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ABSTRACT In order to improve the recognition accuracy of partial discharge (PD) by making full use of
the time-frequency characteristics of PD signals and employing deep learning theory, a kind of PD pattern
recognition method based on variational mode decompositon (VMD)-Choi-Williams distribution (CWD)
spectrum and optimized convolutional neural network (CNN) with cross-layer feature fusion is proposed
in this paper. Firstly, a PD signal is decomposed into several components by VMD algorithm, and the
CWD analysis of the obtained components is carried out to obtain the VMD-CWD time-frequency spectrum.
Secondly, the cross-layer feature fusion and optimization CNN (CFFO-CNN) is constructed by introducing
cross-layer connection and optimization algorithm. Thirdly, the VMD-CWD is regarded as the input vector
to train CFFO-CNN to learn and extract the intrinsic features of the spectrum. Finally, the trained network
is used to recognize the PD types of the testing samples. The proposed method is compared with traditional
recognition methods such as BP neural network (BPNN) and support vector machine (SVM), as well as some
commonly used deep learning algorithms. The experimental results indicate that the recognition performance
of the proposed method is significantly better than that of existing recognition methods with accuracy up to
99.5%. It is proved that CFFO-CNN has superior feature extraction ability, which can extract the internal
features of the VMD-CWD spectrum independently with higher recognition accuracy and wider application
prospect.

INDEX TERMS Variational mode decomposition (VMD), Choi-Williams distribution (CWD), feature
fusion, convolutional neural network (CNN), partial discharge, pattern recognition.

I. INTRODUCTION
Power transformers are the most crucial equipment in the
power grid. Its insulation condition is directly related to
the safe operation of the whole power system. However,
in the production, transportation, installation and long-term
operation of transformers, various insulation defects will
inevitably appear. Among them, partial discharge (PD) is
the main reason for the final breakdown of insulation of
transformers, and it is also an important manifestation of the
internal insulation degradation [1]. Due to the difference of
insulation degradation mechanism among different discharge
types, the degree of damage to the equipment is also distinct.
Therefore, the correct identification of the detected PD type
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is conducive to the evaluation of the internal insulation state
of transformers, which has become a hot research content of
power transformers fault diagnosis and location [2].

The premise of pattern recognition of PD signals by using
discharge data is to analyze the characteristics of differ-
ent discharge types correctly. Since a PD signal is a non-
stationary time-varying signal, traditional time-frequency
analysis methods such as STFT [3], Hilbert-Huang transform
(HHT) [4] and Wigner-Ville distribution (WVD) [5] are pro-
posed by scholars to analyze PD signal. The above methods
have achieved corresponding results in practical application,
but they also have some deficiencies. For instance, the win-
dow function of STFT is constant, which leads to its poor
local adaptability [6]; in HHT, the modes overlap with each
other easily, and the fault features in the obtained marginal
spectrum is not clear [7]; WVD is susceptible to the influence
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of cross-interference terms in the process of signal analysis
[8], thus reducing the recognition rate.

Choi-Williams distribution (CWD) is a common time-
frequency analysis method of fault signals. On the basis of
WVD, CWD effectively restrains cross-interference terms
by introducing kernel function, which makes it describe
the instantaneous frequency and edge characteristics of sig-
nal more clearly [9]. VMD-CWD combines the variational
mode decomposition (VMD) [10] with CWD to obtain the
spectrum diagram for PD pattern recognition without cross-
interference terms and with good energy aggregation. Since
different types of PD signals contain different frequency
components, the VMD-CWD obtained after time-frequency
analysis is bound to have some differences. Therefore,
the VMD-CWD spectrum diagram of PD signal can be used
as the feature expression to distinguish different discharge
types.

Due to the large amount of information contained in the
constructed PD feature expression, it is subjective to extract
one or several features of PD signal through complex artificial
design, and the traditional shallow-layer recognition method
has poor processing ability for high-dimensional data, which
easily leads to the lack of generalization ability of the model,
so it is hard to achieve good recognition effect. In recent years,
deep learning has been widely used due to its advantages of
automatic feature extraction and classification, which brings
new opportunities for pattern recognition of PD [11]. In [12],
Karimi et al. have used deep belief network (DBN) to iden-
tify three types of PD and achieved good results. In [13],
stacked sparse auto-encoder (SSAE) is successfully applied
to classify four defined PD severity states. In comparisonwith
other deep learning algorithms, the model complexity and
training difficulty of convolutional neural network (CNN)
are relatively small owing to its parameter sharing and local
connection, which makes CNN have superior performance
in feature extraction of high-dimensional data, especially
suitable for image processing [14], [15]. Nowadays, CNN
has been successfully applied in speech recognition, image
recognition and other fields [16]–[18]. In reference [19], one-
dimensional CNN is used to detect PD types by extracting the
characteristics of PD time-domainwaveform. Comparedwith
traditional artificial feature extraction methods, CNN can
adaptively extract high-dimensional nonlinear and complex
correlation features of data with strong nonlinear mapping
capability [20].

