
Received August 4, 2020, accepted August 13, 2020, date of publication August 17, 2020, date of current version August 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3017088

Research on Security Detection Technology for
Internet of Things Terminal Based on
Firmware Code Genes
XINBING ZHU , QINGBAO LI , ZHIFENG CHEN , GUIMIN ZHANG, AND PENG SHAN
State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China

Corresponding author: Zhifeng Chen (catcheverysecond@sina.com)

This work was supported by the Project of the National Natural Science Foundation of China under Grant 61802432.

ABSTRACT Internet of Things (IoT) terminals have firmware with heterogeneous, closed-source, and
heavy business but light security characteristics, whereas on the edge, there are limited resources and a
high code reuse rate. Once there are security risks at the firmware level, these risks are difficult to detect
and discover, and the resulting impact quickly spreads over a wide range. Therefore, a similarity and
homology analysis of firmware codes in an IoT terminal will be helpful for further research on firmware
malicious code detection, vulnerability mining, backdoor discovery and copyright protection. Inspired by
biological genes, this paper attempts to break away from the traditional feature-centered approach and
focuses on code classification and the qualitative description of code features to discuss the idea of code
similarity and homology analysis. Additionally, the proposed approach is information-centric, focusing on
the informativeness (essentiality, stability, antivariability, and heritability) of the firmware code genes and
the quantitative analysis of firmware code similarity and homology by discussing common methods and
mechanisms. This paper presents security detection technology for IoT terminal firmware by measuring the
gene distance between the codes. A prototype firmware security detection system (FSDS) for IoT terminals
based on firmware code genes is designed and implemented. The experimental results show that this method
has a good search matching effect and has certain advantages over traditional firmware security detection
methods based on similarity theory.

INDEX TERMS The IoT, the IoT terminal, firmware, code gene, gene distance, similarity.

I. INTRODUCTION
With the advent of the Internet of Everything era, the global
Internet of Things (IoT) has entered a new wave of devel-
opment that has been driven by the upgrading of tradi-
tional industry and the large-scale consumption market [1].
By 2025, the number of personal intelligent terminals will
reach 40 billion, and the total number of global connections
will reach 100 billion [2]. These networked terminals are
widely used in public utilities, transportation, manufactur-
ing, medical treatment, agriculture, finance and other fields,
which greatly change the social operation and way of life of
individuals [1]–[5].

A. MOTIVATION
IoT terminals generally have the following characteristics:

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.

(1) Heterogeneity and closed source [1], [3]–[6]. The
firmware of an IoT terminal is deployed in various archi-
tectures, with different instruction sets, registers, address-
ing modes, stack management, calling conventions, storage
management models, etc. Most firmware has closed-source
code, is unable to obtain the source code, and lacks symbol
debugging information. As a result, the security detection
objects of terminal firmware are not unified, and detection
is difficult [3]–[6].

(2) Limited resources [3]–[6]. Most IoT terminals belong
to the category of embedded devices, with limited storage and
computing resources, and many terminals have high require-
ments for power consumption and real-time performance.
Therefore, it is difficult for the terminal itself to deploy
antiviral, intrusion detection and other security protection
measures. Additionally, it is difficult to adopt underlying
monitoring, probing of early warnings and other security
monitoring means. As a result, the execution environment

150226 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7059-6768
https://orcid.org/0000-0001-8712-3887
https://orcid.org/0000-0001-8901-1002

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

of terminal firmware is not safe, and dynamic detection is
difficult [3]–[6].

(3) Business is more important than security [3]. At the
beginning of IoT terminal design, due to the design level,
cycle, cost and other reasons, the design focus is often on the
realization of a business, while the security defense ability
of the product itself is ignored. Additionally, some products
reserve backdoor or hardcoded information for the conve-
nience of maintenance and management [7]. As a result,
the design of terminal firmware has more business-oriented
than security-oriented characteristics [3].

(4) High code reuse rate [3], [4], [6]. IoT terminal firmware
generally adopts commercial off-the-shelf (COTS) technol-
ogy and uses a large number of third-party libraries. Although
this approach shortens the design cycle and reduces the design
cost, once there are security defects in the reused code,
the security of more terminals will be threatened. As a result,
security defects quickly spread and have a wide range of
influence [3], [4].

(5) On the edge [1]–[3]. An IoT terminal is at the inter-
section of the physical world and the cyber world, which
realizes the perception control of the physical world and com-
pletes the conversion and interaction between analog state
information and digital state information. Therefore, once
attacked, both the information security of virtual cyberspace
and the physical security of the real world will be affected.
It can be said that the location of the IoT terminal makes
the attack move forward and expand, and the impact has
changed from ‘‘seeking wealth’’ in the traditional Internet
domain to ‘‘killing’’ in the current IoT domain. Consequently,
the dimension of the security impact is wider and deeper [3].

From the security events exposed in recent years [1], [2]
[7]–[10], attacks against these massive terminals have been
shown to emerge endlessly, which has seriously threatened
national security, economic development, social life and other
aspects. The firmware of these terminals is not only the
carrier of the terminal business but is also the main target of
attackers. Therefore, whether there is a real security risk or
a long-term top-level design, there is an urgent need to study
the security detection of IoT terminal firmware.

B. CONTRIBUTIONS
In this paper, we make the following contributions:

(1) We introduce gene theory into the field of security
detection for IoT terminal firmware. It is helpful to make use
of the information of firmware code genes to conduct more
accurate research on firmware security detection.

(2) We attempt to break away from the traditional feature-
centered approach and focus on code classification and the
qualitative description of code features to discuss the idea of
code homology and similarity analysis. Instead, our approach
focuses on the information of firmware code genes and per-
forms a quantitative analysis of firmware code similarity and
homology by discussing common methods and mechanisms.

(3) We extract firmware code genes from three levels:
call relationship between functions, control flow information

FIGURE 1. The workflow map.

within functions and basic block statistics information, which
provide a material basis for semantic equivalence between
firmware binary codes.

(4) We propose a two-stage measurement method of
gene distance between firmware codes, which quantitatively
describes the similarity between them from two dimensions,
improving the accuracy and efficiency.

(5) We design and implement a prototype firmware secu-
rity detection system (FSDS), which verifies the feasibility
of the application of firmware code genes in the field of IoT
terminal security detection in practice.

C. WORKFLOW
Based on the research of reference [3], the information
(essentiality, stability, antivariability and heritability) of
firmware code genes is taken as the logical starting point
in this paper. By measuring the gene distance between the
known security defect sample code and the firmware code to
be detected, the similarity between them was determined to
carry out the security detection of the IoT terminal firmware.
As shown in Fig. 1, the firmware code gene extraction sys-
tem (FCGES) has been introduced in detail in reference [3],
and this paper only supplements and improves it. We will
focus on the design and implementation of the FSDS.

D. OUTLINE
The remainder of this paper is structured as follows: Section II
discusses the related works; Section III introduces firmware
code gene extraction; Section IV presents a method to mea-
sure the firmware code gene distance; Section V designs and
implements the FSDS; Section VI presents the experimental
steps and results and verifies the effectiveness and robustness
of our method; and Section VII discusses the deficiencies of
this paper and the plans for follow-up studies.

II. RELATED WORKS
Traditional code analysis technologies are mainly divided
into dynamic and static analyses. However, when these tech-
nologies are combined with firmware code, some problems
occur.

A. DYNAMIC ANALYSIS
Dynamic analysis refers to a program analysis method
that records the relevant information of program execution
by using various analysis technologies and displays it to

VOLUME 8, 2020 150227

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

analysts in various ways by executing the analyzed samples
in a controllable operation environment [5], [11]–[14]. This
method can directly track and record the running behavior
of the program and provides the most direct support for
security detection. However, since the operation of firmware
is highly dependent on the physical hardware, IoT terminals
have limited resources. The first issue to be solved is how
to make the firmware run in a controllable environment and
how to track and record the operation behavior when the
traditional dynamic detection technology is applied to the
IoT terminal firmware. Therefore, the dynamic detection of
the IoT terminal firmware can be carried out either in a real
physical device or in a virtual environment simulation [5].
Avatar [11], [12] performs dynamic analysis by partially

offloading the execution of the firmware to actual hardware.
However, running on real hardware is both expensive and
effective only for specific devices, with poor universality
and scalability. FIRMADYNE[5] relies on software-based full
system emulation with an instrumented kernel to achieve the
scalability necessary to automatically analyze thousands of
firmware binaries. Costin et al. [13] performed full system
emulation to achieve the execution of firmware images in a
software-only environment, i.e., without involving any phys-
ical embedded devices.

Deployment on real physical devices is expensive, and the
problem domain is only for the device itself. In a virtual
environment simulation, we also solve the problem of how
to simulate the interaction with the hardware. Even a small
interactive simulation failure will cause the running code to
crash. From the current research situation, it can be seen
that when the traditional code dynamic analysis technology
is applied to the IoT terminal firmware, its applicability or
generality can be greatly challenged.

