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ABSTRACT This study proposes a linear time-varying model predictive control method based on tire
state stiffness prediction for the path tracking using a steering decision sequence in a prediction horizon.
A nonlinear UniTire model is employed to represent the nonlinear features of vehicle dynamics in critical
situations. And the changing trend of tire state stiffness over the prediction horizon is constructed based
on the steering decision sequence, which is the optimized solution of the previous execution step by the
controller. Moreover, a method of adjusting the tire state stiffness is proposed to address the jittering in the
process of linearization. Meanwhile, a nonlinear model predictive controller and a traditional linear time-
varying model predictive controller are designed to verify the effectiveness of the proposed linearization
method. Experimental results clearly show that this linearization method can considerably improve vehicle
stability under extreme conditions.

INDEX TERMS Path tracking, tire state stiffness, model predictive control, vehicle dynamics.

I. INTRODUCTION
In recent years, with the rapid development of urban roads
and transportation technology [1], [2], the number of vehi-
cles has increased dramatically. With the increasing maturity
of control technology and the continuous improvement of
driver requirements for maneuverability, safety, efficiency
and comfort of driving, autonomous vehicles have received
attention. To improve road traffic safety, safety technology,
which is represented by the advanced driving assistance sys-
tem (ADAS), has gradually received attention and has been
developed [3], [4]. The ADAS detects the environmental
information based on on-board sensors and then controls the
vehicle through active intervention in emergencies. In recent
years, the ADAS has gradually developed from the early anti-
lock braking system to the emergency collision avoidance
system. The existing emergency avoidance system mainly
focuses on the low-speed working condition and only relies
on braking to avoid collision with obstacles.
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However, this method may not be the most effective
way to avoid collision in high speed or during emergencies
conditions. Compared with collision avoidance system by
braking, active steering is an effective way for high-speed
avoidance. In the process of high-speed emergency avoidance
based on active steering, the reference path is planned by
a controller according to the information of the surround-
ing environment [5], [6]. Then, the vehicle is controlled
to track the planned path. Under some extreme conditions,
the vehicle may be close to the dynamic limit. Therefore,
the driving stability of vehicle in path tracking control can
not be ignored. Control methods for path tracking mainly
include PID control, sliding mode control, and feedforward-
feedback control [7]–[12]. However, these control methods
usually consider incomplete kinematic constraint, and ignore
the various dynamics of the vehicle during path tracking.
Model predictive control (MPC) has the features of predic-
tion, rolling optimization, and feedback correction. It is espe-
cially suitable for establishing an accurate controlled object
model, dealing with uncertain environmental interference and
control systems with constraints [13], [14]. Therefore, MPC
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has been widely used in the field of vehicle control. During
the process of vehicle control, the accuracy of the model is
very important for the stability control [15].

Tires are the largest nonlinear portion in a vehicle system.
When the vehicle is in emergency conditions, handling sta-
bility is constrained by the high nonlinearity of tires. Thus,
establishing a high-precision nonlinear tire model to improve
the stability of the vehicle is of great significance. However,
the computation complexity caused by using a nonlinear
dynamics model is an important reason that hinders its pop-
ularization and application. Numerous studies focused on
the nonlinearity of tires. Some studies made a small angle
approximation of the slip angle of tires and have simplified
the vehicle with a linear model [16], [17]. To describe this
traditional linear model, we record it as LTI-MPC to distin-
guish the linear time-varying model in the following. This
simplified linear vehicle model performs well when the tire
force is in the linear region. However, the accuracy of path
tracking and the effect of vehicle stability become worsen at
extreme conditions. In this regard, some researchers designed
a linear time-varying model predictive controller (LTV-MPC)
to improve vehicle performance in a limiting condition. The
linear time-varying controller successively linearizes the non-
linear tire model based on the state parameters of the vehi-
cle [18]–[20]. However, when the motion of the vehicle is
approaching at the limit conditions of vehicle dynamics, tire
force gradually tends to the nonlinear region and becomes
inaccurate. Therefore, some researchers proposed the idea
of successively linearizing a non-linear vehicle model over
the prediction horizon. Katriniok and Abel [21] proposed a
linearization method that using an estimated front steering
angle for linearization of the nonlinear prediction model.
The simulation results show that the control performance of
LTV-MPC based on the estimated front wheel angle is
improved considerably. Funke et al. [22]–[24] proposed a lin-
earization method and the previous tire sideslip angle was uti-
lized for the linearization at the prediction horizon. However,
it may cause the system to oscillate that only using the tire slip
angle sequence at the previous execution step. To overcome
the problem of oscillation, a regularization method [24] is
applied to the tire slip angle sequence, which effectively
reduces the jittering. However, this method requires that the
length of the control horizon is consistent with the length of
the prediction horizon, which greatly increase the calculation
load and reduce the real-time performance of the controller.
Li et al. [25] proposed a state stiffness method based on the
reference path to improve the stability of the vehicle. The
required tire force is obtained by substituting the reference
path information into the vehicle model. However, this sub-
stitution may increase the complexity of the model.

