,
adaptability and discrimination ability in complex scenes. Firstly, the deep network VGG-Net-D is adopted
as the backbone network in the Siamese framework to increase the feature extraction capability. Then,
a Channel-Interconnection-Spatial Attention module is constructed to enhance the adaptive and discrimi-
native capability of the model. Next, a Deconvolution Adjust Block is built to fusion cross-layer features.
Finally, a Three-Layer Cascaded RPN is conceived to acquire the foreground-background classification and
bounding box regression by correlation calculation, and moreover, a proposal region screening strategy
is presented to obtain more accurate tracking results. Experiments on OTB-2015, UAV123, VOT2016,
and VOT2019 benchmarks demonstrate that, the proposed tracker (SCRPN-CISA) achieves competitive
performance compared with the state-of-the-art trackers.

INDEX TERMS Visual tracking, Siamese networks, channel attention, interconnection attention, spatial

attention, cascaded region proposal networks.

I. INTRODUCTION

Visual tracking is an interdisciplinary discipline that inte-
grates theories of feature extraction, information analysis,
machine learning, and computer vision. A typical scenario for
visual tracking is to provide a bounding box in the first frame
of the video to indicate the location of the object of interest,
model the appearance and motion information of the object,
and estimate the location of the object with higher possible
accuracy in subsequent frames. With the rapid development
of computer technology, image processing technology and
artificial intelligence technology, visual tracking is widely
used in visual surveillance, intelligent navigation, autopilot,
human-computer interaction, military guidance, aerospace
and other scenarios. As making a sea of remarkable progress,
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visual tracking is still been recognized as an extremely
challenging task for a large number of factors such as defor-
mation, rotation, motion blur, illumination variation, back-
ground clutters, and occlusion.

As deep learning methods in image -classification
and object detection have made breakthrough progress,
researchers have gradually introduced them into the field
of visual tracking. For instance, HCF [1], C-COT [2], and
ECO [3], trackers which combined with correlation filters
framework and the deep convolutional features, improve the
accuracy of the trackers. However, the increasingly high
feature dimensions bring huge computational overhead to the
online learning and update process, which directly impacts
the tracking speed. The application of deep learning methods
is not only limited to pre-trained deep features, but also
includes an end-to-end Siamese framework. SiamFC [10] cre-
atively transforms the tracking task into a similarity learning
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problem through the Siamese networks. SiamRPN [11]
accesses a Regional Proposal Network to further improve
tracking performance. These trackers have achieved impres-
sive results on all recent benchmarks [12], [13] and
challenges [14]-[17].

Although these end-to-end trackers complete a balance of
speed and accuracy, there are still some problems. The first
problem is that the deep model learned offline does not adapt
well to the online tracking process. For instance, when a
category not included in the offline training datasets appears
during the tracking process, the similarity learning approach
is not necessarily reliable and the generalization ability is
relatively weak. For example, when the object itself generates
a large deformation comparing to the first frame, the stronger
the offline model matching ability, the lower the possible
similarity score, and the easier it is to get the wrong judgment.
However, if the matching ability is weak, it is difficult to judge
when similarities interfere around the object. The second
problem is that the template branch operates independently of
the detection branch in the Siamese networks, which makes
the background information to not well utilize. Actually,
it is also extremely important for the location of the object
and the distinction of similarities. Therefore, we adjust the
architecture of the model to acquire more efficient features,
while introducing attention mechanisms into the model to
generate more adaptive discriminant learning.

In particular, we design a Siamese-based tracker that
devises the deep convolutional network VGG-Net-D [18] as
the backbone to further enhance the feature representation by
deepening the network. We explore several attention mecha-
nisms, including channel attention, interconnection attention
and spatial attention. Then, what designing a new attention
block, which enhances the ability to distinguish interfer-
ence sources and complexing backgrounds, makes offline
training models with superior adaptability to track online.
In order to obtain more accurate position, we further present a
Three-Layer Cascaded RPN, to achieve the effective fusion of
multi-layer features and to solve the problem of imbalanced
training samples.

To summarize, the main contributions of our work are
demonstrated as follows:

o We adopt the deeper convolutional network VGG-Net-

D as the backbone to make the model more capable of
feature representation, and then an end-to-end tracker
based on Siamese Deep Network is trained successfully.

« We propose a novel Channel-Interconnection-Spatial

Attention module, to capture the difference the object
foreground with the semantic background, to connect the
relationship between the object template and the search
image, to achieve the enhancement of the object and
the suppression of interference, so that online tracking
possesses better adaptability and discriminating ability.
o We design a Deconvolution Adjust Block for cross-
ing layer fusion of deep semantic features and shallow
spatial features, which further optimizes the ability to
distinguish complex backgrounds.
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o We construct a Three-Layer Cascaded RPN, and out-
put the classification scores and regression offsets for
anchors at each RPN level. Three-layer Cascaded RPN
filters negative samples carrying of little information
from top to bottom. Meanwhile, multi-step regres-
sion gradually refines and adjusts the bounding box to
achieve precise position.