B. STATIC ANALYSIS
Static analysis [15]–[27] refers to code analysis technology
that uses relevant analysis tools to analyze lexical, grammat-
ical, control flow, data flow and other information without
executing the analyzed samples. Although this technology
does not need actual running code, there are several limi-
tations when the analysis tools are applied to the firmware.
First, these tools are mostly aimed at the source level, which
is contradictory to the closed source of the IoT terminal
firmware [17]. Second, these tools are often aimed only at a
single architecture, especially x86, which is contradictory to
the cross-platform deployment of IoT terminal firmware [18].
Third, these analysis techniques have limited capabilities and
are often targeted at specific problem domains, such as C,
PHP, Java or the corresponding binary code, which is contra-
dictory to the fact that IoT terminal firmware is often a mix-
ture [19]. More importantly, static analysis techniques cannot
solve the problem of the interaction between the firmware and
hardware.

In recent years, a number of security detection tech-
nologies for IoT terminal firmware based on similarity
have emerged—for example, similarity analysis based on

features [4], [25], [26], on intermediate representa-
tion [20], [21], on graph (or tree) structures [22]–[24], [27],
and on machine learning [4], [23], [24]. However, there are
three common questions in these studies: First, is attribute
information, such as the comparative features and graph
structure, essential? This is determined by whether the infor-
mation can identify the code itself in terms of grammar and
semantics. Second, is the comparative attribute information
stable and antivariable? This is determined by whether the
information is intrinsic and the code can be identified on dif-
ferent platforms. Third, is the attribute information compared
heritable? This is determined by whether the information
exists stably in the same series or in similar code.

Inspired by biological genes [28], in reference [3], the con-
cept of firmware code genes is proposed, and its extraction
with the idea of the hypothesis margin [34] is realized, which
make up the basic part of the previous research in theory.
Based on the research of reference [3], this paper focuses
on the information of firmware code genes and measures the
gene distance between firmware codes to realize the security
detection of IoT terminal firmware.

III. EXTRACTION OF FIRMWARE CODE GENES
In this section, we first give a brief overview of firmware
code genes and then extract the firmware code genes from the
three levels of function call relationship information, function
internal control flow information and basic block statistics
information based on reference [3].

A. FIRMWARE CODE GENE OVERVIEW
The concept of genes is not new to the field of code security
detection [29]–[32]. In software similarity and homology
analysis, there have been several relevant studies. Before that,
there were studies on software features, software fingerprints
and software birthmarks [33]. Software features are based on
statistical information and the behavior information of code,
but sometimes they are not common and stable when used
as the basis of a similarity measurement. Although software
fingerprints and software birthmarks compensate for the lack
of software features to some extent, they paymore attention to
the identification of individuals and ignore the association of
the same series and family. Software genes [29]–[31] attempt
to sublimate the previous research but also fail to resolve
three issues: First, the composition of a software gene remains
unknown. The lack of an answer to this question means that
they have not completed the mapping of the biological gene
composition to the software space. Thus, when defining a
software gene, only a ‘‘binary fragment carrying functional
information’’ is used [29]. Second, the difference between
a software gene and a feature has not been identified; that
is, the sublimation of software features to software genes
has not been completed, so the software gene has become
a well-known concept that cannot be clearly defined. Third,
the universal processing of numericalization and normaliza-
tion of software genes has not been investigated; that is,
the transformation from concrete to general has not been

150228 VOLUME 8, 2020

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

accomplished. Thus, prior studies have mostly focused on the
search and matching of specific text information rather than
the numerical calculation.

Reference [3] starts from the composition of the firmware
code genes, completes the structural mapping from biological
genes to firmware code genes, and expounds its materiality.
With the idea of the hypothesis margin, the sublimation from
the feature of firmware code to the gene of firmware code is
completed, and the essential difference between the feature
and gene is answered. Through the numerical and normal-
ized processing of different data types, the differences of the
different features in the data types, the practical significance
and the value range are shielded, and the specific to general
transformation is completed, which enhances the universality
and scalability.

B. FIRMWARE CODE GENE EXTRACTION
Reference [3] takes a large number of common codes in
the IoT terminal firmware as the sample space, constructs a
positive sample dataset and a negative sample dataset, and
completes the sublimation from features to genes through the
FCGES. Through experiments, we can see that in different
architectures and datasets, the extracted firmware code genes
are essential, stable, antivariable and heritable, and the gene
vectors are highly coincident in dimensions. These factors
provide a theoretical basis for the security detection of IoT
terminals based on firmware code genes. This section will
further improve and optimize the composition of firmware
code genes.

1) EXTRACTION OF THE ORIGINAL FEATURES
From the perspective of syntax, the function is the basic com-
ponent of the firmware code; from the perspective of seman-
tics, the function and the call relationship between functions
can well reflect the semantic information. In fact, the function
of the IoT terminal firmware code also depends on the library
function it calls to a large extent. Therefore, compared with
the original feature vector in reference [3], this study adds
the information of the interfunction call relationship in the
function call graph.

The control flow information and basic block code statis-
tics within the function are introduced in detail in refer-
ence [3] and will not be covered. The new interfunction call
relationship information mainly refers to the interfunction
call relationship centered on the corresponding nodes in the
function call graph, as shown in Table 1. Called_ Num is
the number of times the function is called, that is, the input
degree of the node. Call_Num is the number of calls to the
function, that is, the output degree of the node.DCalled_ Num
is the deduplicate number of times the function is called, and
DCall_Num is the deduplicate number of times the function
calls. In_ Num is the number of input parameters of the
function.Out_ Num is the number of output parameters of the
function. InOut_ Num is the number of two-way parameters
of the function. When two-way parameters are encountered,
In_ Num and Out_ Num each add 1, and the total number of

TABLE 1. The extended features of the firmware code.

parameters of the function is In_ Num +Out_ Num-InOut_
Num. RetValue_Typ is the return value type of the function,
and its data type is a string. Node_ Clu is the node clustering
coefficient, calculated according to formula (1):

Node_Clu =
2c

d (d − 1)
(1)

where c is the edge number of the undirected function call
subgraph composed of all adjacent nodes of the node, and d
is the degree of the undirected graph of the node.

2) NUMERICALIZATION AND NORMALIZATION
Although reference [3] analyzes only three types of original
features, such as the numerical type, set-valued type and
sequential type, it also notes that according to the actual
application, it is not limited to these three data types. If there
are better original features that can more accurately reflect
the syntactic or semantic similarity between codes, as long as
they can be numericalized and normalized, then the method
in reference [3] can still be used to extract the firmware code
genes. Therefore, FCGES is universal and scalable.

In this paper, we add attribute information that can reflect
the call relationship between functions. For RetValue_Typ,
we add the string data type. For numericalization and nor-
malization, it is calculated according to formula (2):

Sim (V1[i],V2[j]) =

{
1, if V1[i] = V2[j],
0, else

(2)

For functions with no return value, we consider the return
value to be null.

3) EXTRACTION OF FIRMWARE CODE GENES
We place the original feature vector into the FCGES and
extract the firmware code gene. By using the sample space
constructed by the tools and libraries commonly used in mul-
tiple firmware, we calculate the discrimination ability [36] of
the close samples in each dimension of the original feature
vector and obtain similar results to those of reference [3]:

1) The firmware code gene vectors obtained from different
datasets have a high degree of coincidence in terms of the
dimensions.

2) For the node-centered interfunction call relationship
information, Called_Num, Call_Num, DCalled_Num and
DCall_Num have strong essentiality, stability, antivariability
and heritability when identifying firmware code similarity in
different platforms.

VOLUME 8, 2020 150229

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

3) For the attribute information of the control flow and the
code statistical information of the basic block in the function,
the result is consistent with reference [3].

Notably, in the original feature vector extraction stage,
9 dimensions of features are added to describe the call
relationship. After FCGES processing, only Called_Num,
Call_Num, DCalled_Num and DCall_Num have a strong
ability to distinguish the close samples, which is consis-
tent with our intuitive analysis. The function call relation-
ship has strong robustness. Called_Num and Call_Num of
the similar functions have strong identification ability for
distinguishing the function itself in their respective func-
tion call graph. In particular, DCalled_Num and DCall_Num
have more advantages in identifying functions. For example,
if function A is called 10 times, but all of them are called by
the same function B, then the deduplicated number of times
called and calls are more significant for identifying function
A and function B.

