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ABSTRACT Influenced by climate change and urbanization, urban flood frequently occurs and represents a
serious challenge for many cities. Therefore, it is necessary to generate refined predictions of urban floods,
such as the prediction of water accumulation processes at water accumulation points, which is of great
significance for supporting water-related managers to reduce flood losses. In this study, 16 combination
schemes of rainfall sensitivity indicators were used to determine the optimal scheme for predicting the depth
of accumulated water, and the gradient boosting decision tree (GBDT) algorithm in deep learning was used
to build a prediction model of the accumulation process of urban stormy accumulation points. Among the
16 schemes, the relative error of scheme 1 is 15.39%, and the qualified rate is 92.86%. This scheme exhibits
the highest accuracy for the prediction results of water accumulation depth. Given this finding, the GBDT
algorithm was used to construct a regression prediction model of the water accumulation process based
on the collected historical rainfall water accumulation data of 50 water accumulation points. The results
demonstrated that the GBDT regression prediction model has a mean relative error of 19.77%, a qualified
rate of 82.00%, and a peak average relative error of 5.48%, which verify the validity and applicability of the

model for the real-time prediction of the process of water accumulation.

INDEX TERMS Urban flood, deep learning, water accumulation, real-time prediction.

I. INTRODUCTION

In recent years, global warming and urbanization have
led to the increasing frequency and influence of urban
floods [1], [2], posing severe challenges to urban flood con-
trol and drainage. The Louisiana flood in 2016, the Chinese
Shouguang and Zhengzhou floods in 2018, and the Iranian
“3.25” flood in 2019 serve as examples, and these heavy
rains and floods resulted in considerable economic losses
and casualties to the city, which has become a prominent
bottleneck affecting the healthy development of a city [3], [4].
Recent studies demonstrated that future global warming will
lead to significant changes in extreme rainfall intensity and
frequency [5], [6].

The heavy losses caused by urban floods have made peo-
ple attach great importance to urban flood prevention and
control [7]. Over recent years, scholars and urban manage-
ment departments from various countries have adopted a
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large number of engineering and nonengineering measures
to continuously promote urban flood prevention and con-
trol work [8]. For example, a comprehensive investigation
assessed the drainage capacity of the urban drainage system,
the effective utilization rate of the pipe network, and the
blockage of river channels. In addition, some engineering
measures, such as improving the design standard of urban
drainage pipe networks, increasing artificial lakes, and repair-
ing deep tunnels in the city, were used to improve the flood
control capacity of the city to alleviate the losses caused by
urban flooding as much as possible. After years of gover-
nance, although urban drainage capacity and urban water-
logging prevention capacity have been improved to a certain
extent, urban floods still frequently occur.

To monitor the city’s water accumulation situation in real
time and improve the city’s ability to deal with floods, urban
water accumulation monitoring systems have been estab-
lished in Shanghai, Wuhan, Zhengzhou and other cities in
China. The establishment of a water accumulation monitoring
system with high temporal and spatial resolution can be used
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to monitor the process at water accumulation points, release
and display the ponding information of water accumulation
points in real time, and provide timely flood control and emer-
gency measures for key water accumulation areas. However,
the prediction information of ponding is more valuable than
the monitoring information in urban flood prevention and
control. Therefore, it is necessary to build a data-driven water
accumulation prediction model based on the monitoring data
of water accumulation.

The prediction model of water accumulation processes
based on data-driven requires tremendous rainfall and water
accumulation process data of water accumulation points [9].
Before the emergence of urban water accumulation mon-
itoring systems, it was difficult to obtain these data. The
emergence of urban water accumulation monitoring systems
provides data support for the construction of a prediction
model of water accumulation processes. Therefore, some
studies have built a variety of time series models using neural
networks to study the prediction methods of ponding process
[10], [11]. However, due to the accumulation of errors in the
multistep iteration of time series models, this model has a
good effect on short-term water accumulation prediction. The
prediction effect will gradually decline with the extension
of the prediction period [12], which limits the application
of the model to a certain extent. Some recent studies have
shown that nontime series deep learning methods [13], such
as GBDT [14], [15], SVM, random forest [16] and neural
network [17], [18], exhibit good forecasting effects in some
forecasting fields, but the prediction of water accumulation
processes is a continuous process that changes over time.
These nontime series models can only predict a certain fea-
ture of the water accumulation process and cannot realize
the prediction of the water accumulation process. Therefore,
there is an urgent need to identify a modeling method that
is suitable for the prediction of the water accumulation pro-
cess in a longer prediction period. As a type of integrated
learning algorithm, GBDT performs well in tasks such as
classification and regression [19], [20] given its high effi-
ciency, high precision and low deviation, which has attracted
increasing attention [21], [22]. However, to the authors’ best
knowledge, the application of the GBDT algorithm to urban
flood research is still rare, and no study has applied the
GBDT algorithm to the prediction of water accumulation
process.

Therefore, this study attempts to use a deep learning
model (GBDT) to propose a new modeling method for
real-time prediction of the water accumulation process. The
rainfall sensitivity index applicable to the prediction of water
accumulation depth was first proposed in this study. On this
basis, by splitting and reorganizing the rainfall and water
accumulation data, the prediction regression model of the
water accumulation process was constructed using the GBDT
algorithm. Mean relative error (MRE), qualification rate
(QR), deterministic coefficient (DC) and average relative
error of the peak value (AREPV) were used to evaluate
the performance of the model in the prediction of water
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accumulation processes. The research results may be useful
for urban flood forecasting and reducing flood losses.