The rest of this paper is organized as follows. The related
work of trackers based on deep learning (DL) methods
is introduced in Section II, and the attention mechanism
also discussed in this section. The details of our work are
presented in Section III. Experiments and results based on
OTB-2015 [13], UAVI123 [19], VOT2016 [14] and
VOT2019 [17] benchmarks are manifested in Section IV.
Moreover, the analysis is also discussed in this section.
Finally, this paper is concluded in Section V.

Il. RELATED WORK

As having been established benchmarks [12], [13], [19],
[20], [21], hold annually tracking challenges [14]-[17] and
improved methodologies, visual tracking has made brilliant
progress.

A. DEEP FEATURE BASED TRACKERS

Algorithms based on correlation filters derived from signal
processing theory become a focused area [22]-[26], which
utilize correlation operations in the frequency domain, thus,
both speed and accuracy accomplishing a qualitative leap.
Deep learning methods demonstrate exceptional potential
in computer vision tasks such as image classification. Fur-
thermore, deep convolutional networks, with their powerful
generalization ability and migration ability, are gradually
introduced into visual tracking tasks for feature extraction,
which greatly improve the tracking accuracy. HCF [1] uti-
lizes pre-trained networks to extract deep and shallow fea-
tures, depending on the characteristics of different layers,
and respectively trains correlation filters to obtain response
maps weighted fusion. C-COT [2] interpolates the feature
maps of different resolutions extracted by the pre-trained
networks into the continuous spatial domain, combining with
multi-resolution continuous convolution filters for training
and detecting, and gains more accurate position. ECO [3]
optimizes from the three aspects of filter coefficients, sam-
ple division and template update strategy, while maintaining
the tracking accuracy and greatly improving the tracking
speed. Researchers also contribute to explore new methods
which refer to object detection. They achieve excellent track-
ing results [4]-[8], and even in the field of Multi-Object
tracking [9].

B. END-TO-END TRACKERS

Not only confine to the application of pre-trained deep net-
works, but also introduce the Siamese networks to train
special end-to-end tracking networks. SINT [27] pioneers
the introduction of the Siamese networks to transform
object tracking tasks into a similarity learning problem.
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FIGURE 1. lllustration of our proposed framework. It consists of Siamese Deep Network, Channel-Interconnection-Spatial Attention module (CISA),
Deconvolution Adjust Block (DAB) and Three-Layer Cascaded RPN. Given a template and search region, the networks output a dense prediction by fusion

the outputs from Three-Layer Cascaded RPN.

SiamFC [10] uses a large-scale dataset to offline training
a deep network, and then simply evaluates online during
the tracking process. CFNet [28] converts the correlation
filter into a neural network layer, combines the feature
extraction network to achieve end-to-end optimization, and
trains convolutional features that match the correlation filter.
MDNet [29] develops a multi-domain learning framework,
and then the pre-trained networks update online in the con-
text of the sequence and adaptively learn information about
Domain-specific. SiamRPN [11] introduces a Regional Pro-
posal Network to replace multi-scale detection by bounding
box regression, and connects the Regional Proposal Network
that generates the candidate area to the Siamese networks for
feature extraction. DasiamRPN [30] optimizes the algorithm
from the aspects of imbalanced training data, adaptive model
incremental learning, and long-term tracking. It performs
well in occlusion and long-term tracking. Excellent algo-
rithms are still emerging [31]-[34], refreshing records and
promoting the development of the tracking field.

C. ATTENTION MECHANISM

The attention mechanism plays an important role in the
human visual process, and the high-level semantic features in
the image can attract human visual attention. Visual tracking
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is extremely dependent on visual attention [35], [36]. Human
visual tracking relies on the distinctiveness of surface features
of the object[37]. The evidence displays that the role of
visual attention in tracking mainly reflects in the enhance-
ment of the object and the suppression of the interference,
especially in the case of dense interference [38]. DA-VT [39]
adopts discriminative spatial attention, while RTT [40] draws
attention to possible objects. SA-Siam [41] designs channel
attention module, which is introduced into semantic branch to
improve the resolution of semantic branch and the efficiency
of feature extraction. RASNet [42] explores general attention,
residual attention, and channel attention three kinds of atten-
tion mechanisms, and then introduces them into the Siamese
framework.