Therefore, this study extracts the firmware code
gene from the IoT terminal firmware Fir_Cod_Gen
= (Sta_Spa, Stafra_Num, CmpIns_Num, JumIns_Num,
CmpIns_Rat, JumIns_Rat, Str_Num, Str_Set, Con_Num,
Con_Set, Nod_Num, Edg_Num, Gra_Den, Deg_Ave,
Indeg_Max, Deg_Max, PatLen_Ave, PatDia, Indeg_AscLis,
Outdeg_AscLis, Deg_AscLis, Pat_AscLis, Called_Num,
Call_Num, DCalled_Num, DCall_Num). When the firmware
code gene is extracted from a function f , it is expressed
as Fir_Cod_Gen(f). In the following sections, the gene
vector is divided into two subgene vectors: One is
the function-centered firmware code gene on the func-
tion call graph CG_Cod_Gen = (Sta_Spa, Stafra_Num,
CmpIns_Num, JumIns_Num, CmpIns_Rat, JumIns_Rat,
Str_Num, Str_Set, Con_Num, Con_Set, Called_Num,
Call_Num, DCalled_Num, DCall_Num). The other is the
firmware code gene on the function internal control flow
graph CFG_Cod_Gen = (Nod_Num, Edg_Num, Gra_Den,
Deg_Ave, Indeg_Max, Deg_Max, PatLen_Ave, PatDia,
Indeg_AscLis, Outdeg_AscLis, Deg_AscLis, Pat_AscLis).
When the firmware code gene on the function call graph is
extracted for a function f , it is expressed as CG_Cod_Gen(f);
when the firmware code gene on the internal control
flow graph of a function is extracted, it is expressed as
CFG_Cod_Gen(f).

IV. FIRMWARE CODE GENE DISTANCE MEASUREMENT
In this section, we first define the concept of the firmware
code gene distance and then use the gene distance to measure
the similarity between firmware codes, which provides the
basis for the approximate equivalent judgment of the seman-
tic similarity between the firmware codes.

A. OVERVIEW OF THE FIRMWARE CODE GENE DISTANCE
Generally, in the field of biological genes [28], different
species, different families and different individuals have dif-
ferent genes, but the degree of gene similarity between the
same species is higher than that between different species,

and the degree of gene similarity between the same family
in the same species is higher than that of different families.
Therefore, in biology, the similarity of genes is often used to
classify individuals and cluster families.

In fact, firmware code genes also have this feature. Due
to different instruction architectures, compiler tools and
optimization options, different target binary codes gener-
ated by the same or similar source code have different
forms [3], [37]–[39]. However, the firmware code genes hid-
den in these binary codes show stability, antivariability and
heritability, which can essentially identify the code itself.
In reference [3], this theory is described in detail. On this
basis, this study will carry out research on security detection
based on firmware code genes with the help of the concept of
the gene distance.
Definition 1 (Firmware Code Gene Space): Each function

in the firmware binary code corresponds to a firmware code
gene vector. These gene vectors form a nonempty set �,
which we call the firmware code gene space.

It can be seen from reference [3] that the material carrier
of the firmware code gene can be flexibly selected according
to different application scenarios. In this study, function level
granularity is chosen.
Definition 2 (Firmware Code Gene Distance): The

firmware code gene distance refers to the quantitative
measurement of the degree of differentiation between the
firmware code genes. For any two points α and β in �, there
is a real number Dis (α, β), which reflects the similarity
between firmware code genes α and β. We call dis(α, β)
a distance in �—that is, the firmware code gene distance
between α and β.

This study uses a two-stage search algorithm to measure
the distance of the firmware code gene on the function call
graph Dis_CG and the distance of the firmware code gene
on the function CFG Dis_CFG. Dis_CG in this paper is
represented by the cosine distance, while the cosine distance
satisfies only the positive qualitative properties and symme-
try, not trigonometric inequality. Therefore, we do not use the
classical definition of the distance space when defining the
gene distance of the firmware code [35], [36], [40].

B. FIRMWARE CODE GENE DISTANCE ON THE CG
For Dis_CG, we use the cosine distance [35], [36], [40] to
measure it. The cosine distance is a measure mechanism that
uses the cosine value of the angle between two vectors in
multidimensional space to measure the difference between
two individuals. The more similar the two individuals are,
the smaller the angle between their vectors is, the higher the
cosine similarity is, and the smaller the cosine distance is.

Let the functions to be compared be f and g. Let α =
CG_Cod_Gen(f), and β = CG_Cod_Gen (g). Then, Dis_CG
is calculated as follows the equation can be derived, as shown
at the bottom of next page:

In this paper, CG_Cod_Gen is an m-dimensional
vector. If the function f is more similar to g, then
CG_Cod_Gen(f) and CG_Cod_Gen(g) are more similar,

150230 VOLUME 8, 2020

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

the cosine angle θ of the vector is smaller, the cosine
similarity cos(CG_Cod_Gen(f), CG_Cod_Gen(g)) is higher,
and the cosine distance Dis_CG (CG_Cod_Gen(f),CG_Cod
_Gen(g)) is smaller.

C. FIRMWARE CODE GENE DISTANCE ON THE CFG
To measureDis_CFG, the Euclidean distance [35], [36], [40]
is used. The Euclidean distance refers to the real distance
between two points in Euclidean space. The more similar the
two individuals are, the closer they are in the Euclidean space,
and the smaller the Euclidean distance is.

Let the functions to be compared be f and g. Let
α = CFG_Cod_Gen(f) and β= CFG_Cod_Gen (g). Then,
Dis_CFG is calculated as follows:

Dis_CFG(α, β)

= Dis_CFG (CFG_Cod_Gen(f),CFG_Cod_Gen(g))

=

√∑n

k=1
(CFG_Cod_Gen(f)[k]−CFG_Cod_Gen(g)[k])2

In this paper, CFG_Cod_Gen is an n-dimensional vector.
If the function f is more similar to the function g, then
CFG_Cod_Gen(f) and CFG_Cod_Gen(g) are more similar,
and the European distance Dis_CFG (CFG_Cod_Gen(f),
CFG_Cod_Gen(g)) is smaller.
As shown in Fig. 2, the Euclidean distance represents the

absolute difference in the numerical value and is not sensitive
to the spatial direction, while the cosine distance represents
the relative difference in direction and is not sensitive to the
absolute value. At the same time, these two distances are
used to correct the problem that the user space measurement
standards may not be uniform. In this study, the cosine dis-
tance is used to measure the similarity of the firmware code
genes on the CG, and then the Euclidean distance is used to
measure the similarity of firmware code genes on the CFG.
After reducing the influence of the direction difference on
the similarity of the firmware code, the absolute distance
between the firmware code genes is evaluated, which can
not only improve the accuracy of firmware code similarity
measurement but also improve the space-time efficiency of
the overall security detection.

FIGURE 2. The firmware code gene distance map.

V. SECURITY DETECTION BASED ON THE FIRMWARE
CODE GENE
In this section, the information of the firmware code gene is
taken as the logical starting point, andDis_CG andDis_CFG
are taken as the basis to complete the firmware security
detection.

A. IDEAS FOR SECURITY DETECTION
In this study, firmware code genes are extracted from known
security defect sample codes, and then FSDS designed in this
study is used to search for the existence of the same or similar
codes in the firmware to be detected. The ‘‘security defect’’
here refers to the security defect in a broad sense, includ-
ing vulnerabilities, malicious code and backdoors. A defect
sample is the firmware code that contains the vulnerability
function, malicious code, or backdoor core function itself
and its associated context. Obviously, the sample code itself
should have a strong ability to distinguish it from other codes.
For the convenience of the narration, security defects such as
vulnerabilities, malicious code and backdoors are collectively
referred to as vulnerabilities in subsequent sections.

According to the analysis of section IV, we adopt a two-
stage search strategy to implement the FSDS. In the first
stage, we first measured Dis_CG between the security defect
sample code and the code to be detected and then use the
CGDS algorithm designed in this study to calculate the over-
all similarity driven by the local sub-graph of the function call
graph. In the second stage, we measure Dis_CFG between
codes. The specific steps are shown in Fig. 3.

Dis_CG(α, β) = 1− cosθ =1− cos (α, β)

= 1−
α · β

‖α‖ ‖β‖

= 1−
CG_Cod_Gen(f) · CG_Cod_Gen(g)
‖CG_Cod_Gen(f)‖ ‖CG_Cod_Gen(g)‖

= 1−

∑m
k=1 CG_Cod_Gen(f) [k]CG_Cod_Gen(g) [k]√∑m

k=1 (CG_Cod_Gen(f) [k])
2
√∑m

k=1 (CG_Cod_Gen(g) [k])
2

VOLUME 8, 2020 150231

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

FIGURE 3. The two-stage search strategy map.

B. DESIGN AND IMPLEMENTATION
(1) Extract the firmware code gene from the vulnera-
bility function f in the known security defect sample
Fir_Cod_Gen(f), and split the gene into two subgene vectors:
CG_Cod_Gen (f) and CFG_Cod_Gen(f).

(2) Generate the function call graph [40], [41] of the
firmware code to be detected, traverse each node in the
graph, and generate their CG_Cod_Gen. In this step,
we obtain a function call graph with attribute information
CG = (V, E, 9, P).