Therefore, to describe the changing trend of tire force
accurately and improve the stability of vehicles over the
prediction horizon, this study proposes a linear time-varying
model prediction based on the steering decision sequence.
The first value of the steering decision is used to control the
vehicle, and the rest of the steering decision sequence, which

represents the future state of the vehicle in the prediction
horizon, is used to forecast the future state stiffness. Then the
predicted tire state stiffness is employed to linearize the tire
force over the prediction horizon. To verify the effectiveness
of the proposed controller, it is compared with a LTI-MPC
controller and a nonlinear model predictive controller in the
same operating conditions.

Compared with the previous work, the improvements are
as follows: 1) In this article, the optimized steering angle
sequence is directly used to predict the change trend of tire
state stiffness in the prediction horizon. Therefore, the con-
troller model is further simplified. 2) In addition, the pre-
diction of tire state stiffness is divided into two different
parts and the changing trend of tire state stiffness is refined.
Thus, the stability of the vehicle under extreme condition is
effectively improved.

The remainder is structured as follows. Section II
presents the vehicle and tire models used by controller.
Section III introduces the overall structure of the controller.
In Section IV, the experimental and simulation results are
presented under different conditions. Finally, conclusions are
made in Section V.

II. SYSTEM MODELING
A. VEHICLE MODEL
In this section, a simplified four-wheel bicycle model com-
bined with a nonlinear tire model is used to design the
controller. The influence of suspension motion, aerodynamic
factors and the longitudinal dynamics are ignored before
establishing the model. And the detailed vehicle model is
depicted in Fig.1.

Assuming that the steering angle of the vehicle is small and
the longitudinal velocity of vehicle is constant, the vehicle
dynamics can be expressed as follows:

mẋ(β̇ + r) = Fyf + Fyr
Izṙ =

(
aFyf − bFyr

)
ϕ̇ = r

Ẏ = ẋ sinϕ + ẏcosϕ (1)

where m is the total mass of the vehicle, ẋ represents the
longitudinal velocity of the vehicle, Iz is themoment of inertia
of the vehicle about the z-axis, β is the vehicle sideslip angle,
ϕ is the yaw angle, Y is the lateral position of the vehicle in
the geodetic coordinate system, and Fyf andFyr represent the
lateral force on the front and rear axle of the vehicle, respec-
tively. Moreover, Fyf = Fy,fl + Fy,fr and Fyr = Fy,r l + Fy,rr .
The detailed vehicle model parameters are shown in Table 1.

B. TIRE MODEL
Tire force is themain factor that affects vehicle stability, espe-
cially when the vehicle is at the limits of dynamic. Therefore,
using a high-precision tire model is necessary to describe the
change of tire force accurately. Commonly used tire models
include the Dugoff tire model, the Magic Formula tire model,
the Fiala tire model, and the UniTire model. The UniTire
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FIGURE 1. Simplified four wheels bicycle model.