The innovation of this article is that a new modeling
method was proposed using the GBDT algorithm, which was
suitable for the prediction of water accumulation processes
at water accumulation points. This modeling method can be
used to predict the water accumulation process with a longer
prediction period based on the historical rainfall and water
logging data, achieving a longer prediction period of water
accumulation processes based on nontime series models. This
study provides a new idea and method for the prediction
of water accumulation processes and provides a technical
reference for urban management personnel to prevent and
control urban floods.

II. LITERATURE REVIEW

Urban flood prediction is an effective means to help urban
flood management personnel reduce the losses caused by
urban flood. Many scholars have done considerable research
on the theory and technology of urban flood prediction in
recent years [23], [24]. To the authors’ best knowledge,
there are two main types of urban flood forecasting research:
research based on hydrological and hydrodynamic models
and research based on data driven models.

SWMM [25], [26], Mike [27], [28], and Storm [29] are
widely used hydrological and hydrodynamic models in flood
prediction, among which the SWMM model developed by
the U.S. Environmental Protection Agency is one of the most
widely used models to simulate urban runoff and drainage
[30], [31]. Zhou et al. [32] comprehensively considered the
land use type, surface impermeability and drainage sys-
tem to establish a SWMM model and estimated the flood
volume and risk under urbanization and climate change.
Zhu et al. [33] simulated the influence of different pavement
structures (drainage surface, permeable pavement and per-
meable road) on reducing surface runoff by constructing a
SWMM model. Kim and Cho [34] employed SWMM and a
2D surface model to simulate the inundation area and range of
the city under 320 different rainfall situations. This study pro-
vides a scenario-based urban flood forecasting method. These
urban flood simulation models have achieved good results in
urban flood simulation and risk analysis by building different
modules, such as runoff yield, confluence, and channels [35]—
[37]. In addition, with the improvement of computer capa-
bilities and the development of geographic information sys-
tem (GIS) technology, the spatial resolution of surface data
has been significantly improved in recent years, and the
division of the model spatial scale has become increasingly
detailed [38], [39]. However, there is no consensus on how to
divide the spatial scale in hydrological simulation [40], [41].
Moreover, studies in recent articles have shown that due to
the complex interactions between the drainage system and
the surface that are difficult to determine and the lack of
validation data in the simulation results, the promotion and
use of the model is occasionally limited [42]-[44].
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During the past 10 years, with the rapid development
of artificial intelligence and deep learning technology,
data-driven deep learning models [45] have become very
popular and have been widely used in engineering [17], [18]
electricity [13], [16] agriculture [11] and many other fields.
Chatterjee et al. [17] proposed a method based on particle
swarm optimization to train the NN (NN-PSO), which can
solve the problem of predicting the failure of multistoried
reinforced concrete buildings by detecting the failure proba-
bility of the multistoried RC building structures in the future.
Hu et al. [13] designed a low-cost solution for interconnect-
ing electrical and electronic devices using classic machine
learning models for smart grid load analysis and forecasting.
Singh and Mohanty [10] proposed a hybrid model combining
a generalized neuron model and adaptive genetic algorithm
and conducted a short-term forecast of electricity prices in the
New South Wales electricity market. The results show that
the mean absolute percentage error (MAPE) of the hybrid
model is significantly lower than that of the conventional
neural networks and regression models. In the field of hydrol-
ogy, neural network model is widely used in water level
prediction and urban flood prediction given its ability of
approaching nonlinear functions [46], [47]. Chiang et al. [48]
employed a recurrent neural network (RNN) to construct
a model of the relationship between rainfall and the water
level in the urban sewage system. The results show that the
performance of RNN gradually decreases for 5-, 10-, 15-, and
20-min-ahead water level predictions, but the CC (the corre-
lation coefficient) value is greater than 0.95, which indicates
that the RNN can effectively predict the water level in a short
time. Chang et al. [49] constructed three recurrent neural
network (RNN) models for short-term (10-60 min) water
level predictions. Abou Rjeily et al. [50] employed a nonlin-
ear autoregressive neural network to construct a relationship
model between rainfall intensity and water depth in urban
drainage wells. The inputs of the model are rainfall inten-
sities and water depth at the previous time step. The results
show that it performs well on both minor and severe storm
events. In the above research, these neural network models
have achieved good results in short-term water accumula-
tion prediction, but the accuracy is occasionally significantly
reduced when predicting the depth of water accumulation in
a longer foreseeing period. This phenomenon is explained
by the fact that the residual at the previous time step will
be superimposed [12] for each prediction step. The accu-
mulation of residuals reduces the prediction accuracy of the
model for the water accumulation depth in a longer prediction
period.

In summary, the time series model based on neural net-
work has a good performance on the short-term prediction
of water accumulation process, but the residual at the pre-
vious time step will be superimposed for each prediction
step, the accuracy of prediction in longer prediction period
is occasionally significantly reduced. Therefore, this study
attempts to use the GBDT algorithm to propose a new
modeling method, which hope that this modeling method
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can solve the problem that the prediction accuracy of water
accumulation process in a longer foreseeing period will be
gradually reduced.