Among them, V is the vertex set, and each vertex is a
function. E is the edge set, E ⊆ V × V . 9 is the correlation
function between the vertex and the edge, indicating the call
relationship between the functions. P is the attribute set of the
node, indicating the firmware code gene on the function call
graph of the node. ∀e ∈ E , then ∃vi, vj ∈ V . For (vi, vj) ∈ V
×V and 9(e) = (vi, vj), where e is called the edge from vi
to vj, and 9(e) represents the calling relationship between vi
and vj. That is, vi calls vj, and vj is called by vi. ∀vi ∈ V , then
ρi ∈ P, and ρi = CG_Cod_Gen(vi).

(3) TraverseCG and calculate the firmware code gene sim-
ilarity between the known sample vulnerability function and
each node in theCG—that is, the firmware code gene distance
Dis_CG. Then, generate a function similarity descending list
Seq according to the firmware code gene distance Dis_CG of
every node.

(4) CGDS, a function call graph-driven local similarity
measurement algorithm, is used to calculate the overall sim-
ilarity of each function in the function list Seq in the local
function call subgraph (LCG) [40], [41]. Based on this,
the function similarity descending list Seq is updated.
Previous studies have revealed that the function call graph

has strong robustness to different instruction architectures
and different optimization options [3], [4], [20]. Therefore,
this study uses CGDS to update the similarity of each func-
tion in the function list Seq generated in the previous step.
The specific calculation process is shown in Fig. 4. In the
function call subgraph composed of the node to be matched
and its adjacent nodes, the weighted average similarity of the
function to be matched and all the functions with their calling
and called relationships with the function to be matched is

calculated. This weighted average similarity is the overall
similarity of the function to be matched on the function call
graph.

It can be seen in Fig. 4 that the local function call sub-
graph is a subgraph composed of the node to be matched, its
adjacent nodes with edge connections, and the edges between
them. That is, the function call subgraph is composed of
the functions to be matched and the functions with their
calling and called relations as the node set, and the calling
and called relations between them as the edge set. In fact,
two local function call subgraphs centered on the function
pair to be matched constitute a weighted complete bipartite
graph [40]–[43], and the function call graph firmware code
gene distance between node pairs in the same layer is the
weight of the edge. In this study, we use the Kuhn-Munkres
algorithm [41]–[43] to calculate the maximumweight match-
ing of the weighted complete bipartite graph as the similar-
ity between the nodes of the graph and then calculate the
weighted average of the similarity of all matching nodes as
the overall similarity of the function pairs to be compared.
In this way, the descending function similarity ranking list
Seq is updated.

The algorithm is as follows.
In algorithm 1, Line 2 corresponding to (a) in Fig. 4,

computesDis_CG of the function to be matched. Lines 3 to 7,
corresponding to (b) in Fig. 4, generate a bipartite graph com-
posed of the parent node of the function to be matched and
Dis_CG between the parent nodes and solve the maximum
matching of the bipartite graph. Lines 10 to 14, corresponding
to (c) in Fig. 4, generate a bipartite graph composed of child
nodes of the function to be matched and Dis_CG between the
child nodes and solve the maximum matching of the bipartite
graph. Lines 17 to 20, corresponding to (d) in Fig. 4, calculate
the overall similarity of the function to be matched on the
local function call subgraph.

(5) The Euclidean distance is used to measure the
similarity of the firmware code gene on the function
CFG between the known sample vulnerability func-
tion and the functions in the function list Seq. This
similarity is the firmware code gene distance of the
function CFG. The descending function similarity ranking list

150232 VOLUME 8, 2020

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

FIGURE 4. The CGDS algorithm map.

Algorithm 1 The CGDS Algorithm
Input Function f and g to be matched

Local function call subgraph centered on f , LCG(f)
Local function call subgraph centered on g, LCG(g)

Output Global similarity driven by local function call subgraph between f and g, Sim_LCG(f, g)

(1) PQ = Ø;
(2) Sim_LCG(f, g) = Dis_CG(CG_Cod_Gen(f), CG_Cod_Gen(f));
(3) Generate the parent node set Vpf of f in LCG (f);
(4) Generate the parent node set Vpg of g in LCG (g);
(5) Simp ={Simij = Dis_CG(CG_Cod_Gen(vpfi), CG_Cod_Gen(vpgj))|∀ vpfi ∈Vpf, vpgj ∈Vpg };
(6) Take Vpf and Vpg as the vertex sets, and Simp as the weighted edge set to generate bipartite graph

Gp = (Vpf, Vpg, Simp);
(7) Using Kuhn-Munkres algorithm to generate the maximum matching of bipartite graph

Gp, Mp = Kuhn-Munkres (Gp);
(8) For each (vpfi, vpgj) ∈Mp
(9) PQ.push((vpfi, vpgj), Simij) ;
(10) Generate the child node set Vsf of f in LCG (f);

Procedure (11) Generate the child node set Vsg of g in LCG (g);
(12) Sims ={Simij = Dis_CG(CG_Cod_Gen(vsfi), CG_Cod_Gen(vsgj))|∀ vsfi ∈Vsf, vsgj ∈Vsg };
(13) Take Vsf and Vsg as the vertex sets, and Sims as the weighted edge set to generate bipartite graph

Gs = (Vsf, Vsg, Sims);
(14) Using Kuhn-Munkres algorithm to generate the maximum matching of bipartite graph Gs,

Ms = Kuhn-Munkres (Gs);
(15) For each (vsfi, vsgj) ∈Ms
(16) PQ.push((vsfi, vsgj), Simij) ;
(17) while (PQ != Ø)
(18) m = PQ.pop;
(19) Sim_LCG(f, g) = Sim_LCG(f, g)+ m.Simij;
(20) Sim_LCG(f, g) = Sim_LCG(f, g) / (PQ.length + 1);
(21) Return Sim_LCG(f, g);

Seq is updated according to the firmware code gene distance
Dis_CFG.
In this study, we did not measure the CFG similarity inside

the function until this step, partly because of the practical
need to further improve the function matching accuracy.
On the other hand, and more importantly, after the local
similarity measurement based on the function call graph,
it can effectivelymask the influence of the CFG heterogeneity

within the function caused by different instruction architec-
tures, different compilers and different optimization options
on the similarity measurement. Moreover, the firmware code
gene on the function CFG extracted in this study is not
based on each basic block inside the CFG but on the struc-
tured CFG information extracted from the global perspec-
tive; that is, the global and structured CFG similarity is
measured.

VOLUME 8, 2020 150233

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

VI. EXPERIMENT AND ANALYSIS
In this section, we will take the common codes and real
firmware as the experimental dataset and verify the effec-
tiveness and robustness of our method in firmware security
detection by analyzing the influence of different platforms,
compilers and optimization options on function search and
matching in detail.

A. EXPERIMENTAL THOUGHTS
Because of the detection algorithm in this study, the final
result is a list of descending functions. Therefore, in the
experimental part, we will mainly focus on whether there
is code similar to the sample in the firmware code to be
detected, as well as their similarity ranking and distribution.
It should be emphasized that the descending similarity list
given by the detection algorithm reflects only the similarity
between the sample and the code in the firmware to be
detected, and it cannot be determined that the function with
the highest ranking or the top ranking is the vulnerability
function. In fact, the verification of the vulnerability function
is an independent research field. However, providing highly
suspected objects to analysts for further analysis is very
meaningful work, which can greatly improve the efficiency
of security detection.

In this section, we will use the following indicators to
evaluate the experimental results.
Definition 3 (Perfect Match and the Proportion of Perfect

Match): A function f in code F matches all the functions in
code G to obtain a ranking list of descending similarity. The
ranking of function g in the list that truly matches f is the
Rank. If Rank = 1, the match is called a perfect match. The
proportion of perfect match refers to the ratio of the number
of perfect matching functions to the total number of functions
in F , which is recorded as Top1.
Definition 4 (Approximate Match and the Proportion of

Approximate Match): If the function g in the list that truly
matches f is ranked within 10—that is, Rank ≤10—then the
match is called an approximate match. The proportion of
the approximate match refers to the ratio of the number of
all approximate matching functions to the total number of
functions in F , which is recorded as Top10.
Definition 5 (Reference Match and the Proportion of Ref-

erenceMatch): If the function g in the list that truly matches f
is ranked within 100—that is, Rank≤100—then the match is
called a reference match. The proportion of reference match
refers to the ratio of the number of all reference matching
functions to the total number of functions in F , which is
recorded as Top100.
In addition, we used Topn in some experiments. Topn refers

to the proportion of functions with Rank ≤ n. Obviously,
in the process of matching, the Rank value evaluates the
matching effect from the perspective of individuals such that
the smaller the value is, the better the matching effect. The
Top value evaluates the matching effect from the perspec-
tive of the whole, so the larger the value is, the better the
effect.