TABLE 1. Parameters of vehicle model.

model can describe the tire characteristics of the vehicle in
complex conditions with fewer parameters and high accuracy.
This study employs a UniTire model according to [26]–[28].

The lateral force of the UniTire model is expressed as
follows:

Fyi = F̄yiµyiFz = miF̄yi (2)

F̄yi = 1− exp
[
−φi − E1iφ2 −

(
E2
1i +

1
12

)
φi

3
]

(3)

φi =

∣∣∣∣kyi tanαiµyiFzi

∣∣∣∣ = |ni tanαi| (4)

where Fyi is the tire lateral force, F̄yi is dimensionless tire
cornering force, µyi is the coefficient of lateral friction; Fzi
denotes tire vertical load, φi is the dimensionless lateral slip
rate, αi and denotes the tire side slip angle. The detailed
meaning and the value of letters in the formula are shown
in our previous study [25] and will not repeated in this study.

III. MODEL PREDICTIVE CONTROLLER DESIGN
A. OVERALL FRAMEWORK OF THE CONTROLLER
Model prediction control is a finite prediction horizon opti-
mization strategy that moves forward through time as shown
in Fig.2. This rolling optimization strategy can make up for
the uncertainty caused by model mismatch, time-variation
and interference. At each time step k , the controller optimizes
a set of input sequence by solving an open-loop optimization
problem online. This study proposes a LTV-MPC method by
making full use of the state information in the prediction
horizon.

The ensemble framework of the controller in this study
is shown in Fig.3. The framework mainly includes three

FIGURE 2. Principle of the model prediction scheme.

parts. The MPC controller optimizes the solution according
to the reference value and the feedback vehicle states, and
obtains the input steering decision sequence. Then, the opti-
mal control input sequence over the current horizon is utilized
to predict the tire stiffness for the next prediction horizon.
We suppose that the collision avoidance trajectory of the
vehicle has been completed by the path planner, which will
not be discussed in the remainder of this study. This section
designs two different controllers to compare the proposed
LTV-MPC method. One is a LTI-MPC controller, and the
other is a NMPC controller. Finally, the proposed LTV-MPC
is introduced in detail.

B. RESULTING NONLINEAR MPC
The vehicle dynamic described by (1) can be written as
follows:

ξ̇ (t) = f (ξ (t) , u (t))

yc (t) = Cξ (t) (5)

where

ξ = [β, r, ϕ,Y ]T u = δf

C =
[
1 0 0 0
0 0 0 1

]
yc = [β,Y ]T

where ξ and u represent the vehicle state vector and the
control input, respectively, yc is the control output and C is
the coefficient matrix of the output.

Discretizing the continuous model at sampling time Ts
with a zero-order hold method and the discrete nonlinear
vehicle model can be achieved.

According to the fundamental of model prediction control,
only the first element of the control input sequence is used to
control the vehicle for collision avoidance.

C. DESIGN OF LTI-MPC CONTROLLER
The linearization of the traditional linear time-varying con-
troller remains unchanged in the prediction horizon. In [29],
the first-order terms of Taylor expansion are employed to
linearize the tire model at each sampling time according to
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FIGURE 3. The overall structure of controller.

FIGURE 4. Lateral state stiffness.

the current vehicle state. However, this method will introduce
the residual lateral force in the process of linearizing, which
will lead to the inaccuracy of the model to a certain extent.

The present study employs the state stiffness for lineariza-
tion. Tire state stiffness was first proposed in [26]. In [25],
the tire state stiffness was redefined as shown in Fig.4. It can
be expressed as follows:

C = FUniTirey /α (6)

Furthermore, the linearization of tire lateral force can be
approximated as follows:

FUniTirey,ij = Cij.αij (7)

where ij = [fl, fr, rl, rr] represents the four tires of the vehi-
cle, respectively. To improve the calculation speed of (7), a 3D
look-up table is employed in this study. And the tire state
stiffness can be obtained directly by the 3D look-up table. The
front and rear tire slip angle of the vehicle can be simplified
as:

αi = f
(
β, r, δf

)
(8)

Substituting (7) and (8) into (1), the following equation can
be obtained:

β̇ =
Cf + Cr
mẋ

β +

(
aCf − bCr

mẋ2
− 1

)
r −

Cf
mẋ
δf

ṙ =
aCf − bCr

Iz
β +

a2Cf + b2Cr
Izẋ

r −
aCf
Iz
δf

ϕ̇ = r

Ẏ = ẋ (ϕ + β) (9)

Choosing δf as the control input and ξ =
[
β r ϕ Y

]T as
the vehicle states, the model (9) can be written as follows:

ξ̇ = Aξ + Bδf
y = Cξ (10)

where

A =



Cf + Cr
mẋ

aCf − bCr
mẋ2

− 1 0 0

aCf − bCr
Iz

a2Cf + b2Cr
Izẋ

0 0

0 1 0 0
ẋ 0 ẋ 0



B =


−
Cf
mẋ

−
aCf
Iz
0
0

 C =
[
1 0 0 0
0 0 0 1

]

where Cf is the lateral stiffness of the front axle, and Cr is the
lateral stiffness of the rear axle; Moreover,Cf = Cfl+Cfr and
Cr = Crl + Crr .
The continuous model (10) is transformed into an incre-

mental equation as follows:

1ξ (k + 1) = A1ξ (k)+ Bu1u (k)

yc (k) = C1ξ (k)+ yc (k − 1) (11)

170120 VOLUME 8, 2020



S. Li et al.: Path Tracking Control Based on the Prediction of Tire State Stiffness Using the Optimized Steering Sequence

FIGURE 5. Linearization of LTV-MPC.

According to (11), the output of future P steps can be
predicted as follows:

ξ (k + 1 |k ) = Sξ1ξ (k)+ Iyc (k)+ Su1U (k) (12)

where

sξ =


CA
...

P∑
i=1

CAi


P×1

I =

 In...
In


P×1

In =
[
1 0
0 1

]

Su =


CBu 0 0
...

...
...

P∑
i=1

CAi−1Bu · · ·

P+M−1∑
i=1

CAi−1Bu


P×M

D. DESIGN OF THE LTV-MPC CONTROLLER
For LTI-MPC, the state parameters are constantly updated at
each sampling time and remain unchanged over the prediction
horizon. This method can achieve a satisfactory control effect
under normal conditions. However, when the prediction hori-
zon is set to a long time, the LTI-MPC method will produce
a considerable error, as illustrated in Fig.5.

In Fig.5, at the step of k + 1, the tire force is linearized at
the slip angle αk+1, which can provide an accurate approxi-
mation for the tire force. With the continuous forward move-
ment in the prediction horizon, the linearized tire force pro-
duces a huge offset with the actual tire force due to the
nonlinear characteristic of the tire. For example, at the step of
k + n, the tire force Fk+ny,LTI , obtained by LTI-MPC, has been
seriously inconsistent with the actual value.

To solve the above problem, the tire state stiffness for P-
step in the future should be predicted accurately. The detailed
linearization based on tire state stiffness in the prediction
horizon is illustrated in Fig.5.

FIGURE 6. Steering decision sequence over prediction horizon.

A series of steering angle sequences are determined
by solving an optimal problem that satisfies the objec-
tive and constraints over a control time horizon at each
time step. The steering decision increment sequence
of M step in the control horizon can be obtained as
1u (k| k) =

[
1u (k + 1| k) · · ·1u (k +M | k)

]
. The steer-

ing decision sequence at time k over the prediction horizon is
shown in Fig.6.

At time k , the controller obtains a set of control inputs
sequence u(k + i |k ) and vehicle states ξ (k + i |k ) in the
prediction horizon. The vehicle states in the predicted horizon
can be converted into the tire slip angle by (8). For the sake
of convenience, we record the predicted tire slip angle over
the prediction horizon as αki,pre. Then, the predicted tire slip
angle can be expressed as follows:

αki,pre = f
(
βpre, rpre, δf

)
(13)

where the subscript pre denotes the predicted value and
i = r, l. βpre and rpre are the predicted vehicle side slip and
yaw rate, respectively.