IlIl. MOTIVATION
A city is an area with a concentrated economy and popula-
tion. Flood disasters represent significant challenges to the
normal operation of the city. Although the urban management
department has noticed the threat of urban flood disasters,
it has also taken various measures to control and monitor
urban flood problems. However, the phenomenon of urban
flooding remains prominent and represents a severe challenge
to urban flood control. In addition, in the process of using
deep learning technology to predict urban floods, given the
difficulty of data collection and guaranteeing model accuracy
in long-term prediction periods, most of the existing studies
focus on short-term water accumulation prediction for water
accumulation points, providing a reference for urban flood
prevention and control. However, the prediction results of a
longer prediction period for water accumulation processes
can provide more time for prevent and control flood, which
is urgently needed for urban flood prevention and control.
The motivation of this study can be attributed to the rapid
development of cities and the construction of modern cities,
and urban flood control work has put forward new and urgent
needs for scientists. Exclusive real-time monitoring of water
accumulation points can no longer meet the requirements of
urban flood control work. It is urgent to obtain a prediction
method for water accumulation processes with a longer pre-
diction period to control the trend of urban water accumula-
tion in real-time. Therefore, the objective of this study is to
propose a modeling method suitable for the prediction of the
accumulation of water in a longer prediction period based on
the existing water accumulation data and deep learning meth-
ods. The following chapters will elaborate on the detailed
process of model construction.

IV. MATERIAL

A. STUDY AREA

Zhengzhou is located in the north central part of China
(112°42'E to 114°14E, 34°16'N to 34°58'N), with a total
area of 7446.3 km?. It is one of the largest cities in Central
China (Fig. 1) and an important node-city on the “new silk
road”” between Europe and Asia. As of the end of 2018, the
permanent population of Zhengzhou reached 10.13 million,
and the total GDP (Gross Domestic Product) exceeded 1 tril-
lion yuan. The region exhibits a continental monsoon climate
with an average annual rainfall of 524.1 mm. However, 60%
of the rainfall occurs between June and September, leading to
an increased risk of urban flood. Urban management depart-
ments have adopted measures, such as dredging drainage
pipes, increasing the permeable surface area, and improving
the design standards of drainage pipe networks to improve
the city’s flood control capabilities, but urban floods still
occasionally occur. For example, heavy rains on August 19,
2018 and August 1, 2019 caused widespread flooding in
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Zhengzhou City, posing a considerable threat to the safe
operation of the city and the safety of people’s property.

China

Shanxi Province

Henan Province

Legend
B River

o Flooded points

012 4 6 8

Hubei Province . .
Miles A Rainfall station

FIGURE 1. Location of study area.

B. DATA

The data of rainfall and water accumulation process are the
basis for constructing the relationship model of rainfall and
water accumulation, and these data support the prediction of
water accumulation processes of water accumulation points.
Based on previous research results, this study used historical
rainfall data as the input variable of the model and accu-
mulated water depth as the output variable to construct the
relationship model between rainfall and accumulated water.
A detailed description of the data is provided as follows:

1) Historical rainfall data: These data are the time dis-
tribution data of rainfall obtained from self-recording rain
gauges of 16 rainfall stations in the study area (Fig. 1).
Nineteen historical rainfall events from 2014 to 2018 with
10-min temporal resolution were used as sample data for the
model. These events occurred on August 7, 2014; August 30,
2014; September 14, 2014; September 17, 2014; August 3,
2015; August 26, 2015; September 4, 2015; July 14, 2016;
July 19, 2016; August 25, 2016; May 22, 2017; July 18,
2017; August 12, 2017; August 25, 2017; August 25, 2018;
May 15, 2018; June 26, 2018; July 13, 2018 and August 19,
2018. In order to obtain the rainfall process data of ponding
points, the Kriging method of space interpolation was used to
interpolate the rainfall data of 16 rainfall stations, and use GIS
to obtain the rainfall process data of each ponding point. All
rainfall data were obtained from the Henan Meteorological
Service.

2) Flooded data: The locations and inundation process
of flooded urban areas were obtained from the historical
flooding records, which were collected from the monitor-
ing equipment at each intersection and stored in the urban
disaster database. The flooded data were obtained from the
Zhengzhou Municipal Urban Management Bureau. In this
study, the water accumulation process data of 50 water accu-
mulation points was collected as sample data. It should be
noted that the time resolution of water accumulation process
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data at the water accumulation point is Imin. In order to unify
with the temporal resolution of rainfall, the time resolution of
water accumulation process data in the model is also 10min.

V. SELECTION OF SENSITIVITY INDEX FOR DEPTH
PREDICTION OF ACCUMULATED WATER

Urban floods are the result of the comprehensive effect of
climate variables and underlying surface conditions (includ-
ing rainfall, topography, river network, land use and pipe
network) [37], in which rainfall is the driving factor of urban
flood [51]. Due to the limited change of the underlying
surface conditions in the city in the short term, rainfall is
the direct reason of urban flooding [52]. For fixed water
accumulation points, an internal relationship between rainfall
and water accumulation is observed. Therefore, a model of
the relationship between rainfall and water accumulation pro-
cesses was generated in this study. However, the deep learning
model based on the GBDT algorithm cannot directly input
the rainfall process data into the model. The rainfall sensi-
tivity data must be input to characterize the rainfall process
data, which differs from the hydrological model. Therefore,
the selection of the rainfall sensitivity index that affects the
depth of water accumulation is a key step in constructing the
relationship model between rainfall and the water accumula-
tion processes.