B. EXPERIMENTAL ENVIRONMENT
The experimental environment is as follows. The central
processing unit (CPU) is an Intel Core i7-6700@ 3.40 GHz,
and the memory is 16.0 GB of DDR4 SDRAM. The binary
object code is compiled to a 32-bit x86, a 32-bit ARM and
a 32-bit MIPS using GCC v4.6.2, GCC v4.8.1 and Clang
v3.0, respectively. The Python programming language[44]
is used to implement the FSDS. IDA Pro[45] is used to
disassemble the binary code and write plug-ins to extract
code features. A tool provided by MATLAB R2014b[46]
is utilized for feature selection, gene sublimation and gene
distance measurements.

C. EXPERIMENT
1) THE INFLUENCE OF DIFFERENT PLATFORMS ON
FUNCTION MATCHING
In this experiment, we will use the same compiler and the
same optimization options to compile the same source code
on different platforms to test the influence of heterogeneous
platforms on the detection algorithm.

We use the most commonly used compiler GCC v4.62 and
the default optimization option O2 to compile OpenSSL
v1.0.0 [47] on three different platforms, ARM, MIPS
and x86, and obtain the object binary code with differ-
ent forms. We use the method designed in this paper to
match the function of the same name in these codes and
calculate the distribution of the similarity ranking Topn
(n = 1,10,20,30,40,50,60,70,80,90, 100). The experimental
results are shown in Fig. 5.

In Fig. 5, the following can be seen.
1) In the six matching modes, the results of the proportion

of perfect match Top1 are in the interval (70%, 80%), the
proportion of approximate match Top10 is in the interval
(80%, 90%), and the proportion of reference match Top100 is
in the interval (85%, 95%). The results of using this method
are better.

2) In the six matching modes, the slope of the similarity
ranking proportion curve is gradually flattened from large to
small and finally tends to a straight line. That is, even if the
value of n in Topn is increased, Topn will not change much,
which we call Top-saturated. This is very important, as the
substantial workload for subsequent analysis and detection is
reduced, and the efficiency and accuracy of security detection
is greatly improved.

3) In the six matching modes, ARM and x86 have better
matching effects, and MIPS and x86 have worse matching
effects. This is mainly because MIPS is a typical reduced
instruction set computer (RISC) architecture [37]–[39].
To realize the pipeline, the instruction length is fixed, and
unlike the complex instruction set computer (CISC) archi-
tecture [37]–[39], there are special instructions to complete
the specific functions. What can be done with one instruc-
tion under the CISC architecture often requires multiple
instructions under the RISC architecture (such as in stack
and out stack). Compared with x86, the same source code
compiled on the MIPS platform will have more instructions

150234 VOLUME 8, 2020

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

FIGURE 5. The distribution of TOPn in experiment I.

and basic blocks. Although the ARM architecture belongs
to the RISC architecture, it also absorbs some advantages
of CISC (such as multiregister instructions and conditional
execution). When the same source code is compiled on the
ARM architecture, the number of instructions and basic
blocks is between MIPS and x86. The differences among
the ARM, MIPS and x86 architectures will be reflected in
the function call graph CG and the function CFG of the
code. Therefore, when measuring the firmware code gene
distance on the function call graph Dis_CG and the firmware
code gene distance on the function CFG Dis_CFG belonging
to the CISC architecture x86 and RISC architecture MIPS,
respectively, the gene distance is larger, and the similarity
match effect is poorer. However, even so, we can still see
that the function call graph CG and the function CFG of
the binary code generated by the same source code under
different architectures still maintain sufficient similarity.

4) In the six matching modes, even in two matching pat-
terns with the same architecture, if the matching direction
is different, then the distribution of the similarity ranking
proportion is not the same, and the matching results are not
symmetrical. As shown in Fig. 5, in ARM × x86 mode,
Top1 = 77.01%, Top10 = 86.28%, and Top100 = 90.12%.
In the opposite direction of the x86 × ARM mode, Top1
= 79.97%, Top10 = 88.01%, and Top100 = 91.99%. This
result is because when we calculate the firmware code gene
distance on the function call graphDis_CG, we use the whole
similarity measurement driven by the function call graph.
As shown in Fig. 4, this method is unidirectional and is a
global measure of the firmware code gene distance between
each node in the local function call subgraph centered on
the function to be matched in the sample code function call
graph and the corresponding node in the code to be detected.
In fact, this is a scoring method for the sample code. As men-
tioned above, the function call graph and CFG will be more
or less heterogeneous under different architectures, so the
matching direction is opposite, and the matching results are
not symmetrical. For the function call subgraph with fewer
penalty points, the distance of the firmware code gene on
the function call graph Dis_CG is smaller, and the matching
result is better. Therefore, the x86 × ARM mode matches
better than the ARM × x86 mode.

FIGURE 6. The comparison with reference [20] in experiment.

In addition, for ARM × MIPS, in this paper, Top1 =
75.32%, Top10 = 85.29%, and Top100 = 88.97%. Under
similar experimental conditions, the experimental results in
reference [20] show that Top1= 32.1%, Top10= 56.1%, and
Top100= 80%. As shown in Fig. 6, the twomethods are close
only in the direction of Top100, but there is a large gap in other
directions, especially in the direction of Top1.
It can be seen that the experimental results in this paper are

much better than those in reference [20]. This improvement
may be due to two reasons.

One reason is that reference [20] does not provide the-
oretical proof of the comparability and robustness of the
similarity measurement basis used. In other words, refer-
ence [20] adopts the formula I/O extraction and sampling
based on the basic block, which is highly susceptible to the
influence of the platform, compiler and optimization options.
However, this influence is not discussed theoretically, but the
rationality of the method is verified in turn by experimental
results.

Second, because the BHB algorithm[20] used in the signa-
ture search phase is very sensitive to the heterogeneity of the
CFG, even if the local graph structure of the CFG changes,
it will increase the possibility of a mismatch, which is very
unfavorable for heterogeneous platforms.

The method used in this study effectively solves these two
problems.

First, the detection method in this paper is based on the
firmware code gene. Reference [3] has theoretically demon-
strated that firmware code genes are essential, stable, anti-
variable and heritable in heterogeneous environments. That
is, before the similarity comparison in this paper, we theoret-
ically answer whether the measurement basis has compara-
bility and robustness. This answer lays a solid foundation for
improving the accuracy of the matching results.

Second, the detection method in this paper is implemented
by measuring two distances between firmware code genes.
Both the distance measurement method and the design of
the whole detection algorithm shield the influence of CFG
heterogeneity under different platforms to a certain extent.
This method also guarantees the accuracy of matching results
from the detection process.

VOLUME 8, 2020 150235

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

FIGURE 7. The impact of different optimization options in experiment II.

2) THE INFLUENCE OF DIFFERENT OPTIMIZATION OPTIONS
ON FUNCTION MATCHING
In this experiment, we will use the same compiler and differ-
ent optimization options to compile the same source code on
the same platform to test the influence of different optimiza-
tion options on the detection algorithm.

Using the compiler GCC v4.62, we compile BusyBox
v1.21.1[48] on the ARM platform, choosing four different
optimization options (O0-O3), resulting in four different
binary target codes. As in experiment 1, we use our method
to match the functions in them and calculate the propor-
tion of perfect matches. The experimental results are shown
in Fig. 7 and are described as follows.

1) In the 12 matching modes, the value range of Top1 is
between 30% and 80%. Additionally, the value range of Top1
is between 70% and 80%, except for match modes involving
the O0 optimization option. Thus, the method presented in
this paper is also robust to different optimization options.

2) In the 12 matching modes, Top1 ranges from 30% to
40% regardless of the matching direction when the O0 opti-
mization option is involved. Compared with other matching
modes, the matching result is not satisfactory. This result
shows that code with no optimization option has a great
impact on the matching results, but this kind of matching
still has some reference significance, and in the real firmware
code space, there are fewer codes with no optimization.

3) In the 12 matching modes, the value range of Top1
is between 70% and 80% regardless of the matching direc-
tion, except for the other six matching modes involving
the O0 optimization options. This finding means that func-
tions with optimization options match, and the optimization
options have little effect on the matching results, which may
be related to the compatibility of the optimization strategies
for high-level options with those for low-level options.

3) THE INFLUENCE OF DIFFERENT COMPILERS ON
FUNCTION MATCHING
In this experiment, we will use different compilers and the
same optimization options to compile the same source code
on the same platform to test the impact of different compilers
on the detection algorithm.

FIGURE 8. The impact of different compilers in experiment III.

BusyBox v1.21.1 is taken as the experimental object and is
compiled on the MIPS platform using three common compil-
ers: GCC v4.62, GCC V4.81 and Clang v3.0. The optimiza-
tion option is O2, resulting in three different binary target
codes. As in experiment 2, two pairs of their functions are
matched using the method presented in this paper to calculate
Top1. The experimental results are shown in Fig. 8 and are
described as follows.

1) In the six matching modes, regardless of the function
match between the target code generated by the two compilers
and the direction of matching, the value range of Top1 is
between 50% and 80%. This result shows that the method
in this paper has strong robustness to different compilers.