Up to now, although some researches have applied CNN to
pattern recognition of PD, the recognition accuracy still needs
to be further improved. First of all, the existing CNN used in
PD recognition usually takes the time-domain waveform of
PD signal as input and does not contain frequency-domain
information, which leads to the insufficiency of the feature
information and restricts the improvements in recognition
accuracy. Secondly, the traditional CNN usually extracts the
semantic information contained in deep-layer features from
top to bottom for classification, and often ignores the image
details contained in the shallow-layer features. Therefore, the

recognition accuracy of traditional CNN still have a space to
improve. Consequently, a pattern recognition method of PD
signals based on the VMD-CWD and optimized CNN with
cross-layer feature fusion is proposed. It works roughly in the
following steps. Firstly, theVMD-CWDspectra of PD signals
are obtained by time-frequency analysis. Secondly, cross-
layer feature fusion and optimization CNN (CFFO-CNN) is
constructed to automatically extract the deep and shallow
features contained in VMD-CWD so as to further realize the
recognition of PD types. Experimental results prove that the
proposed method is feasible.

II. PD EXPERIMENTAL MODELS
According to the form and characteristics of PD signals
in power transformers, four kinds of PD insulation defect
models are designed in the laboratory to simulate corona
discharge, plate-to-plate discharge, needle-to-plate discharge
and floating discharge. The electrode structures and typical
PD data relevant to each type are shown in Table 1.

TABLE 1. Four types of PD models.

A. CORONA DISCHARGE MODEL
This model is used to generate the corona discharge signals of
transformer in air. The discharge tip adopts copper wire with
a diameter of 1 mm, and its length is set to be 30, 50, 70 mm,
respectively.
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B. PLATE-TO-PLATE DISCHARGE MODEL
This model is used to generate the plate-to-plate discharge
signals in the transformer. The diameters of the round epoxy
insulation plate are 30, 40, 50 mm, respectively.

C. NEEDLE-TO-PLATE DISCHARGE MODEL
This model is used to generate the partial discharge signals
caused by sharp conductor inside the transformer. The needle
electrode is made of aluminum rod with a diameter of 3 mm,
and the end is polished into a 30◦ cone. An insulating plate
with a thickness of 1 mm is placed between the needle elec-
trode and the plate electrode.

D. FLOATING DISCHARGE MODEL
This model is used to generate the floating discharge signals
caused by loose contact or poor grounding inside the trans-
former. The insulation plate is 50 mm in diameter and 1 mm
in thickness. The thickness of the metal gasket is 3 mm and
the diameters are 5 and 10 mm, respectively.

The PD measurements were implemented by pulse cur-
rent method according to standard IEC60270-2000. The
schematic wiring diagram of the experiment is shown
in Fig. 1. The sensor used in the experiment is composed
of the coupling capacitor and the detection impedance.
The detection impedance is relatively complex. In fact,
its primary side is connected in parallel with a discharge
tube for protection and its secondary side is connected
in parallel with a terminal resistance for preventing high
frequency signal reflection. The inductance of the detec-
tion impedance is 0.88mH and the coupling capacitance
is 1000pF. TWPD-2F PD analyzer is used to capture
and display PD signals in the experiments. Its sampling
rate is set to 40MHz, the measured signal bandwidth
is 40-300kHz. The high-voltage experiment platform is
TWI5133-10/100am.

FIGURE 1. PD measurement system in experiments.

During the experiments, the discharge data of each power
cycle is taken as a sample. In order to simulate the different
degree of discharge severity and make the experimental sam-
ples not lose generality in the subsequent analysis process,
this experiment collected 4 kinds of discharge samples under
different voltage levels, 150 samples for each discharge type,
a total of 600 samples. Among them, there are 100 training
samples of each type, 400 in total; 50 testing samples of each
type, 200 in total.