After obtaining the predicted tire slip angle, the tire state
stiffness can be predicted by the designed 3D look-up table
and can be recorded as Ck+n

i,pre at time k . Moreover, the incre-
mental form of tire state stiffness can be obtained as follows:

1Ck+n
i,pre = Ck+n

i,pre − C
k+n−1
i,pre (14)

where n = 1, 2 · · ·M . According to the basic principle of
model prediction, only the first element of the optimized
sequence at each sampling time acts on the vehicle. The
remaining elements in the current prediction horizon will be
used to predict the changing trend of tire state stiffness.

The tire state stiffness at current sampling time is intro-
duced to reduce the deviation of the predicted state stiff-
ness determined by (14). The final predicted state stiffness
sequence is as follows:

Ck+n
i = Ck+n

i,cur +

n∑
i=1

1Ck+n
i,pre (15)

where Ck+n
i,cur is tire state stiffness at the current tire slip angle,

which is determined by the 3D look-up table of tire state
stiffness.
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FIGURE 7. Tire State stiffness over prediction horizon.

As shown above, the linearization over the prediction hori-
zon depends on the optimized control input sequence at the
previous time. This linearization method requires that the
length of the control horizonM is same as that of the predicted
horizon P. However, long control horizon will increase the
computational burden of the system. Therefore, the length of
the control horizon should be shorter than prediction horizon.

In this study, the tire state stiffness from k + 1 to k + P is
employed during the process of model linearization based on
the proposed method. Therefore, the predicted state stiffness
over the prediction horizon can be divided into two parts as
shown in Fig.7.

Region (I) represents the predicted tire state stiffness in
the control horizon. In this region, the tire state stiffness
Ck
i −C

k+M
i entirely depends on the optimized steering angle

sequence. The tire state stiffness can be obtained from (14)
and (15). Region (II) is the tire state stiffness that ranges
from k +M+1 to k + P. To better improve the prediction
accuracy, the following two prediction methods are designed.

1) TIRE STATE STIFFNESS REMAINS UNCHANGED
FROM M TO P
When MPC is used to predict the future states of the
system, the control variables outside the control hori-
zon are usually assumed to remain unchanged, that is,
1u (k + i) = 0, i = M ,M + 1 · · ·P− 1. Therefore, the tire
state stiffness outside the control horizon remains unchanged
too. The future tire state stiffness is expressed follows:C

k+n
i = Ck+n

i,cur +

n∑
i=1

1Ck+n
i,pre n = 1, 2 · · ·M

Ck+n
i = Ck+M

i n = M + 1,M + 2 · · ·P

(16)

where Ck+M
i is the predicted tire state stiffness at step M .

Once the changing trend of the tire state stiffness is deter-
mined, tire force can be linearized according to (7). For
convenience, we record this linearization as LTV*-MPC.

2) TIRE STATE STIFFNESS FROM M TO P IS VARIABLE
When the vehicle is in an emergency condition, the above
tire state stiffness prediction method may not be accurate.

This section proposes a weighting adjustment method for tire
state stiffness to improve the accuracy of prediction. And the
increment of tire state stiffness is introduced as follows:

1Ck
i = Ck

i − C
k−1
i,prev (17)

whereCk
i is the tire state stiffness at the current tire slip angle,

Ck−1
i,prev indicates the tire state stiffness of the previous time and
1Ck

i is the increment between the state stiffness at the current
time and the last time.