2) In the six matching modes, the function match between
the target code generated by the same series of compilers
GCC v4.62 and GCC v4.81, regardless of the matching direc-
tion, yields a value range of Top1 between 70% and 80%.
This finding indicates that the function matching between
the series compilers is good and is related to the similar
compiling and optimization techniques used by the same
compiler series.

3) In the six matching modes, function matching between
the target codes generated by different series of compilers,
regardless of the matching direction, yields a value of Top1
that is lower than that of the same series, but the matching
results are still meaningful.

4) THE INFLUENCE OF SIMILAR CODE ON FUNCTION
MATCHING
In this experiment, we will use the same compiler and the
same optimization options to compile similar source codes to
the same platform to verify the effectiveness of this method
for function matching between similar codes.

We compiled BusyBox v1.20.0 and BusyBox v1.21.1 on
the x86 platform using GCC v4.62, the most commonly used
compiler, and the optimization option O2. Using the method
designed in this study, we matched the functions with the
same name in these codes and calculated the distribution of
similarity ranking Topn (n= 1, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100). The experimental results are shown in Fig. 9.

150236 VOLUME 8, 2020

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

FIGURE 9. The distribution of TOPn in experiment IV.

1) In the two matching modes, the result of Top1 exceeds
90%, which indicates that the result is good when the
method designed in this paper is used to match the function
with the same name between BusyBox V1.20.0 and Busy-
Box V1.21.1.

2) In the two matching modes, the slope of the similarity
ranking proportion curve is similar to that of experiment 1;
that is, the slope changes from large to small, gradually flat-
tens, and finally tends to a straight line. However, the differ-
ence is that the initial slope of the curve in this experiment is
larger, and the curve flattening is faster; that is, the saturation
speed of the Top value is faster.

3) In the two matching modes, the matching results in
both directions have a higher degree of coincidence than in
experiment 1. Especially after Top20, the results are basically
coincident. Even Top1 and Top10 are not very different.

From these three points, we can see that this experiment
and Experiment 1 have both the same place and a different
place. Similarly, the existence of firmware code genes is
verified in practice, which verifies the validity and robustness
of the method designed in this study. The difference is as
follows: First, the similarity ranking in Experiment 2 has a
higher starting point, a larger initial slope, and a faster curve
flattening speed. Second, the results of the two matching
directions in Experiment 2 are symmetrical.

This symmetry may be due to three reasons: First, the ver-
sion between BusyBox V1.20.0 and BusyBox V1.21.1 is
relatively close, and the code itself is quite similar. Second,
Experiment 1 was carried out on a heterogeneous platform,
while Experiment 2 was carried out on the same platform.
In other words, the matching accuracy under the same archi-
tecture was higher than that under different architectures.
Third, Experiment 2 not only verified the essentiality, stabil-
ity and antivariability of the firmware code gene verified in
Experiment 1 but also verified the heritability.

In addition, in the BusyBox v1.20.0 × BusyBox
v1.21.1 matching mode, Top1 = 90.87%, and Top10 =
97.26%. In similar experimental environments, the results in
reference [20] show that Top1 = 90.4% and Top10 = 97%.
As shown in Fig. 10, the method in this paper is slightly better
than that in reference [20]. However, considering that this

FIGURE 10. The comparison with reference [] in experiment IV.

TABLE 2. The rank value of experiment V.

experiment uses the same compiler and the same optimization
options to compile similar source code on the same platform,
the proportion of the perfect match Top1 has exceeded 90%,
so this advantage does not seem very large, but under different
platforms, different compilers, and different optimization
options, the advantages may be more obvious.

In the above four experiments, the validity and robustness
of the method designed in this study for function matching
are investigated and analyzed from the platform, compiler,
optimization options and matching direction, taking the tar-
get code generated by the same source code and similar
source code as the research object. The experimental results
not only verify the experimental purpose but also provide a
practical basis and a benchmark for subsequent experiments.
More importantly, in line with reference [3], the existence of
firmware code genes has been proved in practice, along with
the essentiality, stability, antivariability and heritability of the
firmware code genes.

5) OpenSSL VULNERABILITY CVE-2016-6305
In version 1.1.0 before OpenSSL V1.1.0a, there is a secu-
rity vulnerability CVE-2016-6305 in the ssl3_read_bytes
function in the file record/rec_layer_s3.c. This vulnerability
allows remote attackers to cause a denial of service (infinite
loop) by triggering a zero-length record in an SSL_peek call.

We use GCC v4.62 and optimization option O2 to com-
pile OpenSSL V1.1.0 on the ARM, MIPS and x86 plat-
forms and extract the firmware code genes of the function
SSL3_read_bytes in the three platforms. The method in this
paper is used to search for matches in the binaries on other
platforms, and the match rankings are shown in Table 2. From
these results, we can see that the matching ranking is more
ideal.

VOLUME 8, 2020 150237

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

TABLE 3. The rank value of experiment VI.

The experimental results show the following.
1) In the six matching modes, the matching result is ideal,

Rank ≤2.
2) The worst ranking (Rank = 2) appears in the MIPS ×

x86 matching pattern, which is consistent with the analysis in
Experiment 1.

6) BusyBox VULNERABILITY CVE-2018-20679
An issue (Vulnerability CVE-2018-20679) was discovered in
BusyBox before 1.30.0. An out-of-bounds read in the udhcp
component (consumed by the DHCP server, client, and relay)
allows a remote attacker to leak sensitive information from
the stack by sending a crafted DHCP message. This issue
is related to verification in udhcp_get_option() in network-
ing/udhcp/common.c that 4-byte options are indeed 4 bytes.

We obtained the binary code of BusyBox V1.1.0 on the
ARM, MIPS and x86 platforms, from which we extracted
the firmware code gene of the function udhcp_get_option
In the case that the compiler and optimization options are
unknown, the binary code of BusyBox V1.1.0-arm, V1.1.0-
MIPS, V1.1.0-x86, V1.1.3-ARM, V1.2.0-MIPS and V1.3.0-
x86 are taken as experimental objects to search and match
the vulnerability function using the method designed in this
study. The experimental results are shown in Table 3 and are
described as follows.

1) Overall, the matching rank value is not as ideal as
Experiment 5, but it is still relatively advanced at Rank ≤5,
which is related to the unknown compiler and optimization
options.

2) Compared with other match modes, the matching rank
in MIPS × x86 mode is still lower.

3) Matching under the same platform, with an unknown
compiler and optimization options, the Rank value is 1, which
may be due to the code pairs being similar or the same.

7) VULNERABILITY OF THE TP-LINK ROUTER
CVE-2017-16957
Command injection vulnerability CVE-2017-16957 exists in
the firmware of multiple TP-Link routers (TL-WVR, TL-
WAR, TL-ER, TL-R, etc.). This vulnerability allows remote
authenticated users to execute arbitrary commands via shell
metacharacters in the iface field of an admin/diagnostic com-
mand to cgi-bin/luci, related to the zone_get_effect_devices
function in/usr/lib/lua/luci/controller/admin/diagnostic.lua in
uhttpd.

TABLE 4. The rank value of experiment VII.

We retrieved four versions of TP-Link router firmware
binaries containing CVE-2017-16957 vulnerabilities—
namely, TL-WVR450 L, TL-WAR302, TL-ER3210G and
TL-R473G—from which the firmware code genes of the vul-
nerability function zone_get_effect_devices were extracted.
The method designed in this study was used to search
and match the vulnerability function in four versions of
the firmware binary code. The matching results are shown
in Table 4.

Unlike the previous experiments, this experiment is con-
ducted with real closed-source firmware code. That is, we no
longer focus closely on the platform of code deployment,
the compiler used, and the optimization options selected.
It employs a direct search match under unknown circum-
stances, which can better test the effectiveness and robustness
of the firmware code gene and the method designed in this
study. From the experimental results, we can see that the
overall matching result is ideal, at Rank ≤3. This result may
be related to the selected firmware, which is designed and
produced by the same manufacturer in the same period. Gen-
erally, the design tools, design strategies, third-party libraries,
and even the core code and hardware environment that they
use are quite similar.

8) BACKDOOR OF THE D-LINK ROUTER
Some D-Link routers have backdoors. With this backdoor,
an attacker can access the Web control interface without a
username and password. The reason for this backdoor con-
cerns the alpha_auth_check function of the firmware appli-
cation Web server (/bin/Webs). There is a backdoor pass-
word ‘‘xmlset_roodkcableoj28840 ybtide’’ detection in this
function; if true, then it directly allows access to the login
status—that is, without any authentication to access the Web
control interface. The backdoor exists in several types of
router firmware for D-Link and Planex routers.

We obtained four firmware binaries containing the back-
door, DIR-100, DI-524UP and DI-604S for the D-Link router
and BRL-04UR for Planex, from which we extracted the
firmware code genes of the function alpha_auth_check. The
method designed in this study was used to perform a function
matching search among them. The experimental results are
shown in Table 5.