1Il. OUR PROPOSED METHOD

To produce effective and efficient visual tracking, a novel
tracker named Siamese Cascaded Region Proposal Net-
works with Channel-Interconnection-Spatial ~ Attention
(SCRPN-CISA) is proposed, and the overview is as shown
in Figure 1. It consists of four main components, Siamese
Deep Network, Channel-Interconnection-Spatial Attention
module (CISA), Deconvolution Adjust Block (DAB) and
Three-Layer Cascaded RPN.
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TABLE 1. Architecture of Siamese Deep Network.

Layer Name Kernel Size  Stride Input ChannelxMap Template Size Search Size Output Channel CISA-Module

input - 127x127 255x255 3 No
convl_1 3x3 1 64x3 125%125 253x253 64 No
convl 2 3x3 1 64x64 123x123 251x251 64 No

pooll 2x2 2 61x61 125x%125 64 No
conv2_1 3x3 1 128x64 59x59 123x123 128 No
conv2 2 3x3 1 128x128 57x57 121x121 128 Yes

pool2 2x2 2 28x28 60%60 128 No
conv3_1 3x3 1 256x128 26x26 58x58 256 No
conv3 2 3x3 1 256x256 24x24 56x56 256 No
conv3_3 3x3 1 256x256 22x22 54x54 256 Yes

pool3 2x2 2 11x11 27%27 256 No
conv4 1 3x3 1 512x256 9x9 25%25 512 No
conv4 2 3x3 1 512x512 77 23%23 512 No
conv4 3 3x3 1 512x512 5%5 21x21 512 Yes

Firstly, VGG-Net-D is considered as the backbone of the
Siamese Deep Network. As the layer deepens, feature extrac-
tion capability of the network also increases. At the same
time, the attention module CISA is integrated into Siamese
Deep Network to promote the adaptability and discrimination
ability. Then, the feature maps of different layers output
by the Siamese Deep Network are input to Deconvolution
Adjust Block for cross-layer fusion. Finally, the above is input
into Three-Layer Cascaded RPN, and the generated response
maps are classified and located.

A. SIAMESE DEEP NETWORK

Feature extraction is the most critical factor that determines
the performance of the tracking algorithm [43]. In order to
improve the feature extraction capability of the network with-
out introducing padding to destroy the translation invariance
of the network, the network in this paper is constructed based
on the more adaptive network VGG-Net-D.

VGG-Net-D is a convolutional neural network constructed
by repeatedly stacking 3 x 3 small convolution kernels and
2 x 2 maximum pooling layers. Large convolution kernels are
simulated by deep multiplexing of small convolution kernels
to complete local perception of the image and to improve the
performance of the network. The model is mainly composed
of five convolutional layers, two fully connected feature lay-
ers and one fully connected classification layer.

In order to better apply VGG-Net-D to the algorithm,
according to the characteristics of the Siamese networks,
and taking into account cross-correlation and response map
fusion operations, the VGG-Net-D is modified. The specific
network structure is shown in the table 1.

As can be seen from the table, the main modifications
include the following three aspects.

—First, considering the need for precise location of the
object tracking task, the fifth convolutional layers conv5 are
deleted, and then the total stride of the network is reduced.

—Second, the attention module CISA is integrated after
conv2_2, conv3_3, conv4_3, while the size of the feature
maps remains the same.
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—Third, to facilitate subsequent fusion, Deconvolution
Adjust Block is added to each CISA module output to adjust
the number of channels.

B. CHANNEL-INTERCONNECTION-SPATIAL ATTENTION
MODULE

Simply increasing the depth of the network can only rela-
tively improve the ability to express features, and it cannot
fundamentally solve the problems of the Siamese framework.
Compared with trackers based on correlation filters, the track-
ers based on Siamese networks replace the online training
by offline training in order to increase the speed. It requires
the network to have two qualities at the same time. On the
one hand, it can stably adapt to the changes of the object
itself in various scenarios, abstracting the representative and
essential characteristics of the object. On the other hand, it is
able to distinguish the object from similarities sensitively and
remarkably extract the differences between them.

From the aspect of feature extraction, deep convolutional
networks such as VGG-Net-D trained on large-scale classifi-
cation datasets have a relatively average degree of attention
for each position of the image, while the tracking task needs to
focus on the features of the object. Therefore, offline training
networks are not fully adapted to online tracking.

From the aspect of similarity discrimination, the fea-
ture maps extracted through the Siamese Deep Network are
denoted as ¢ (z) € REHTWr apnd ¢ (x) € RE*HpxWp,
respectively. f(z, X) € R W is defined as

C—1Hr—1Wr—1
F@=Y"3">" genw @ et thww (X +b,
c=0 h=0 w=0

ey

where Hr < Hp, Wr < Wp, Hf = Hp — Hr + 1 and
Wy = Wp — Wr + L. It can be seen that the calculation
process of the cross-correlation has average attention to the
channel level and spatial level of the feature maps. Actually,
the importance of different channels and different positions in
the feature map varies greatly in the tracking task. Therefore,
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FIGURE 2. Diagram of Channel-Interconnection-Spatial Attention module. As illustrated, the Channel Attention module utilizes both MaxPool and
AvgPool. The output of Interconnection Attention module is joint with the Channel Attention module. The Spatial Attention module processes them along

the channel axis.

the attention modules are integrated into the feature extraction
network, and the weight parameters are adjusted to highlight
the important information of the object while suppressing
the irrelevant detailed information, thereby improving the
discriminative ability of the network.