Finally, the tire state stiffness ranging from k +M+1
to k + P relies on 1Ck

i . And this linearization method is
recorded as LTV-MPC. The changing trend can be expressed
as follows:
Ck+n
i = Ck+n

i,cur + ρ1

n∑
i=1

1Ck+n
i,pre n = 1, 2 · · ·M

Ck+n
i = Ck+M

i +ρ2

n∑
i=1

1Ck
i n = M + 1,M + 2 · · ·P

(18)

where ρ1 and ρ2 are the weighting factors of state stiffness.
Substituting (17) and (18) into (7), the linearization of the

tire force over the predicted horizon is as follows:

Fk+ny,i = Ck+n
i .αk+ni (19)

The linearized tire force in (19) is further substituted into (9).
Then the LTV-MPC prediction model can be expressed as
follows:

1ξ (k + 1) = Akt1ξ (k)+ B
k
t1u (k)

yc (k) = C1ξ (k)+ yc (k − 1) (20)

where Akt and B
k
t are the coefficient matrix.

E. COST FUNCTION OF CONTROLLER
In order to track the predefined path well, the deviation
between the actual trajectory and the reference value should
be as small as possible. And the vehicle sideslip angle should
also be as small as possible to guarantee the stability of vehi-
cle. In addition, steering smoothness should be guaranteed.
Finally, the cost function can be written as follows:

minimize
P∑
n=1

[(
Y (k + n)− Yref (k + n)

)2
· 0y

]
+

P∑
n=1

[(
β (k + n)− βref (k + n)

)2
· 0β

]
+

M∑
n=1

[(
1δf (k + n− 1)2

)
· 0u

]
(21)

subject to

− umax ≤ u(k + n) ≤ umax

−1umax ≤ 1u(k + n) ≤ 1umax

n = 0, 1 · · ·M (22)
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where 0y is the weighting matrix of lateral displacement, and
0β and 0u is the weighting matrix of vehicle sideslip and
control input δf , respectively.
Therefore, the optimization problem can be transformed

into a constrained QP problem as follows:

min
z
zTHz− gT z

C̄z < b̄ (23)

where z = 1u (k) is the independent variables of the opti-
mization problem,H denotes the Hessianmatrix, g represents
the gradient vector. C̄ and b̄ are the constraints. These detailed
expressions are as follows:

H = 2
(
STu 0

T
y 0ySu + 0u0u

)
g = −2STu 0

T
y 0yEP

EP = R (k + 1)− Sξ1x (k)−I · yc (k)

C̄ = [IT ,−IT ,LT ,−LT ]T4M×1

b̄ =


1U(k)max
−1U(k)min

Umax (k)− u (k − 1)× ones (M , 1)
u (k − 1)× ones (M , 1)− Umin (k)


4M×1

For NMPC, the fmincon programming algorithm of the
MATLAB tool is employed to solve the optimization prob-
lem. After a set of optimal control sequences are obtained,
only the first element of the sequence is applied to the system.

IV. SIMULATION RESULTS
To test the performance of the proposed method, numerical
simulations are performed based on MATLAB and CarSim
environments. These simulation experiments mainly include
two parts. Firstly, the accuracy of the predicted tire state stiff-
ness is verified. And then the path tracking effect of the three
kinds of controllers are verified under different conditions.
In the previous work [25], the accuracy of the UniTire model
was verified, and the results show that the UniTire model has
a high precision, which will not be discussed again in this
study.

A. VERIFICATION OF PREDICTED TIRE STATE STIFFNESS
To verify the accuracy of the proposed state stiffness predic-
tion method, we compare the predicted state stiffness with
the actual state stiffness. The vehicle speed is 80km/h and the
tire-road friction coefficient is 0.3.

The state stiffness of the front and rear tire are shown
in Figs. 8 and 9, respectively. Creal denotes the actual value
of tire state stiffness. In this article, a 3D Look-up table of
tire state stiffness according to tire slip angle and vertical
load is designed based on UniTire model. And the actual
tire slip angle and vertical load are exported from Carsim.
Finally, the actual tire slip angle and vertical load are inputted
into the 3D Look-up table to obtain the actual tire state
stiffness. The predicted C1

pre and C
2
pre are the first and second

value of the predicted tire state stiffness sequence over the

FIGURE 8. State stiffness of front tires.