Studies in recent years have demonstrated that rainfall
characteristics, such as rainfall, rainfall duration, peak rain-
fall, position coefficient, rainfall intensity variance, and
peak multiple, have different effects on water accumulation
[53], [54]. However, for fixed water accumulation points,
an important factor that affects the depth of water accumu-
lation at a certain moment in the water accumulation process
is the location of early larger rainfall intensity. Among the
existing sensitivity indicators, rainfall, rainfall duration, peak
rainfall, rainfall intensity variance, and peak multiple cannot
reflect the location of early larger rainfall intensity. Although
the location coefficient reflects the location of peak rainfall,
it does not reflect the location of other early larger rainfall
intensity. Based on this notion, a sensitive index called con-
centration skewness was proposed in this study, which is used
to reflect the location of early larger rainfall intensity. Its
formula is as follows:

P; = Rank(p,) 1)
T; = Rank(t;) )
n/s
Z (Tpi - tn)
_ =l
CS = Iy — (3)

where n is the total number of time intervals of rainfall, which
refers to the ratio of rainfall duration to the resolution of
rainfall data; i is the number of the i-th time interval of the
rainfall; P; and T; are the rainfall intensity and duration of the
i-th time interval, respectively; Rank is the descending order
function; Tp; is the location when the rainfall intensity is Pi;
and CS is the concentration skewness.
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TABLE 1. Combination scheme of sensitivity indexes for prediction of water accumulation depth.

Combination rainfall rainfall peak location peak rainfall intensity concentration MRE
scheme number duration rainfall coefficient multiple variance skewness
Scheme 1 N N N N N N N 15.39%
Scheme 2 J N N N N N - 18.44%
Scheme 3 J N N N v - N 22.42%
Scheme 4 Vv N N N - N N 21.82%
Scheme 5 N N N - v N N 27.74%
Scheme 6 N N N N N - - 27.75%
Scheme 7 N N N N - N - 38.25%
Scheme 8 N N N N - - N 21.30%
Scheme 9 Vv N N - N N - 37.12%
Scheme 10 Vv N N - v - N 21.69%
Scheme 11 Vv N N - - N N 16.10%
Scheme 12 N N N N - - - 44.69%
Scheme 13 N N N - N - - 51.99%
Scheme 14 N N N - - N - 55.29%
Scheme 15 v N N - - - N 15.41%
Scheme 16 Vv N N - - - - 62.76%

Notes: Where v represents contain, - represents none

Different sensitivity indicators and different index com-
bination schemes may have different degrees of impact on
the depth of accumulated water. Among them, rainfall, rain-
fall duration, and peak rainfall are typically considered to
be important sensitive indicators that affect the depth of
accumulated water [55], [56]. Based on this notion, rainfall,
rainfall duration, and peak rainfall were used as common
indicators in this study. Sixteen index combination schemes
were obtained using the random combination method for the
location coefficient, rainfall intensity variance, peak multiple,
and concentration skewness. The rainfall-water accumulation
relationship model was constructed for each index combina-
tion scheme, and the MRE and QR of the prediction results
of the water accumulation depth were used to evaluate the
performance of each index combination scheme. The detailed
indicator selection process is as follows:

1) Data preparation: Calculate the sensitivity index value
for rainfall and water accumulation process based on the
data collected from the rainfall process and the water accu-
mulation process of the water accumulation point in the
urban flooding process. Specifically, the calculation includes
rainfall, rainfall duration, peak rainfall, location coefficient,
rainfall intensity variance, peak multiple, and concentration
skewness.

2) Index combination: Fifteen combination schemes were
obtained using the random combination method for location
coefficient, rainfall intensity variance, peak multiple and con-
centration skewness, among which rainfall, rainfall duration
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and peak rainfall were common indexes. In addition, rainfall,
rainfall duration, and peak rainfall were used as blank control
groups, and 16 index combination schemes were obtained in
total (Table 1).

3) Index scheme selection method: Logistic regression is
a multivariate statistical model with a simple calculation and
clear physical meaning that can form a multiple regression
relationship between the dependent variable and several inde-
pendent variables [57], [58]. Among the many statistical anal-
ysis methods, the significant advantage of logistic regression
is that it can better solve the problem of interdependence
between factors in the process of evaluating each impact
factor [59], which is useful for the selection and evaluation
of indicator schemes. Therefore, this study selected an index
combination scheme by constructing a logistic regression
model of each index combination scheme. The sensitivity
index value in the index scheme was used as the input vari-
able, and the corresponding water accumulation depth was
used as the output variable. In total, 70% data were used
as training data, and 30% data were used as verification
data.

4) Accuracy analysis method of index scheme: The MRE
and QR were used to comprehensively evaluate the accuracy
difference of the 16 index schemes, and the index scheme
with the highest comprehensive accuracy was selected as the
sensitive index combination scheme affecting the prediction
of water accumulation depth. In this study, the MRE refers
to the average of the ratio of the absolute error between the
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TABLE 2. Model evaluation index explanation.

Indicator Full name Formula Remarks
. 1 Where, Yy, is the predicted value; Y, is the measured value
MRE mean relative 4 pp 72 Yei = Vot | 100% ]
error ns| oy,
QR qualified rate QR = < x100% Where, c is the qualified sample number; n is the total number of samples.
n
deterministic " 2 . : . . LT
DC coofficient DC=i. Zizl[ Vi }g] \:llher& Y, ;s th]e predicted value; Y, is the measured value; Y, is the average of
" _v P the measured values;
D=,
average » h.-h
APEPV  relative error AREPVZZ c;z 9 Where, hg; is the maximum value of the predicted water accumulation depth of the
of the peak j=t My

value

water accumulation point; h; is the maximum value of the actual water accumulation

depth of the water accumulation point; m is the number of rainfall events.
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FIGURE 2. Model construction of urban flood water accumulation process prediction based on GBDT.

predicted value and the actual value to the actual value, and
QR refers to the percentage of the number of samples that are
predicted to be qualified in the total sample size (Table 2).
According to the amount and type of data, an absolute value
of the relative error of less than 20% is regarded as qualified
in this study.