As an important mechanism of human visual cognition,
visual attention guides humans to quickly search for prior-
ity processing of the most interesting and specific areas of
the screening field of view (regions of significance), selec-
tively allocating computational resources and improving the
efficiency of the visual system [44], [47]. The factors that
guide attention distribution mainly include data-driven atten-
tion selection and task-driven attention selection. The former
is unconsciously guided and attracts attractive viewpoints
through saliency areas that are strongly different from the
surroundings in the picture. The latter refers to being sub-
jectively guided by human cognition (expected goals, empir-
ical knowledge). The nucleus of the attentional mechanism
is to suppress irrelevant detail information by adjusting the
weighting parameters to highlight or screening important
information about the object. Therefore, the attention mech-
anisms can refer to weaken the feature maps with small con-
tribution, strengthen the feature maps with large contribution,
pay attention to the difference between the object foreground
and the semantic background, and achieve the enhancement
of the object, the reduction of interference and the recognition
between different objects, such that improve the robustness
and real-time of the algorithm in complex scenarios.

Applying the attention mechanism to both channel and
spatial level can be embedded in most of the current
mainstream deep networks. Without significantly increas-
ing the number of calculations and parameters, the feature
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extraction capability of the network is optimized [48].
In order to differentiate the importance of different channels
and different spatial positions in different tracking object fea-
ture maps, meanwhile, exploit the background information of
the template image and search image, according to the struc-
tural characteristics of the Siamese networks, the Channel-
Interconnect-Spatial Attention module (CISA) is constructed,
as shown in Figure 2.

The feature maps output by the template branch and the
detection branch are denoted as ¢ (z) and ¢ (x), respectively.
Therefore, ¢c (z) and ¢c (X) can be computed as

gc (@) =Aclo @} ®¢ (), @
pc (x) = Acfle ¥} ® ¢ (x), 3)

where Ac {-} € RE*!X! represents the attention map, and
® denotes element-wise multiplication.

Each channel is equivalent to a different type of feature dis-
criminator. Channel attention optimizes and selects features
through the semantic level, activates the more relevant object
and deletes redundant channel features. Learn the associa-
tions between semantic features to form more cohesive and
accurate features. The Channel Attention module compresses
the input feature map in the spatial dimension, and uses global
average pooling and global maximum pooling at the same
time. Global average pooling feeds back every pixel on the
feature map, while global maximum pooling supplements
global average pooling.

In the Siamese networks, the template branch and the
detection branch usually operate independently. Actually,
encoding the respective branch into the other branch is also
instructive and can make effectively use of the background
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information. Therefore, the Interconnection Attention mod-
ule is presented. ¢ (z) and ¢ (x) are passed through the
Interconnection Attention module to get the attention map
A7 {-} € RE*C . Since the dimensions of ¢ (z) and ¢ (x) are
not same, for facilitating matrix multiplication with features,
it is necessary to be dimensionally adjusted to get ¢rs (z) €
RE*PT and ggs (x) € RE*PD, where Pt = Hr x Wr, Pp =
Hp x Wp. Then ¢rs (z) and ¢rrs (x) are calculated as

¢1rs (z) = Ar{grs (X)} ® grs (2), @
¢1Rrs (X) = Ar{grs (2)} ® grs (%), )

After the calculation is complete, the dimensions are
restored and then the interconnection feature maps ¢y (z) and
¢1 (X) are obtained.

The channel feature maps and the interconnection feature
maps of the two branches converges separately, and then the
spatial feature maps ¢s (z) and ¢s (X) are computed as

¢s (z) = As{loc @) + o1 (D]} ® [oc ) + 1 ()],  (6)
s (xX) = As{loc X) + o1 W]} Q@ [pc X) + o1 ®],  (7)

Spatial attention is more focused on the description of the
position, and complements the channel attention. By con-
structing the connection between different positions in the
feature map, learning which parts of the feature map should
have a higher response from the spatial level, according to the
position weighted fusion. The Spatial Attention module uses
global average pooling and maximum pooling to compress
the input feature map at the channel level to obtain two
2d feature maps, which are stitched together according to
the channel dimensions to obtain a feature map with two
channels. Then it is convolved with a hidden layer containing
a single convolution kernel to ensure that the feature map is
consistent with the input feature map in the spatial dimension.