FIGURE 9. State stiffness of rear tires.

prediction horizon. The peak of predicted tire state stiffness
is revealed to deviates slightly from the actual state stiffness
value at 3.8 s and 4.65 s. In Fig. 8, the maximum deviation
of front tire state stiffness occurs in 4.36 s, and the maximum
deviation value is approximately 9985 N/rad. Fig. 9 shows
the predicted tire state stiffness curve of the rear tires. The
rear tire state stiffness achieves the peak near 3.9 s,and the
maximum deviation value of 6692 N/rad occurs at 4.36 s.
The results show that there is a certain deviation between
the predicted tire state stiffness and the actual value at the
peak. However, the overall changing trend of the predicted
tire state stiffness is basically consistent with that of the actual
tire stiffness. This verification indicates that the predicted tire
state stiffness can ensure the accuracy of linearization.

B. PATH TRACKING TEST
In this section, the effectiveness of the proposed linear
time-varying controller is evaluated by comparing with the
designed LTI-MPC andNMPC controllers. The experiment is
simulated under a scene of lane change maneuver of vehicle
at different speeds and road conditions. And the trajectory
of lane change maneuver is shown in Fig. 10. In addition,
the main parameters of vehicle and controllers are shown
in Table 2.

1) LANE CHANGE TEST FOR LTV*-MPC
The experiment is simulated at a speed of 80km/h and the tire-
road coefficient is 0.3. Figs. 11(a)-11(d) are the state curves of
the controllers. The trajectory curve of the vehicle is shown
in Fig. 11(a). It can be seen that three kinds of controllers
can control the vehicle to track reference trajectory well.
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FIGURE 10. Lane change trajectory.

TABLE 2. Simulation parameters.

However, the lateral position of theNMPCvehicle has a slight
deviation compared with that of the LTI-MPC and LTV*-
MPC at X = 110 m. From Fig. 11(b), it can be seen that
the peak value of the yaw angle of NMPC is the smallest.
In addition, the changing trend of LTV*-MPC and LTI-MPC
are basically consistent.

The front steering angle is illustrated in Fig. 11(c). It can
be seen that the vehicle starts turning at 2 s and completes the
lane changing at 6.5 s. The front steering angle of NMPC is
more smooth and achieves the maximum value of 1.6◦ at 3.4 s
and the minimum value of −1.6◦ at 4.6 s, respectively. With
regard to LTI-MPC, the maximum front steering angle value
1.8◦ is achieved at 3.5 s and the minimum value of −1.8◦

is achieved at 4.2 s. In addition, the front steering angle of
LTI-MPC fluctuates considerably at 4.5 s and jitters con-
tinuously after 5 s. Compared with LTI-MPC, LTV*-MPC
becomes smooth after a slight fluctuation.

Fig. 11(d) demonstrates the vehicle side slip angle. The
maximum and minimum of vehicle side slip angle for LTV*-
MPC and LTI-MPC controllers are 0.61◦, −0.32◦ and 0.55◦,
−0.3◦, respectively. The vehicle side slip angle obtained by
the designed three kinds of controllers are all within the con-
straints, which represent the good stability of the controllers
under this condition.

To further verify the performance of the controller under
limit conditions, experiment is tested at a speed of 100 km/h
and the tire-road friction coefficient is 0.4.

Figs.12(a) and (b) show that the vehicle controlled by
LTI-MPC controller begins to lose path tracking ability at
X= 110 m and completely loses it after X= 150 m. And the

FIGURE 11. Vehicle state curves at 80km/h.

yaw of the vehicle in Fig. 12(b) exceeds the constraint value.
This is caused by the fluctuation of the front steering angle.
As shown in Fig. 12(c), the fluctuating of the front steering
angle is obvious from 4 s to 5.5 s, even reaching the limit
value 10◦. And then it decreases rapidly from the maximum
value to the minimum value from 5.8 s to 7 s. Compared
with LTI-MPC, LTV*-MPC can basically complete the path
tracking. However, the front steering angle of LTV*-MPC
still has obvious oscillation as shown in Fig. 12(c).
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FIGURE 12. Vehicle state curves at 100km/h.