QR and MRE represent the overall error level of prediction
results. The greater the QR and the less the MRE, the less the
overall error of the prediction result.

VI. MODEL CONSTRUCTION

In this study, the GBDT algorithm was used to build the
prediction model of water accumulation processes. The main
modeling process can be divided into three steps (Fig. 2).
The first step involves data processing and preparation, and
the data are split, reorganized and used to calculate the index
value of the collected rainfall and water accumulation process
data. The second step is to input the sample data into GBDT
model for training and input the test data into the trained
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model to output the model prediction results. The third step
is to evaluate the performance of the model using MRE, QR,
DC and AREPV. Since our objective is to develop a real-time
prediction model of water accumulation process, we have
chosen Dell’s workstation as the experimental platform. The
running memory of the device is 32 GB, and the CPU is
E3-1505M v6 of Intel Xeon series with 3 GHz working
frequency, which can achieve higher computing speed on
lightweight equipment. On this basis, the model is trained and
tested in Python 3.7 based on Windows 10 system.

A. DATA PROCESSING

Equidistant splitting method was used to split and reorganize
the rainfall and water accumulation process data, and data of
rainfall and water accumulation processes were divided into
several groups of rainfall processes and water accumulation
processes. As shown in Fig. 3, the 180-min rainfall process
data was divided into 18 segments according to the time
resolution of the rainfall data (10 min). By accumulating
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FIGURE 3. Rainfall data processing.

and reorganizing the separated rainfall in sequence, 18 groups
(0-10 min, 0-20 min, 0-30 min,..., 0-180 min) of rainfall
processes were obtained (Fig. 3). Similarly, the water accu-
mulation process was also divided into corresponding water
accumulation processes. After splitting and reorganizing,
a rainfall and water accumulation event with a 180-min
rainfall duration become 18 rainfall and water accumulation
events. By calculating the index value of each rainfall and
water accumulation event, 18 sample data can be obtained
from one rainfall and water accumulation event after splitting
and reorganizing. Similarly, we split and reorganize the rain-
fall and water accumulation event of each water accumulation
point in 19 rainfall and ponding events and calculate the index
values after the split and reorganization. Finally, we obtained
27230 sample data, and each sample data contain seven input
variables (i.e., rainfall, rainfall duration, peak rainfall, loca-
tion coefficient, rainfall intensity variance, peak multiple and
concentration skewness) and one output variable (i.e., depth
of water accumulation). Of note, we store the sample data
set of each water accumulation point separately. Each water
accumulation point contains two independent tables: training
data table and test data table. Finally, we store 100 indepen-
dent tables of 50 water accumulation points by CSV file to
form the sample data set of the model.

B. MODEL STRUCTURE

The relationship between rainfall and water accumulation
process differs in different locations. Therefore, this study
constructed a relatively independent rainfall accumulation
relationship model for each accumulation point. For each
water accumulation point, the GBDT algorithm was used
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to train the sample data of the first 16 rainfall and water
accumulation events, and the sample data of the last three
rainfall events were input into the trained model for predic-
tion. Finally, the prediction results of 50 water accumulation
points were output, separately. The training part of the model
can be regarded as a three-dimensional structure. First, the
entire model can be divided into 50 layers. Each layer is
the prediction model of each water accumulation point, and
the prediction model of each water accumulation point is
independent of each other. In addition, the training process
of each water accumulation point can be divided into three
layers, including data input, GBDT iterative training model,
model prediction and result output (Fig. 2).

C. GBDT MODELING METHOD
GBDT is an ensemble learning algorithm combining the deci-
sion tree and gradient boosting algorithm [19], in which the
decision tree generally chooses classification and regression
tree (CART). The advantage of the GBDT algorithm is that
during each iteration, the decision tree is trained according
to the residual of the previous tree, and the classification
results of all the trees are ultimately accumulated and out-
put, effectively avoiding over fitting phenomenon [60]. The
GBDT algorithm has been demonstrated to be an efficient,
high-precision, low-bias model in many practices and has
been widely used by data scientists in tasks, such as classifica-
tion and regression. A complete mathematical and technical
description of the GBDT model can be found in [19] and [61].
Using GBDT algorithm, a regression prediction model was
constructed to predict the water accumulation process of the
water accumulation point. Loading training sample data into
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the model is the prerequisite for model training. In this study,
the data reading module of Python was used to read the
sample data into the model as a CSV file. The rainfall, rainfall
duration, peak rainfall, location coefficient, rainfall intensity
variance, peak multiple and concentration skewness were
taken as input variables, and the depth of water accumulation
was taken as the output variable. The expression of the sample
data set was D = {(x1, y1), (X2, ¥2), ---» (Xn, Yn)}-

The core of the GBDT model training is to integrate mul-
tiple trees generated by iteration into a final tree. For each
iteration, the negative gradient (i.e., residual) of the function
is calculated by r,; = —[%ﬁg‘i»]ﬂx)th \(x)> and the CART
regression tree was fitted according to the obtained negative
gradient. Assuming that the number of leaf nodes of the fitted
regression tree is J, the area corresponding to each leaf node
is Ry1, Rep, -, Ry The best fit value cy is calculated for the
region corresponding to the leaf node of each decision tree
using the following formula:

——
e =argmin ) L fi-1(0)+¢) “

The model is updated according to the best fit value deter-
mined in the previous step to obtain a new tree, which com-
pletes an iterative process.