C. DECONVOLUTION ADJUST BLOCK

In different cases, the tracking effect of different convolu-
tional features is different. In some cases, the shallow features
present powerful, while in other cases, the deep features
display impressively. Although the simple superposition of
multi-layer feature maps can improve the expression ability
of the features in object tracking to a certain extent, but the
generalization ability is weak.

With the idea of residual network [49], in order to effec-
tively utilize multi-layer features, we design Deconvolution
Adjust Block(DAB) to fuse features across different layers,
so that each RPN can share features and improve discrimina-
tion ability. The architecture is as shown in Figure 3, taking
layer Conv4_3 as an example.

Since the deep convolutional features have more class
sensitive semantic information and stronger intra class invari-
ance, these features are very helpful to deal with the back-
ground confusion and partial occlusion in tracking, and can
better infer the semantic label of the object. DAB mainly
focuses on combining deep feature maps with shallow feature
maps. The channels of the deep feature map Conv4_3_CISA
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FIGURE 3. Overview of Deconvolution Adjust Block (DAB).

is reduced to 256 by 1 x 1 convolution. Then up-sampling
is performed by deconvolution to obtain a feature map
Conv4_3_D that has the same size with Conv3_3_CISA, and
the elements are added to Conv3_3_CISA.

D. CASCADED REGION PROPOSAL NETWORKS
In the Three-Layer Cascaded RPN architecture, RPN
includes classification branch and regression branch. The
output of the template branch and the detection branch in the
Siamese Deep Network are adjusted by DAB first, and then
they are respectively input into the classification branch and
regression branch of the Three-Layer Cascaded RPN.

In the classification branch, let the feature maps of g™ layer
denoted as [(pgs) (z)] and [(p(q) (x)]. In the regression branch,

cls
let the feature maps of q‘h layer denoted as [<p§Z§ (z)] and
[<p£§’§ (x)]. Depthwise correlation operation is performed in
the Three-Layer Cascaded RPN to obtain the classification
branch response score maps and the regression offsets for

anchors, as shown in (8) and (9).

{2y = 0D 1 % [0 @]}, @®)
9} = (¢ (0] * [0 ()1}, ©)

The loss is the sum of softmax loss for classification and
the standard smoothL1 loss for regression, following [5].

Oy, Dy = LD 4+ )L@ (10)

cls reg cls reg’

In the foreground-background classification of each
candidate area, as the same object may exist in multiple over-
lapping rectangular boxes at the same time, Non-Maximum
suppression (NMS) is usually used to get more accurate
position. However, the problem with this strategy is that the
detected bounding boxes with higher classification confi-
dences contrarily may have smaller overlaps with the cor-
responding ground-truth, it is likely to cause tracking drift.
Consequently, they are ameliorated as

5 = si — 5 [IoU(b, bmax)]  10U(b;, bmax) > T (11)
S otherwise.
where b; is the bounding box, s; is the classification score of
the bounding box, T denotes the threshold.

IV. EXPERIMENTS
In this part, firstly, we describe the implementation details
of the proposed tracker SCRPN-CISA. Then, the attention
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module is verified and analyzed. Next, we take an obla-
tion study on OTB-2015 [13]. Finally, we evaluate our
method comprehensively on the standard benchmarks OTB-
2015 [13], UAV123 [19], VOT2016 [14] and VOT2019 [17].

A. IMPLEMENTATION DETAILS

1) EXPERIMENTS ENVIRONMENT

Our method is implemented using PyTorch on PC with Intel
i7-9700 CPU (3. 0GHz), 16GB RAM and NVDIA GeForce
RTX 2060 GPU.

2) TRAINING

We use VGG-Net-D [18], pretrained on ImageNet [50],
as the backbone, and the networks are then fine-tuned
on the training datasets of ImageNet VID, COCO [51]
and Youtube-BB [52]. We adopt single scale images
with 127 pixels for template patches and 255 pixels
for searching regions. We apply stochastic gradient
descent (SGD) with a momentum of 0.9 and a learning rate of
10~4-107% during training. The whole training process con-
sists of more than 100 stages, each consisting of 6000 sample
pairs.

B. ATTENTION VISUALIZATION ANALYSES

In order to analyze the role of the attention module CISA, the
class-activated heat map Grad-CAM [53] is used to visualize
different networks, as shown in Figure 4.

FIGURE 4. Grad-CAM networks visualization results. We compare the
visualization results of the integrated networks (VGG-Net-D+CISA) with
baseline (VGG-Net-D).