III. METHOD
A. THEORY OF VMD-CWD ANALYSIS
CWD is a typical time-frequency analysis method of fault
signal in Cohen class time-frequency distribution. By intro-
ducing the exponential kernel function to smooth the WVD,
the cross-interference term of the signal is suppressed to
some extent. For a continuous time signal z(t), the unified
expression of Cohen class time-frequency distribution is [9]:

Cz(t, f )=

+∞∫
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where t is time, f is frequency, u is local time, τ is time-
shift parameter, z∗(t) is the conjugate complex of signal z(t),
ψ (t-u, τ ) is the kernel function, and the exponential kernel
function expression of CWD is as follows:
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where α is the smoothing factor, substituting (2) into (1) to
get the definition of CWD as follows:
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Nevertheless, CWD will reduce the time-frequency
aggregation of the spectrum while weakening the cross-
interference terms [21]. In addition, when processing a
multi-component short-time signal, the ability of CWD to
suppress cross-interference terms will be relatively weak-
ened. Therefore, it is very important to find a signal anal-
ysis method which can not only ensure the time-frequency
aggregation, but also effectively inhibit the cross-interference
terms.

VMD is an adaptive and non-recursive signal decomposi-
tion algorithm, which can decompose a nonlinear and non-
stationary signal composed of multiple components into a
series of band-limited intrinsic mode functions (BLIMFs).
Each BLIMF is independent of each other and closely around
the corresponding central frequency. Hence, VMD algorithm
can be combined with CWD: firstly, a measured PD signal
is decomposed into n BLIMFs containing only a single
frequency component by using VMD, denoted as ui(t) (i =
1, 2, . . . , n). Then, the CWD is obtained based on the time-
frequency analysis on these components. Finally, the linear
superposition of each CWD is obtained to form the VMD-
CWD spectrum diagram of the original signal. This method
can not only eliminate the influence of cross-interference
items, but also ensure good time-frequency aggregation. The
specific implementation steps are shown in Fig. 2.
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FIGURE 2. Time-frequency analysis of a PD signal based on VMD-CWD.

B. CROSS-LAYER FEATURE FUSION AND OPTIMIZATION
CNN MODEL
CNN is a deep learning network mainly based on convolution
operation. Due to its high invariance such as displacement
and scaling in data processing, it is extensively applied in
image recognition [22], [23]. The basic structure of CNN
includes input layer, convolution layer, pooling layer and full
connection layer [24].

Convolution layer is used for extracting and filtering fea-
tures of input image. The specific process can be expressed
as follows:

Ci = σ (Ci−1 ⊗Wi + bi) (4)

whereCi represents layer i feature map of CNN,⊗ represents
convolution calculation, Wi is the weight matrix of convolu-
tion kernel of layer i, bi is the bias vector of layer i, and σ
represents activation function.

The pooling layer is used for dimensionality reduction of
the features extracted from the convolution layer, so as to
reduce the calculation cost. The calculation process is shown
in (5):

Ci = p(Ci−1) (5)

where p stands for pooling operation. Currently, average
pooling and max pooling are the two most commonly used
pooling methods [25]. Since the max pooling is to select the
maximum value in the pooling window to form the output
features, which can better retain the effective information and
reduce the amount of data processing, it has become the most
widely used pooling method at this stage [26].

The full connection layer expands the obtained eigenmatrix
as a vector and adjusts its dimension for comparison with the
sample label [22].

Generally, CNN adopts small batch random gradient
descent method to update the weight and conduct super-
vised training, which can effectively reduce the calculation
cost. For the specific training process, please refer to the
reference [27].

The cross-layer feature fusion and optimization CNN
(CFFO-CNN) proposed in this paper is based on the
traditional CNN, through the introduction of cross-layer
connection to improve the network structure, select output
features of several pooling layer that can effectively express
the essential information of signal, and input them into the
full connection layer after fusion, so that the network can
extract the internal characteristics of signal from shallow

FIGURE 3. Structure of cross-layer feature fusion CNN.

and deep, so as to realize the recognition of PD signals.
The basic idea is shown in Fig. 3. Firstly, the preprocessed
image is input into the CNN for convolution transformation.
The network contains n convolution layers and n pooling
layers. Then, k (k = 1, 2, . . . ,N ) pooling layers’ outputs are
selected for feature fusion, and the features after fusion can be
expressed as:

F = [Xpool1,Xpool2, . . . ,Xpoolk ] (6)

where Xpool1,Xpool2, . . . , Xpoolk are respectively the output
characteristic map of the 1st, 2nd,. . . , k-th pooling layer.
In addition, in order to solve the phenomenon of dimension
surge caused by feature fusion, dropout method is utilized to
randomly shield some neurons in the full connection layer,
for the purpose of reducing the calculation and preventing
overfitting. Finally, the fused characteristic map is input into
the full connection layer for classification.