J
) =10+ ) eyl (x € Ryy) )

J=1

The above iterative steps are repeated, and the trees of each
iteration are superimposed to obtain the final tree, which is the
GBDT regression prediction model.

T

f) = fr0=)_fitx) ©)

=1
The algorithm flow of GBDT model training is shown
in Figure 4. It should be noted that this study constructs an
independent GBDT water accumulation process prediction
model for each independent water accumulation point. There-
fore, for each water accumulation point, the training process
of the above model needs to be repeated to obtain a complete

GBDT regression prediction model.

Require: Learning dataset D= {(x1, y1), (X2, ¥2),.--, (Xn, )}, number of iteration: m, learning rate &,
Loss function L(y, f(x));
Ensure: The prediction model: f(x)
1. Jo(x)=0;
2. for t=1—-m
3. fori=l—»n do
IL(y,, /(%))
4 5 :'[W]/m—/, @
N —S
5. Calculate the best fit value c”=argminz_‘“’/ L(y,, f,.,(x)+c)
)
6 1= @)+ EY ¢l (xe Ry)
7=
7. end for
8. output the final model 1 (x)~/;(x) i/,(r)
=

FIGURE 4. The algorithm flow of GBDT model.
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D. PARAMETER SETTING

Parameter setting is one of the key steps in model train-
ing. The key parameters of the GBDT model are the num-
ber of iterations, the learning rate, and the complexity of
the tree [62], which can effectively avoid over fitting phe-
nomenon [14]. The number of iterations is also called the
number of regression trees. Each iteration of the model will
generate a new regression tree, but an excessive number of
iterations may lead to overfitting. In the process of optimizing
the parameters of the GBDT model, we found that when the
number of iterations exceeds 1,000, the model occasionally
exhibits a partial overfitting phenomenon. When the number
exceeds 10,000, the model will exhibit an obvious overfitting
phenomenon. Therefore, to ensure the effectiveness of the
model, the upper limit of the number of iterations was set to
10,000 times in this study. The learning rate is a parameter
used to characterize the contribution of each basic tree model,
which can effectively prevent the over fitting phenomenon of
the model. However, the decrease in the learning rate will lead
to an increase in iterations, and an extremely low learning rate
may lead to over fitting. Our previous research shows that
better results are obtained when the learning rate is 0.05 [15].
Considering the similarity between the research data and the
research content, the learning rate was set to 0.1-0.0001 for
parameter optimization in this study. The complexity of the
tree (i.e., the number of nodes used to fit each decision tree)
reflects the true interaction between variables. To capture the
interaction between variables, it is necessary to increase the
complexity of the tree. However, excessively high complexity
may also lead to model over fitting. Therefore, the complexity
of the tree was set to 1-10 for parameter optimization in this
study.

E. ACCURACY INSPECTION METHODS OF THE MODEL
Four indicators, including MRE, QR, DC and AREPV, were
used to evaluate the performance of the GBDT regression
prediction model (Table 2). In this study, the MRE and QR
reflected the overall error level of the prediction result. The
DC (0-1) represented the consistency between the prediction
results and the actual water accumulation process. The closer
the DC is to 1, the better the consistency of the predicted
results. The AREPV represented the prediction accuracy of
the maximum water accumulation depth. The smaller the
AREPY, the greater the prediction accuracy of the maximum
water accumulation depth.

VIl. RESULTS

A. ANALYSIS OF THE RESULTS OF DIFFERENT INDEX
COMBINATIONS

Based on the collected 19 historical rainfall and water accu-
mulation process data, index values of each rainfall, including
rainfall, rainfall duration, peak rainfall, location coefficient,
rainfall intensity variance, peak multiple, and concentration
skewness, are calculated. The logistic regression model of
water depth of 16 different index combination schemes is
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FIGURE 5. Comparison chart of accuracy improvement of water
accumulation depth prediction by different indexes.

constructed by using SQL Server Data Tools, which is a data
processing and analysis software of Microsoft. Here, 70%
data served as training data, and 30% data served as verifi-
cation data. The water accumulation depth prediction results
of each index combination scheme were obtained (Table 1).

As shown in Table 1, the MRE of the prediction results
of water accumulation depth of scheme 1, scheme 11 and
scheme 15 are the highest at 15.39%, 16.10% and 15.41%
respectively. To analyze the influence degree of different sen-
sitive indexes on the prediction of water accumulation depth,
a quantitative analysis of the improvement effect of the loca-
tion coefficient, rainfall intensity variance, peak multiple, and
concentration skewness on the prediction accuracy of water
accumulation depth was performed, i.e., the improvement
effect of schemes 12, 13, 14, and 15 relative to scheme 16 in
the prediction accuracy of water depth. As shown in Fig. 5,
the concentration skewness (i.e., scheme 15) exhibits the
greatest improvement in the prediction accuracy of water
accumulation depth at 15.41%. The MRE of water accu-
mulation depth prediction with concentration skewness is
reduced by 47.35% relative to no concentration skewness
(i.e., scheme 16), indicating that the concentration skewness,
a new rainfall characteristic index proposed in this study, has
good applicability to the prediction of water accumulation
depth.