The more sensitive location has a higher temperature,
and the less sensitive location has a lower temperature.
The first row shows the results of the networks without
CISA and the second row shows the results of the inte-
grated networks with CISA. The experimental results can
be seen that the networks with the CISA module have a
wider range of attention and can better cover the objects to
be recognized. When there are similar objects around them,
they can better distinguish and focus on the objects without
being disturbed by similarities. When the object is partially
occluded, they can eliminate interference and cover the whole
object.
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C. ABLATION STUDY

The proposed tracker SCRPN-CISA is mainly com-
posed of four modules, Siamese Deep Network, Channel-
Interconnection-Spatial Attention module, Deconvolution
Adjust Block and Three-Layer Cascaded RPN. In order to
verify the effectiveness and better understand the contri-
butions of various components, we conduct the compara-
tive experiments on OTB-2013 [12] and OTB-2015 [13],
the results are shown in Figure 5.

Success plots of OPE

Precision plots of OPE

Precision
Success rate

Overlap threshold

(@

Precision plots of OPE Success plotsof OPE

Precision
Success rate

SR A (6505

= Sk (0851]

Location error threshold

Overlap threshold

(b)

FIGURE 5. The precision plots and the success plots of ablation
experiments with different models. (a) OTB-2013. (b) OTB-2015.

—SRPN: Siamese Deep Network based on VGG-Net-D;

—SRPN-CISA: Channel-Interconnection-Spatial Attention
module is attached to the SRPN;

—SCRPN: Three-Layer Cascaded RPN is attached to the
SRPN;

—SCRPN-CISA: the proposed tracker, which attached both
CISA and Three-Layer Cascaded RPN to the SRPN.

It can be observed from the figure.

On OTB-2013, compared with SRPN,

—First, SRPN-CISA increases by 3.6% and 3.9% in the
precision plot and the success plot respectively.

—Second, SCRPN increases by 2.6% and 3.3% in the pre-
cision plot and the success plot respectively.

—Third, SCRPN-CISA increases by 3.8% and 3.8% in the
precision plot and the success plot respectively.

On OTB-2015, compared with SRPN,

—First, SRPN-CISA increases by 5.2% and 4.8% in the
precision plot and the success plot respectively.

—Second, SCRPN increases by 5% and 4.8% in the preci-
sion plot and the success plot respectively.

—Third, SCRPN-CISA increases by 5.6% and 5.1% in the
precision plot and the success plot respectively.
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The above analysis shows that each part of the tracker
contributes to the overall performance of the tracking. The
deepening of the networks promotes the feature extraction
capability. The addition of Channel-Interconnection-Spatial
Attention module significantly improves the adaptability
and feature extraction capability in complex scenarios. The
Three-Layer Cascaded RPN enables the tracker to obtain
more accurate position.

D. RESULTS ON OTB-2015

1) OVERALL PERFORMANCE

OTB-2013 [12] and OTB-2015 [13] are the general tracking
benchmarks proposed by Wu Yi and others in 2013 and
2015 to evaluate the trackers. It mainly evaluates the two indi-
cators of center position error and coverage. The precision
plot refers to Euclidean distance between the predicted loca-
tions and the ground truth annotations. Mostly, the threshold
distance is set as 20 pixels, which indicates the percentage
of frames whose estimated location is within 20 pixels of
the ground truth position. The success plot also counts the
percentage of successfully tracked frames. It is set to mea-
sure the overlapping rate between the ground truth and the
estimated center location which surpasses a given threshold,
i.e., 0.5 [12]. Both determine whether the tracker is successful
through a certain threshold.

We compare the proposal SCRPN-CISA with other state-
of-the-art trackers including C-RPN [32], MDNet [29],
DaSiamRPN [30], SiamRPN [11], CFNet [28], SiamFC [10],
SiamDWfc [54] and DeepSRDCEF [55] on OTB-2015 bench-
mark. The quantitative results of the nine algorithms on OTB-
2015 are shown in Figure 6. In all experiments, we use the
original source code or the results provided by the author to
ensure a fair comparison.

We obtain a precision of 0.909 and an AUC of 0.698 which
surpass that of SiamRPN [11] by 5.8% and 6.1% respectively
and exceed DasiamRPN [30] by 2.9% and 4% respectively.
It is proved that SCRPN-CISA extracts deeper features on
the basis of the Siamese framework, and integrates the atten-
tion module simultaneously, which makes the networks with
stronger adaptability, and then improves the overall accuracy
and robustness of the tracker.

2) ATTRIBUTE-BASED EVALUATION

For more detailed analyses and further validation of our
tracker in sequences with different challenges, such as
background clutter, illumination variation and deformation,
we analyze the performance in terms of different aspects
of these attributes annotated in the benchmark. The preci-
sion plots and the success plots are shown in Figure 7 and
Figure 8 respectively. As can be seen, our proposed tracker
SCRPN-CISA performs favorably against other trackers
in almost all the attributes. It is robustness with a total
of 11 attributes.