Besides, the hyper-parameter is a critical factor that affects
the learning rate and optimization ability of CNN [28]. In this
paper, an optimization algorithm is applied to optimize the
hyper-parameter of cross-layer feature fusion CNN, in order
to accelerate the convergence rate of network training and
obtain higher recognition accuracy.

C. PATTERN RECOGNITION OF PD SIGNALS BASED ON
VMD-CWD AND CFFO-CNN
In this paper, we take the VMD-CWD image of PD signal as
input, and use CFFO-CNN to complete the pattern recogni-
tion of different PD types. The flow chart is shown in Fig. 4.

The specific implementation steps are as follows:
Step 1: VMD decomposition and CWD time-frequency

analysis were performed on the PD signals acquired from the
experiments to obtain the VMD-CWD spectrum images. The
obtained spectrum images were gray scaled into 64×64 gray
level matrix and then divided into the training sample set and
testing sample set;
Step 2: Build up the basic structure of CNN, set learning

rate, batch size, iteration times and other relevant training
parameters;
Step 3: Introduce cross-layer connection, compare the

recognition effect of networks with different feature fusion
layer structures, and determine the best feature fusion layer;
Step 4: Carry out the optimization algorithm to optimize

the hyper-parameters of the cross-layer feature fusion CNN,
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FIGURE 4. Flow chart of identification of PD signals.

so to obtain the CFFO-CNN. Then, training samples are used
to train CFFO-CNN, and the network parameters are updated
according to the back-propagation algorithm and the errors of
the output and the sample label, until the training process of
the whole network was completed;
Step 5: Use the trained CFFO-CNN to identify the type of

PD signals in the testing sample set to obtain the recognition
results.

IV. EXPERIMENT RESULTS AND ANALYSIS OF PD
PATTERN RECOGNITION
A. ACQUISITION OF VMD-CWD SPECTRUM IMAGE
As mentioned above, each PD sample was decomposed by
VMD, and CWD analysis was carried out on the BLIMFs
obtained by decomposition to form the corresponding VMD-
CWD spectrum diagram. The VMD-CWD of the four types
of PD signals was shown in Fig. 5.

From Fig. 5, a PD signal is composed of multiple com-
ponents with different center frequencies. It can be clearly
seen from the VMD-CWD spectrum that the discharge time
and the main frequency components of the four types of PD
signals are observably different, which has practical physi-
cal significance. The VMD-CWD of PD signals have some
differences in time domain and frequency domain, which
carefully reflects the change process of signals in the time-
frequency plane. Therefore, it can be used as a standard
to distinguish different discharge types and applied to PD
pattern recognition.

In order to further prove the superiority of VMD-CWD
time-frequency analysis, four classic signal time-frequency
analysis methods including STFT, HHT, WVD, CWD are
performed on the PD samples to obtain the corresponding
time-frequency spectrum, as comparison of VMD-CWD.

FIGURE 5. Time-frequency spectrum of PD signals based on VMD-CWD:
(a) corona discharge, (b) plate-to-plate discharge, (c) needle-to-plate
discharge, (d) floating discharge.

Each kind of spectrum is gray scaled into 64 × 64 matrix.
Then, the gray-gradient co-occurrence matrix method is used
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to extract 15 kinds of gray texture features of the matrix such
as gradient dominance and gray entropy, as the input vector
for BPNN. BPNN adopts a 3-layer structure with 15 hidden
layer neurons, and the number of iterations is set to 100. The
recognition results are shown in Table 2.

TABLE 2. Recognition results based on different time-frequency analysis
methods.

According to Table 2, the recognition result based on
VMD-CWD has the highest accuracy of 88.0%, which is
25%, 24.5%, 17.5% and 11% better than STFT, HHT, WVD
and CWD time-frequency analysis method, respectively.
Table 2 fully verifies the feasibility of VMD-CWD in PD
recognition. In addition, the accuracy in the table is still
relatively low, which may be due to the limitations of the
features extracted manually that can not completely reflect
the characteristics of the spectrum. Therefore, the com-
plete VMD-CWD spectrum image can be taken as an input,
and the convolutional neural network can be used to auto-
matically extract the characteristic relationship between the
VMD-CWD images, thereby directly identifying the four
types of PD.