To a certain extent, the MRE reflects the overall accuracy
difference of the prediction results of each index combina-
tion scheme, but it is occasionally significantly affected by
individual extreme values. The qualified rate is a parameter
used to evaluate the overall qualification level of water accu-
mulation depth prediction, which can effectively avoid the
impact of individual extreme values on the overall accuracy.
Therefore, to more comprehensively analyze and describe
the advantages and disadvantages of each index program,
the qualified rate was introduced to evaluate the performance
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of each index scheme on the prediction results of water
accumulation depth (Fig. 6). Figure 6 reveals that the MRE of
scheme 1 is the lowest and that the qualified rate is the high-
est. These findings indicate that scheme 1 exhibits the greatest
accuracy for prediction results of water accumulation depth
and is the most suitable combination scheme for predictions
of water accumulation depth.

B. RESULT ANALYSIS OF THE GBDT REGRESSION
PREDICTION MODEL

19 historical rainfall and water accumulation process data
of 50 water accumulation points from 2013 to 2018 were
split and reorganized as described in Fig. 3, and a total
of 27230 sample data were obtained. In this study, Python
3.7 was used to build the GBDT regression prediction model,
and 22,730 sample data of the first 11 rainfall and flood
data were selected as training data. The parameters of the
model were continuously optimized using the control variable
method to determine the number of iterations, the learning
rate, and the complexity of the tree (Table 3). Based on
training the model according to the model parameter values
determined in Table 3, the rainfall indicators of 4500 sample
data of the last 3 rainfall and flood data were input into
the model, and the prediction result of the depth of water
accumulation of each test sample was obtained (Table 4).
Table 4 demonstrates that the MRE of the GBDT regression
prediction model is 19.77%, which is acceptable for the
prediction of water accumulation processes.

TABLE 3. Parameters optimization results of the GBDT model.

The number of Learning rate Complexity
iterations of the tree
150 0.05 6

The fitting degree of the prediction results of the water
accumulation process is an important indicator for evaluating
the overall prediction performance of the model. To more
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TABLE 4. Prediction results of the GBDT regression prediction model.

Data Prediction Measured ~ Absolute Relative
number depth /cm depth /cm  error /cm error %
22731 0.00 0.00 0.00 0.00
22732 0.15 0.21 -0.06 28.57
22733 1.50 1.81 -0.31 17.13
22734 4.65 4.85 -0.20 4.12
/ / / /
27228 3.60 3.22 0.38 11.80
27229 3.30 2.75 0.55 20.00
27230 3.00 2.39 0.63 26.36

Mean value 10.82 10.34 1.30 19.77

comprehensively evaluate model performance in the predic-
tion of water accumulation processes, the performance of
prediction results of water accumulation process of each rain-
fall was analyzed quantitatively using QR, DC and AREPV
(Table 5). As shown in Table 5, the QR is greater than
80%, the DC is 0.96, and the AREPV is 5.48%. These
results demonstrate that the GBDT regression prediction
model is feasible in the prediction of water accumulation
processes.

TABLE 5. Performances of the GBDT regression prediction model.

The number of QR (%) DC AREPV
rainfall events
16 80.42 0.9716 8.90%
17 83.65 0.9602 3.84%
18 81.93 0.9607 3.41%
mean value 82.00 0.9642 5.48%

To evaluate the fitting effect of the model more intuitively,
the fitting curve of predicted water accumulation and mea-
sured water accumulation processes of 3 water accumulation
points (#16, #25, #34) was drawn using the random sampling
method in this study. As shown in Fig. 7, as the rainfall
prediction period is extended, the accuracy of the prediction
results of the water accumulation process decreases slightly,
but the errors are all within the acceptable range. Among
them, the fitting degree of the prediction results performs best
in the first 60 min, and the prediction accuracy of the GBDT
model does not decrease significantly with the extension of
the prediction period. This finding is mainly attributed to the
fact that there is no residual accumulation in the training and
prediction process of GBDT model, and the prediction results
of the next period do not depend on the prediction results
of the previous period. In addition, it is remarkable that the
prediction results of peak rainfall of three water accumulation
points are very close to the measured results, and the absolute
errors are less than 2.5 cm, demonstrating that the GBDT
regression prediction model exhibits good applicability for
the prediction of water accumulation processes in a longer
forecast period.
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FIGURE 7. Fitting curve of water accumulation process.

C. CONTRIBUTION ANALYSIS OF SENSITIVE FACTORS

The contribution of sensitive factors was analyzed quanti-
tatively using the GBDT model, which can understand the
impact of different rainfall sensitive factors on the water accu-
mulation. As shown in Figure 8, peak rainfall, rainfall, and
concentration skewness exhibit the greatest impact on water
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FIGURE 8. Importance of flood sensitive factors based on GBDT model.

accumulation, indicating that urban floods are more sensitive
to heavy rainfall. This phenomenon is explained by the fact
that the development of urbanization has gradually increased
impervious areas (such as roads and buildings). When heavy
rainfall reaches the surface, it converges quickly to form
water accumulation, which increases the risk of urban floods.
Therefore, urban flood forecasting and disaster prevention
should pay special attention to short-term heavy rainfall and
extreme rainfall events. In addition, it is necessary to reduce
impervious surfaces and the speed of rainfall confluence and
improve the ability of urban flood control systems to respond
to heavy rainfall events.

TABLE 6. Comparison of prediction accuracy of different models.