In addition to the vulnerabilities, the backdoor is also
an important research topic of firmware security detection.
Similarly, this experiment is a direct search match in real
closed-source firmware binary code. From the experimental
results, the overall matching effect is good, at Rank ≤2. This

150238 VOLUME 8, 2020

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

TABLE 5. The rank value of experiment VIII.

TABLE 6. The time overhead of experiment V.

finding also verifies the validity of the firmware code gene
and the design method in this paper for firmware backdoor
detection in practice.

D. EXPERIMENTAL PERFORMANCE
Since the extraction of firmware code genes can be completed
before the search, and can be performed only once, this paper
calculates only the time overhead of searchmatching.We take
Experiment 5 as an example because it allows us to focus
on performance overhead without considering the compiler,
optimization options, and source code implications. In the
experiment, the length of the Seq list is set to 200, and the
experimental results are shown in Table 6.

As seen in the table, code similar to the security defect
sample was searched fromOpenSSL in an acceptable amount
of time. Due to the time overhead of the first-stage search,
it is mainly focused on theCGDS algorithm, which is linearly
dependent on the size of the function call graph of the code
to be detected. While the same source code is compiled on
different platforms using the same compiler and the same
optimization options, the function call graph retains enough
similarity (if inline functions are not considered) that the time
overhead for different platforms is relatively close. As for the
overhead of the second-stage search, since the size of the Seq
list has been set to 200, the impact is also a constant.

Therefore, we can also see that the two-stage search strat-
egy adopted in this study, on the one hand, is to meet the
needs of algorithm design; on the other hand, it also pro-
vides countermeasures for the balance of precision and cost.
The length of the Seq list will directly determine the size
of the second-stage search. In this experiment, it is set as
200, mainly because the TOP curve tends to saturation after
n = 100.

E. EXPERIMENTAL REVELATION
The above experiments can be divided into three parts.

(1) Full-function search matching with codes commonly
used in the firmware of IoT terminals as experimental objects,
including Experiments 1, 2, 3, and 4. This section mainly
analyzes the impact of different platforms, different com-
pilers, different optimization options and different matching
directions on function search matching.

(2) The vulnerability function search matching, which
takes real vulnerabilities and codes commonly used in the
firmware of IoT terminals as subjects, contains Experiments
5 and 6. Based on the previous part, the validity of this method
to search and match real vulnerability functions is verified.

(3) Vulnerability function search matching with real
vulnerability (backdoor) and real closed-source terminal
firmware binary code of the IoT includes Experiments 7 and
8. Based on the first two parts, this part further verifies the
validity of this method in searching and matching of the real
vulnerability functions in real firmware.

The three parts are closely related and progressive. The first
part provides the analysis basis and comparison benchmarks
for the latter two parts, and the second part makes practical
preparations for the third part. By combining the experiments,
we can see the following.

(1) The detection algorithm designed in this study has a
good search and match effect on functions and has certain
advantages over traditional methods in the field of IoT termi-
nal security detection.

(2) Using the method designed in this study for
full-function search matching, the Top value saturation speed
is fast. When we encounter a large scale of function call graph
nodes to be detected, this method will help us effectively
reduce the workload of subsequent inspection measurements,
which will greatly improve the efficiency of IoT terminal
firmware security detection.

(3) In different architectures, although the result of func-
tion search matching is different, it is still ideal in general.
This ideal result is critical for IoT terminal firmware that is
widely deployed on heterogeneous platforms.

(4) In different matching directions, the results are some-
times asymmetric, but the overall difference is only quantita-
tive, not enough to cause qualitative changes. This is useful
for the security detection of IoT terminal firmware because
sometimes we cannot specify a matching direction.

(5) Function matching without optimization options is not
ideal, but it has some reference value, and few codes do not
use optimization strategies in reality.

(6) In binary code generated by the same or the same family
of compilers, function searching and matching perform better
than in cross-family compilers. However, COTS technology
is widely used in the design of IoT terminal firmware, and
when the same manufacturer designs the same series of prod-
ucts, it generally uses the same compiler, which has little
effect in reality.

VII. SUMMARY
In this paper, based on reference [3], an IoT terminal security
detection method based on firmware code genes is proposed,
and the FSDS is designed and implemented. Thismethod uses
the essentiality, stability, antivariability and heritability of the
firmware code genes of the IoT terminals, measures the gene
distances of the firmware codes and evaluates the similar-
ity between codes to achieve security detection. The results
show that the FSDS has a good function search matching

VOLUME 8, 2020 150239

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

effect on the firmware binary code under different platforms,
compilers, optimization options and matching directions and
has high efficiency and robustness for IoT terminal firmware
security detection. However, the research on firmware code
genes is still in its infancy, related research is still incomplete,
and some work still must be undertaken in the future.

(1) The purpose of this paper is to complete the search
matching of known vulnerabilities in the firmware to be
detected. The result is a descending ranking list reflecting the
similarity with the sample vulnerability function. Determin-
ing whether the function that ranks first or at the top of this
list is a vulnerability function that is beyond the scope of this
paper. In fact, the validation of vulnerabilities is a research
field in itself.

(2) This paper presents a security detection method based
on firmware code genes for IoT terminals. This method com-
pletes security detection by measuring the distance between
firmware code genes. The firmware code gene distance on the
function call graph, the firmware code gene distance on the
function CFG and the two-stage search algorithm are used to
measure the overall similarity in this study. However, if there
is a better way to describe the firmware code gene distance
or a more precise algorithm to complete the search matching
between functions, then they can still be applied to the system
designed in this study. In other words, the detection system
designed in this study is open and scalable.

(3) This paper corresponds to reference [3], proves the
existence of the firmware code gene of the IoT terminal in
practice, and applies it to the security detection of the IoT
terminal firmware. However, our experiments focus on vul-
nerability function matching. Research studies on malicious
code detection, backdoor discovery, copyright protection,
homology analysis, etc., must be further strengthened.

(4) The object of this research is firmware binary code,
but to highlight vulnerability function search matching and
firmware security detection, the ‘‘binary code’’ in this study is
the binary code that was unpacked, with a peeled file system,
not the firmware binary image before unpacking.

(5) From the method designed in this study, we can
describe the code similarity by measuring the firmware code
gene distance on the function call graph and the firmware
code gene distance on the function CFG. This description
requires that sufficient similarity be maintained between the
code to be detected and the sample on both the function call
graph CG and the function CFG. Therefore, the validity and
robustness of this method for codes with confusion, encryp-
tion and other techniques remain to be studied.

(6) In real firmware code, once a manufacturer finds a
security defect, it usually solves it by patching. Sometimes,
the difference between patched and unpatched code is not so
great; it is just a judgment statement or a few lines of code.
This situation reflects that the differences in the firmware
code genes and gene distances are much less obvious. There-
fore, the validity and robustness of the methods presented
in this paper for the vulnerability function and vulnerability
function patches remain to be studied.

REFERENCES
[1] White Paper on Internet of Things Security, China Inst. Inf. Commun.,

Beijing, China, 2018.
[2] (May 27, 2020). In-depth Analysis Report on Internet of Things

Security and Applications in 2018. [Online]. Available: https://wenku.
baidu.com/view/40b64e8329ea81c758f5f61fb7360b4c2e3f2ad8.html

[3] X. Zhu, Q. Li, P. Zhang, and Z. Chen, ‘‘A firmware code gene extraction
technology for IoT terminal,’’ IEEE Access, vol. 7, pp. 179591–179604,
2019.

[4] C. Qing, L. Zhongjin, and W. Mengtao, ‘‘VNDS: An algorithm for cross-
platform vulnerability searching in binary firmware,’’ J. Comput. Res.
Develop., vol. 53, no. 10, pp. 2288–2298, 2016.

[5] D. D. Chen, M. Egele, M. Woo, and D. Brumley, ‘‘Towards automated
dynamic analysis for Linux-based embedded firmware,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2016, pp. 1–16.

[6] F. I. Khan and S. Hameed, ‘‘Understanding security requirements and
challenges in Internet of Things (IoTs): A review,’’ J. Comput. Netw.
Commun., vol. 2019, pp. 9629381:1–9629381:14, Jan. 2019.

[7] (May 7, 2019). Talking About the Safety of Camera. [Online]. Available:
https://mp.weixin.qq.com/s/xY6W-zq2dzgeH4N6t6-ouQ

[8] S. Hilt, V. Kropotov, F. Merces, M. Rosario, and D. Sancho, ‘‘The
Internet of Things in the cybercrime underground,’’ Trend Micro Res.,
Tokyo, Japan, Tech. Rep., 2019. [Online]. Available: https://documents.
trendmicro.com/assets/white_papers/wp-the-internet-of-things-in-the-
cybercrime-underground.pdf

[9] N. Saeed, M.-S. Alouini, and T. Y. Al-Naffouri, ‘‘Toward the Internet of
underground things: A systematic survey,’’ IEEE Commun. Surveys Tuts.,
vol. 21, no. 4, pp. 3443–3466, 4th Quart., 2019.