Besides, as mentioned above, for the purpose of reducing
the calculation amount in the subsequent network training
process, theVMD-CWD imageswere gray scaled into 64×64
gray level matrix (the gray value of each pixel was 0-255) as
the input of CFFO-CNN network, the output type was 4.

B. DESIGN OF CFFO-CNN STRUCTURE
1) CONSTRUCTION OF BASIC NETWORK STRUCTURE
Before using network to identify PD signal types, the basic
structure of the network should be determined according
to the characteristics of the sample set. Generally, with the
increase of network depth, the feature extraction ability of
CNN is gradually enhanced, but the number of network
parameters to be trained is also increased, and the risk of
overfitting is easy to occur for the sample set with insufficient
data [29].

Therefore, the performance of CNN with different number
of network layers was tested. The first CNN had 2 convo-
lution layers and corresponding pooling layers, the second
CNN had 3 convolution layers and corresponding pooling
layers, up to the final CNN of 5 convolution layers and
corresponding pooling layers. Except the network depth, each
CNN had the similar parameters, i.e., convolution kernel size
of each network was set to 5× 5, the pooling kernel size was
2× 2, the batch size was 8, and the number of iterations was
200. Moreover, each CNN was trained by ReLU activation

FIGURE 6. PD recognition results of different network depths: (a)
accuracy curves in different network depths, (b) loss curves in different
network depths.

function, max pooling method and the stochastic gradient
descent with momentum (SGDM) algorithm. The accuracy
and loss value curves of the four networks are shown in Fig. 6.
In this paper, the preprocessing of PD signals is implemented
in MATLAB 2018a and all deep neural networks are based
on Pytorch framework. All above calculations are carried out
on the Windows 10 operating system with Intel i7-4720HQ
(2.6GHz) CPU and 8GB RAM.

As can be seen in Fig. 6, the network with 3 convolu-
tion layers can quickly converge and obtain high recognition
accuracy. When there are two convolution layers, although
the recognition rate of the network is rapidly improved at
first, the accuracy fluctuates when the number of iterations
reaches 140, unable to maintain a stable state, and the overall
recognition rate is slightly lower than that of the network with
3 convolution layers. While the number of convolution layers
is more than 4, the accuracy is relatively low with fewer itera-
tions, and the convergence speed is slower. Experiments show
that the network performance can be improved by increasing
the depth of the network before the gradient disappears, but it
is not that the deeper the network depth, the better the recog-
nition effect. As a result, after comprehensive comparison,
we choose the network model with 3 convolution layers and
corresponding pooling layers.
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FIGURE 7. PD recognition results of different convolution kernel sizes:
(a) accuracy curves in different convolution kernel sizes, (b) loss curves
in different convolution kernel sizes.

In addition, the size of convolution kernel is of significant
importance to the PD pattern recognition performance of
CNN [29]. On the basis of the network structure consisting
of 3 convolution layers and corresponding pooling layers,
the size of the convolution kernel is set to 3 × 3, 5 × 5,
7× 7, 9× 9, respectively. The remaining parameters are kept
unchanged, and the accuracy and loss value curves of the four
networks are shown in Fig. 7.

From Fig. 7, it is easy to know that the accuracy of the
network with convolution kernel size of 5 × 5 increases
rapidly and reaches a stable condition quickly in the early
iteration, which has the best recognition performance with
accuracy of 97.0%. The smaller convolution kernel 3×3 will
restrict the feature extraction capability of CNN, while the
bigger convolution kernel size, such as 7× 7, 9× 9, will lead
to the explosion of convolution parameters, thus reducing the
computational performance and recognition accuracy. From
this, considering the recognition accuracy and training time,
the CNN with convolution kernel size of 5 × 5 has the best
comprehensive pattern recognition performance.

2) OPTIMAL DESIGN OF NETWORK STRUCTURE
AND HYPER-PARAMETERS
In order to further improve the network performance, based
on the network structure designed in the previous section, four

network models with different feature fusion layer structures
are designed by introducing cross-layer connection. Among
them, cross-layer connection is not introduced in scheme 1.
Scheme 2 fuses the output features of the first and third
pooling layers as the input feature data of the full connection
layer. Scheme 3 fuses the output features of the second and
third pooling layers. Scheme 4 fuses the output features of all
pooling layers into the full connection layer for classification.
The PD signal recognition results of the four schemes are
shown in Table 3.