RMSE(m)
Prediction step size BPNN Elman NARX GBDT
NN
10min-ahead forecast 0.10 0.09 0.09 0.12
20min-ahead forecast 0.17 0.15 0.16 0.13
30min-ahead forecast 0.18 0.18 0.18 0.09
40min-ahead forecast 0.21 0.17 0.18 0.08
50min-ahead forecast 0.22 0.20 0.19 0.12
60min-ahead forecast 0.23 0.22 0.19 0.11

D. COMPARISON WITH OTHER MODELS

Since time series models [49] are commonly used methods
for urban flood process prediction. Therefore, in order to
verify the effectiveness of the GBDT model, we compared
the prediction performance of the GBDT model with the
three time series models. As shown in Table 6, the prediction
accuracy of the GBDT model is not as good as the time
series model in a short forecast period, but with the increase
of the forecast period, the prediction accuracy of the GBDT
model is significantly better than the time series model, which
indicates the effectiveness and applicability of the GBDT
model in water accumulation process prediction.
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VIil. DISCUSSION

In this study, an index combination method suitable for
predicting the depth of water accumulation is proposed.
Among them, we propose a new sensitivity index (concen-
tration skewness) for depth prediction of accumulated water.
As shown in Figure 6, the prediction accuracy of the new
index (scheme 1) for the existing index combination scheme
(scheme 2) was improved by 10.11%, which verifies its effec-
tiveness and applicability for predicting the depth of water
accumulation. In addition, comparisons of the accuracy of 16
index combination schemes revealed that scheme 1 exhibits
the highest prediction accuracy for ponding depth. On this
basis, the GBDT algorithm is used to construct the prediction
model of ponding process, aiming to propose a prediction
model suitable for long-term periods.

In our previous study, we used the GBDT algorithm to
build a prediction model for the depth of water accumula-
tion. The average relative error of the model for predicting
the maximum depth of water accumulation is 11.52% [15].
Although the previous study only provided the maximum
depth of water accumulation and not the time distribution,
it achieved the first step for early warning purposes. Based
on this model, this study splits, reorganizes and calculates
the index value of the rainfall accumulation data, which
changes the traditional modeling method, and constructs a
prediction model of the accumulation process suitable for a
longer encounter period by the GBDT algorithm. The average
relative error of this model for predicting the maximum depth
of stagnant water is 5.48%, representing an improved effect
of predicting the depth of water accumulation.

Research on the time distribution of ponding depth is
a trend and a major challenge for flood warning. Serval
studies have assessed multistep-ahead flood forecasts using
time series methods [52], [63]. Chang ef al. [49] used the
time series method of three neural network models to pre-
dict the water level in the floodwater storage pond for 10-
to 60-min-ahead forecasts. The results show that the three
types of neural networks exhibit good accuracy in one-step-
ahead forecast, among which the nonlinear autoregressive
with exogenous input (NARX) network has the best pre-
diction effect. However, due to the error accumulation in
the multistep prediction of time series, when the prediction
period changes from 10 to 60 min, the prediction accuracy
of the NARX network gradually decreases, and the root
mean square error increases from 0.09 to 0.19. Compared
with the study of Chang et al., the prediction accuracy of
the new modeling method proposed in this study does not
significantly decrease as the prediction period is increased to
180 min in advance (Fig. 7), which indicates that our new
modeling method can complement the time series model.

However, this study also encounters some limitations.
We build a relationship model between rainfall and water
accumulation for each accumulation point. However, for each
accumulation point, the relationship model between rainfall
and accumulation is not constant. If the underlying surface
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conditions change, such as urban subway, pipe gallery and
other engineering construction, the rainfall and the water
accumulation model of the accumulation point may signif-
icantly change. These changes will reduce the accuracy of
the model prediction results, which limits the use of the
model.

Regarding future work, it should not be limited to using
historical rainfall and water accumulation data to build a
prediction model of the water accumulation process. With
the continuous construction and maintenance of the city,
the construction of the project will affect the drainage process
of the accumulation point, and the rainfall and water accu-
mulation process of the accumulation point will also change.
Therefore, future work will focus on real-time collection of
rainfall and water accumulation data to study how to use
existing data to update and modify the model in real time.

IX. CONCLUSION

In this study, based on the selection of sensitive indicators and
index combination schemes that were suitable for the depth
prediction of the water accumulation, a prediction model
for the water accumulation process of the urban flood water
accumulation point was constructed using the deep learning
algorithm (GBDT). In the process of index scheme selections,
by comparing the prediction accuracy of water accumulation
depth of different index combination schemes, scheme 1
(i.e., rainfall, rainfall duration, peak rainfall, location coeffi-
cient, rainfall intensity variance, peak multiple, and concen-
tration skewness) was identified as a suitable index scheme
for water depth prediction. A more mature deep learning
algorithm (GBDT) was used to build a prediction model of
the water accumulation process of the water accumulation
point. The average relative error of the model for the water
accumulation process prediction was 19.77%, and the pass
rate was 82.00%. These findings demonstrate the validity of
the model for the predicting the water accumulation process
of the water accumulation point. In addition, the GBDT
model was used to quantitatively analyze the contribution
of different sensitivity indicators to water accumulation in
this study. Rainfall, peak rainfall and concentration skewness
were identified as important factors affecting urban flooding.
These research results provide effective technical support for
urban flood control and forecasting.

This research also has some further directions that should
be explored. For instance, in this study, only 50 water accu-
mulation points in the study area were included in the predic-
tion model of water accumulation processes. In the future,
a water accumulation process prediction model should be
constructed for the entire city to achieve real-time prediction
of water accumulation processes.
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