[10] (May 7, 2019). Thoughts on a Vulnerability in Industrial Control
System. [Online]. Available: https://mp.weixin.qq.com/s/LZnvDQ9lSqgfd
8LvKKgteA

[11] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, ‘‘Avatar:
A framework to support dynamic security analysis of embedded systems’
firmwares,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 1–16.

[12] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, ‘‘Avatar2: A multi-
target orchestration platform,’’ in Proc. Workshop Binary Anal. Res. (Colo-
cated NDSS Symp.), vol. 11, Feb. 2018, pp. 1–11.

[13] A. Costin, A. Zarras, and A. Francillon, ‘‘Automated dynamic firmware
analysis at scale: A case study on embedded Web interfaces,’’ in Proc.
11th ACM Asia Conf. Comput. Commun. Secur. (ASIA CCS), 2016,
pp. 437–448.

[14] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, ‘‘Dynamic malware
analysis in the modern era—A state of the art survey,’’ ACMComput. Surv.,
vol. 52, no. 5, pp. 1–48, 2019.

[15] A. Danese, G. Pravadelli, and V. Bertacco, ‘‘Work-in-progress: DOVE:
Pinpointing firmware security vulnerabilities via symbolic control flow
assertion mining,’’ in Proc. 12th IEEE/ACM/IFIP Int. Conf. Hardw./Softw.
Codesign Syst. Synth. Companion (CODES), Oct. 2017, pp. 1–12.

[16] G. Hernandez, F. Fowze, D. Tian, T. Yavuz, and K. R. B. Butler, ‘‘Fir-
mUSB: Vetting USB device firmware using domain informed symbolic
execution,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 2245–2262.

[17] F. Gauthier, T. Lavoie, and E. Merlo, ‘‘Uncovering access con-
trol weaknesses and flaws with security-discordant software clones,’’
in Proc. 29th Annu. Comput. Secur. Appl. Conf. (ACSAC), 2013,
pp. 209–218.

[18] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Asm2 Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472–489.

[19] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, ‘‘A large-scale
analysis of the security of embedded firmwares,’’ in Proc. Usenix Secur.
Symp., 2014, pp. 95–110.

[20] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, ‘‘Cross-
architecture bug search in binary executables,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2015, pp. 709–724.

[21] Y. David, N. Partush, and E. Yahav, ‘‘Similarity of binaries through re-
optimization,’’ in Proc. 38th ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), 2017, pp. 79–94.

[22] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, ‘‘Scalable graph-
based bug search for firmware images,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2016, pp. 480–491.

[23] D. Zhao, H. Lin, L. Ran, M. Han, J. Tian, L. Lu, S. Xiong, and J. Xiang,
‘‘CVSkSA: Cross-architecture vulnerability search in firmware based on
kNN-SVM and attributed control flow graph,’’ Softw. Qual. J., vol. 27,
pp. 1045–1068, Feb. 2019.

150240 VOLUME 8, 2020

X. Zhu et al.: Research on Security Detection Technology for IoT Terminal

[24] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 363–376.

[25] P. Shirani, L. Wang, and M. Debbabi, ‘‘BinShape: Scalable and robust
binary library function identification using function shape,’’ in Proc.
Int. Conf. Detection Intrusions Malware, Vulnerabil. Assessment. Cham,
Switzerland: Springer, 2017, pp. 301–324.

[26] L. Nouh, A. Rahimian, D. Mouheb, M. Debbabi, and A. Hanna, ‘‘BinSign:
Fingerprinting binary functions to support automated analysis of code
executables,’’ in Proc. IFIP Int. Conf. ICT Syst. Secur. Privacy Protection.
Cham, Switzerland: Springer, 2017, pp. 341–355.

[27] H. Huang, A. M. Youssef, and M. Debbabi, ‘‘BinSequence: Fast, accu-
rate and scalable binary code reuse detection,’’ in Proc. ACM Asia
Conf. Comput. Commun. Secur. New York, NY, USA: ACM, Apr. 2017,
pp. 155–166.

[28] S. Mukherjee, The Gene: An Intimate History, X. Ma, Ed. Beijing, China:
CITIC Press Corporation, 2018.

[29] H. Jin, S. Zheng, and Z. Binglin, ‘‘Detection and classification of Android
malware based on malware gene,’’ Appl. Res. Comput., vol. 36, no. 6,
pp. 1813–1818, 2019.

[30] (Jun. 7, 2019).Written After the Sub-Forum of ‘Software Genetics Technol-
ogy’ (I). [Online]. Available: https://www.sohu.com/a/228476725_468696

[31] (Jun. 7, 2019).Written After the Sub-Forum of ‘Software Genetics Technol-
ogy’ (II). [Online]. Available:http://www.sohu.com/a/228946546_468696

[32] (Jun. 7, 2019). CCF Held Seminar on Software Gene in ZhengZhou.
[Online]. Available: https://www.ccf.org.cn/c/2018-12-06/657463.shtml

[33] Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan, and Z. Yang, ‘‘Reviv-
ing sequential program birthmarking for multithreaded software plagia-
rism detection,’’ IEEE Trans. Softw. Eng., vol. 44, no. 5, pp. 491–511,
May 2018, doi: 10.1109/TSE.2017.2688383.

[34] M. Yang and P. Yang, ‘‘Hypothesis-margin model incorporating structure
information for feature selection,’’ in Proc. 2nd Int. Symp. Electron. Com-
merce Secur., May 2009, pp. 634–639.

[35] G. Edgar and M. Parmenter, Discrete Mathematics With Graph Theory,
3rd ed. Beijing, China: China Machine Press, 2020.

[36] Z. Zhihua,Machine Learning. Beijing, China: Tsinghua Univ. Press, 2016.
[37] K. R. Irvine and L. B. Das, Assembly Language for X86 Processors.

Upper Saddle River, NJ, USA: Prentice-Hall, 2011.
[38] D. Sweetman, See MIPS Run Linux. Amsterdam, The Netherlands:

Elsevier, 2010.
[39] G. Lei, Development of Embedded Linux System Based on ARM. Beijing,

China: Tsinghua Univ. Press, 2014.
[40] D. B.West, Introduction to Graph Theory (Classic), 2nd ed. London, U.K.:

Pearson, 2018.
[41] G. Suixiang, Graph Theory and Network Flow Theory. Beijing, China:

Higher Education Press, 2009.
[42] B. Korte, ‘‘Combinatorial optimization: Theory and algorithms,’’ Algo-

rithms Combinatorics, vol. 146, no. 1, pp. 120–122, 2002.
[43] H. Zhu, M. Zhou, and R. Alkins, ‘‘Group role assignment via a Kuhn–

Munkres algorithm-based solution,’’ IEEE Trans. Syst., Man, Cybern. A,
Syst. Humans, vol. 42, no. 3, pp. 739–750, May 2012, doi: 10.1109/
TSMCA.2011.2170414.

[44] A. Downey, P. Wentworth, and J. Elkner, How To Think Like a Computer
Scientist: Learning With Python, 2nd ed. Beijing, China: Posts and Tele-
com Press, 2016.

[45] C. Eagle, The IDA Pro Book, S. Huayao and D. Guiju, Eds. Beijing, China:
Posts Telecom Press, 2012.

[46] W. Xin, MATLAB R2014a From Entry to Mastery. Beijing, China:
Publishing House Electronics Industry, 2015.

[47] W. Zhihai, T. Xinhai, and S. Hanhui, OpenSSL and Network Information
Security: Foundation, Structure and Instructions. Beijing, China: Tsinghua
Univ. Press, 2007.

[48] C. Hallinan, Using BusyBox (Digital Short Cut). London, U.K.: Pearson
Education, 2006.

XINBING ZHU is currently pursuing the Ph.D.
degree with the State Key Laboratory of Math-
ematical Engineering and Advanced Computing,
China. His research interests include the IoT and
information security.

QINGBAO LI is currently a Professor with the
State Key Laboratory of Mathematical Engineer-
ing and Advanced Computing, China. His research
interests include information security and trusted
computing.

ZHIFENG CHEN is currently pursuing the Ph.D.
degree with the State Key Laboratory of Math-
ematical Engineering and Advanced Computing,
China. His research interests include networks and
information security.

GUIMIN ZHANG is currently pursuing the Ph.D.
with the State Key Laboratory of Mathematical
Engineering and Advanced Computing, China.
His research interests include networks and infor-
mation security.

PENG SHAN is currently pursuing the master’s
degree with the State Key Laboratory of Math-
ematical Engineering and Advanced Computing,
China. His research interests include networks and
information security.

VOLUME 8, 2020 150241

http://dx.doi.org/10.1109/TSE.2017.2688383
http://dx.doi.org/10.1109/TSMCA.2011.2170414
http://dx.doi.org/10.1109/TSMCA.2011.2170414