The vehicle side slip angle of LTI-MPC in Fig. 12(d)
become enormous at 4.8 s, which is caused by the excessive
front steering angle shown in Fig. 12(c). For LTV*-MPC,
the maximum value of vehicle side slip angle is 2.7◦ at 4.5 s,
which is almost three times as much as that of NMPC. Over-
all, vehicle controlled by LTV*-MPC controller can track the
reference trajectory. However, it cannot guarantee the good
vehicle stability during path tracking.

2) LANE CHANGE TEST FOR LTV-MPC
In this section, the performance of the proposed LTV-MPC
controller is verified. In the above test, the front steering

FIGURE 13. Vehicle state curves at 100km/h of LTV-MPC.

angle of LTV*-MPC has a serious jittering under the speed
of 100km/h and the tire-road friction coefficient of 0.4. Given
that LTV-MPC is designed based on LTV*-MPC, this lin-
earization method is verified under the same condition.

Figs.13(a) and (b) show that the proposed LTV-MPC
can track the reference trajectory well. The yaw angle of
LTV-MPC is the smoothest compared with LTI-MPC and
LTV*-MPC controllers. Both the yaw angle of NMPC and
LTV-MPC has a slight fluctuation near X = 115m. However,
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FIGURE 14. Computation time of LTI-MPC.

FIGURE 15. Computation time of LTV-MPC.

FIGURE 16. Computation time of NMPC.

for LTV-MPC*, the range of the yaw angle fluctuation is
enlarged near to−2◦. This fluctuation is caused by the fluctu-
ation of the front steering angle optimized by the LTV*-MPC
controller form 3.5 s to 5 s, as shown in Fig. 13(c).

Fig. 13(d) shows that the peak of the vehicle side slip
angle controlled by LTV*-MPC controller is the largest and
that of LTV-MPC is considerably decreased compared with
LTV*-MPC. This represents that the proposed LTV-MPC
method can effectively improve the stability of the vehicle
under limit conditions. Meanwhile, the LTV-MPC method
can effectively eliminate the oscillation. However, the maxi-
mum value of vehicle side slip angle controlled by LTV-MPC
controller is about 1.6◦, which is bigger than that of NMPC
controller. This is due to the reason that the control horizon
length of LTV-MPC controller is 5, while that of NMPC is 1.
Remark: In this article, the length of control horizon is

determined by repeated debugging to ensure the best control
effect of the controllers. Thus, the length of control horizon
of linear controller is not same as nonlinear controller.

Figs. (14)-(16) show the calculation time of LTI-MPC,
LTV-MPC and NMPC controllers. The simulation test is
carried out on a personal computer, and the computer config-
uration is as follows: CPU: Intel (R) Core (TM) i5-8250U @
1.60GHz; RAM: 4.00 GB. It can be seen that the calculation
time of NMPC controller is the largest and that of LTI-MPC
controller is the smallest. The average computing time of the

NMPC is 1.5 times of LTV-MPC. The results of the com-
putation time show that LTV-MPC has faster computation
speed than nonlinear MPC, but need to be further improved
compared with LTI-MPC.

V. CONCLUSION
In this study, a path tracking control method based on the pre-
diction of tire state stiffness is proposed. This method utilizes
the optimized front steering angle sequence to predict the tire
state stiffness. And then the predicted tire state stiffness is
used to linearize the vehicle model in prediction horizon. The
path tracking capability are validated under different work-
ing conditions. The results show that the proposed method
has good performance in path tracking and can effectively
improve the stability of the vehicle.

In this article, the length of prediction horizon is deter-
mined by repeated debugging. However, under limit con-
ditions, the stability of the system may be affected by the
length of the prediction horizon. In the future work, we will
try to design an adaptive predictive horizon controller to
improve the stability of path tracking. In addition, we will
study the collision avoidance control combined with steering
and braking system. And the performance of the controller
considering gradually change of speed, mass transfer while
accelerating and decelerating will also be considered.
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