3) QUALITATIVE COMPARISON
In order to better analyze the tracking performance of
SCRPN-CISA, it is compared with other trackers in some
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FIGURE 6. The precision plot and the success plot of OPE for 9 trackers
on OTB-2015. Each tracker is ranked by the performance score. In the
precision plot, the score is at error threshold of 20 pixels. In the success
plot, the score is the AUC value.

sequences, and some typical results are selected for analyz-
ing, as shown in Figure 9. Different trackers are represented
by different colors, where our tracker is in red.

(a) In the Box sequence, the object moves in a chaotic
environment and is occasionally blocked, sometimes with
out-of-plane rotation, and the scale changes continuously.
Only SCRPN-CISA and ECO have not changed the object
from beginning to end.

(b) In the CarDark sequence, the object is sometimes
blurred or blocked, there are similar interferences around
and the lighting situation is constantly changing. The
SCRPN-CISA can filter out more adaptable object features
and distinguish the background, so there is never drift.

(c) In the Human4-2 sequence, the object is inter-
fered by similar objects during the movement process,
and the occlusion situation also occurs from time to time.
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FIGURE 7. Attribute based evaluation on OTB-2015. The precision plots over eleven tracking challenges of illumination variation, out-of-plane rotation,
scale variation, occlusion, deformation, motion blur, fast motion, in-plane rotation, out-of-view, background clutter and low resolution.

Compared with other Siamese trackers, SCRPN-CISA devel-
ops discriminating ability of the networks and can restrain
interference without drifting occurred.

(d) In the Jump sequence, the object is abruptly
changed during the whole process, which is occasion-
ally blocked, accompanied by out-of-plane rotation and
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FIGURE 8. Attribute based evaluation on OTB-2015. The success plots over eleven tracking challenges of illumination variation, out-of-plane rotation,
scale variation, occlusion, deformation, motion blur, fast motion, in-plane rotation, out-of-view, background clutter and low resolution. The legend
contains the AUC score for each tracker.

in-plane rotation. Comparing of other Siamese based
trackers, SCRPN-CISA enhances discriminating ability
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of the networks, so that eliminates interference without
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(b) CarDark

TEL %!!‘

(f) Motorolling

FIGURE 9. Qualitative comparison of our tracker with the state-of-the-art trackers on the seven challenging sequences on OTB-2015.
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SiamFC  SiamDWfc DeepSRDCF

FIGURE 9. (Continued.) Qualitative comparison of our tracker with the state-of-the-art trackers on the seven challenging sequences on OTB-2015.

FIGURE 10. Failed sequences Skating1.

(e) In the Matrix sequence, the illuminance and angle
dramatically vary resulting in a complicated background.
Meanwhile, the object movement speed is relatively fast, and
there are situations of in-plane rotation and out-plane rotation.
Only SCRPN-CISA can always adapt and perform stable
tracking.

(f) MotorRolling sequence is a very challengeable video
sequence. Accompanied by illumination variation, in com-
plex background, the object sometimes becomes blur due
to rapid motion, or itself rotates sometimes more than
360 degrees, which requires the tracker to have very strong
feature extraction ability and adaptability, SCRPN-CISA
detects object consistently and steadily, but the other algo-
rithms drift initially in tracking.

(g) In the Skiing sequence, the object size is smaller and
the speed is faster, which puts stricter requirements on feature
extraction. Algorithms with shallow feature extraction ability
or matching ability can no longer locate the object at the
initial tracking.

By analyzing the above-mentioned video sequences with
abundant attributes, our tracker has excellent performance in
the situations of illumination change, scale change, rotation,
similar object interference, fast motion, low resolution, and
out-of-view.
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FIGURE 11. The precision plot and the success plot of OPE for 9 trackers
on UAV123. Each tracker is ranked by the performance score. In the
precision plot, the score is at error threshold of 20 pixels. In the success
plot, the score is the AUC value.
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FIGURE 12. Attribute based evaluation on UAV123. The success plots over twelve tracking challenges of Scale Variation, Aspect Ratio Change, Low
Resolution, Fast Motion, Full Occlusion, Out-of-View, Background Clutter, lllumination Variation, Viewpoint Change, Camera Motion, and Similar Object.
The legend contains the AUC score for each tracker.
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4) FAILURE The Skatingl sequence is the most comprehensive video
There are also individual problem sequences, as shown in the entire dataset. The resolution is low, and as the object
in Figure 10. moves, it continuously encounters occlusion and out-of-view.
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FIGURE 13. Expected averaged overlap performance on VOT2016.

The proposed tracker drifts. It depicts that the detection mech-
anism needs to be adjusted appropriately.

E. RESULTS ON UAV123

1) OVERALL PERFORMANCE

We compare the proposal SCRPN-CISA with other trackers
including SiamRPN [11], ECO [3], SRDCF [57], ASLA [58],
SAMEF [59], DSST [60], DCF [26] and KCF [26] on UAV123
benchmark. The quantitative results of the nine algorithms
on UAV123 are shown in Figure 11. In all experiments,
we use the original source code or the results provided by
the author to ensure a fair comparison. We obtain a preci-
sion of 0.789 and an AUC of 0.599 which surpass that of
SiamRPN [11] by 2.1% and 4.2% respectively.

2) ATTRIBUTE-BASED EVALUATION

For more detailed analysis and further validation of our
tracker in sequences with different challenges, such as
background clutter, illumination variation and deformation,
we analyze the performance in terms of different aspects of
these attributes annotated in the benchmark. The success plots
are shown in Figure 12.

As can be seen, our proposed tracker SCRPN-CISA per-
forms favorably against other trackers in almost all the
attributes. It is stable in the video sequences of UAV123 with
a total of 12 attributes.

F. RESULTS ON VOT12016

As further evaluating the performance of the algorithm, tests
are conducted on VOT2016. VOT2016 [14] is one of the
most widely used databases in the field of visual track-
ing. It consists of 60 sequences and uses the accuracy (A),
robustness (R), and expected average overlap (EAO) to eval-
uate the performance of the tracker. We compare the pro-
posed tracker SCRPN-CISA with several excellent trackers.
Figure 13 shows the EAO ranking. It can be seen from the fig-
ure that SCRPN-CISA has the best average expected overlap
ratio.

The detailed comparisons are reported in Table 2. Our
tracker exceeds the advanced tracker ECO 3.8% on EAO.
The average speed of our tracker on the test set with GPU
is 33 FPS, which is roughly 4 times as fast as ECO(8FPS)[3].
Meanwhile, comparing with SiamRPN [11], which is also
based on Siamese framework, our tracker has significant
improvements of 6.9% on EAO.
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TABLE 2. Comparison with the state-of-the-art in terms of expected
average overlap (EAO), accuracy, and robustness (failure rate)
on VOT2016.

Trackers EAO? Accuracy? Robustness
SCRPN-CISA 0.413 0.633 0.21
DaSiamRPN 0411 0.61 0.22
ECO 0.375 0.55 0.20
SiamRPN 0.344 0.560 0.26
CCOoT 0.331 0.539 0.238
TCNN 0.325 0.554 0.268
ECO-HC 0.325 0.54 0.30

TABLE 3. Comparison with the state-of-the-art in terms of expected
average overlap (EAO), accuracy, and robustness (failure rate)
on VOT2019.

Trackers EAO?T Accuracy? Robustness |
ATOM 0.292 0.603 0411
SiamMask 0.287 0.594 0.461
SCRPN-CISA 0.276 0.566 0.469
SA_SIAM_R 0.253 0.559 0.492
SSRCCOT 0.234 0.495 0.507
SiamRPNX 0.224 0.517 0.552
TADT 0.207 0.516 0.677

1
= 0.2 - ~ad
<l

0.1 s x> R

13 100 7
Order

FIGURE 14. Expected averaged overlap performance on VOT2019.

G. RESULTS ON VOT2019

As further evaluating the performance of the algorithm, tests
are conducted on VOT2019. VOT2019 [17] is currently the
most advanced databases in the field of visual tracking. We
compare the tracker SCRPN-CISA with several excellent
trackers. Figure 14 illustrates that the EAO ranking.
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The detailed comparisons are reported in Table 3. Our
tracker is 1.6% lower than the state-of-the-art tracker
ATOM [56] on EAO. Compared to SiamRPN [11], which is
also based on Siamese framework, our tracker has significant
improvements of 5.2% on EAO.

V. CONCLUSION

In this paper, we propose a novel Siamese based tracker
SCRPN-CISA. We use the deep network VGG-Net-D as
the backbone of the Siamese framework to make the
model more capable of expressing features. The Channel-
Interconnection-Spatial Attention module can make the
model have better adaptability and discrimination ability,
which achieves better object enhancement and interference
suppression, and distinguish the difference between object
foreground and semantic background. At the same time,
we design a Deconvolution Adjust Block for cross-layer
fusion of deep semantic features and shallow spatial features,
thereby, further improving its ability to distinguish complex
backgrounds. In addition, we construct the Three-Level Cas-
cade RPN, and also design a bounding box adjustment strat-
egy to achieve accurate position in particular. Experiments
on OTB-2015, UAV123, VOT2016 and VOT2019 show that,
comparing with current mainstream trackers, the proposed
tracker SCRPN-CISA in this paper can achieve higher track-
ing accuracy and robust performance.
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