TABLE 3. Recognition results of PD signals under four different feature
fusion layer structures.

Comparing recognition results of networks with different
fusion layer structures, it can be seen from Table 3 that the
recognition accuracy of scheme 1without cross-layer connec-
tion is 97.0%, which is the lowest among the four schemes.
In scheme 2-4, the accuracy of scheme 4 is relatively low,
which is due to the feature redundancy caused by full fusion,
thus affecting the recognition effect. Comparatively, scheme
2 with the fused outputs of the first and third pooling layers
has the highest recognition accuracy. By selecting appropriate
shallow features and fusing themwith deep features, the com-
plementarity of the deep and shallow features is fully utilized,
which not only extracts the local features of VMD-CWD
spectrum, but also takes the overall change trend into account.
Hence, the linear separability of the extracted features is
enhanced by the cross-layer connection and the recognition
accuracy is improved.

Moreover, in the training process of CNN, whether the
hyper-parameter setting is appropriate is directly related to
the recognition accuracy of the network [28]. If there is a
deviation in hyper-parameter setting, it is easy to fall into
local minimum value when using the stochastic gradient
descent (SGD) method to train the network. To address this
problem, five optimization algorithms are compared, namely
SGD, SGDM, adaptive gradient (Adagrad) method, root
mean square prop (RMSProp) method and adaptive moment
estimation (Adam) method, which have an impact on the
recognition effect of CNN. Fig. 8 shows the accuracy and loss
value curves of the five optimization algorithms.

As can be seen from Fig. 8, the recognition accuracy and
loss value of SGD show a large degree of oscillation at the
beginning of the iteration, and the accuracy still fluctuates
to varying degrees when the iteration reaches a certain num-
ber of times, which indicates the convergence rate is too
slow. Although SGDM and Adagrad algorithm can converge
quickly, the correct recognition rate of the network is rela-
tively low at first. RMSProp converges faster than the above
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FIGURE 8. PD recognition results under different optimization
algorithms: (a) accuracy curves in different optimization algorithms,
(b) loss curves in different optimization algorithms.

three algorithms, and the overall decline trend of loss curve
is comparatively stable. However, when the iteration reaches
the 70th time, there is a sudden change in the loss curve.
In comparison, the overall pattern recognition accuracy of
CNN with Adam algorithm is 99.5%, which meanwhile has
the fastest convergence speed. Its loss value decreases rapidly
and remains stable with no oscillation and mutation. Adam
algorithm combines two strategies of deviation correction and
momentum control on the basis of RMSprop, which makes
the network more robust. All in all, the cross-layer feature
fusion and optimization CNN (CFFO-CNN) constructed in
this paper can give consideration to both recognition accuracy
and convergence speed, which makes it more dominant in PD
pattern recognition.

C. COMPARISON WITH TRADITIONAL
RECOGNITION METHODS
In order to illustrate the advantages of proposed method in
processing high-dimensional data, PD pattern recognition
by traditional BPNN and SVM was also studied. Where,
themaximum allowable error of BPNN is set to 0.001, and the
number of iterations is 200; SVM adopts radial basis function
kernel, the optimal kernel parameter and penalty factor were
determined by grid search method. The number of training

TABLE 4. Recognition results of BP, SVM and proposed method under
different number of samples.

TABLE 5. Recognition results of PD signals with different feature
extraction methods.

samples was increased successively, and the comparative
results of the three methods are as shown in Table 4.

From Table 4, the pattern recognition accuracy of CFFO-
CNN proposed in this paper is up to 99.5%, which is the
highest among the three recognition methods. In three meth-
ods, BPNN has the lowest accuracy of 63.5%, which is due to
the problems of overfitting and convergence difficulty when
processing high-dimensional data. The recognition result of
SVM is 78.5%, which is better than that of BPNN, but the
accuracy is not significantly improved with large number of
samples. In addition, as a two classification algorithm, SVM
has a complex process in dealing with multiple classification
problems. When the number of samples increases to a certain
amount, it is difficult to select the kernel parameters and the
training time is longer. Compared with BPNN and SVM,
the average accuracy of CFFO-CNN is increased by 36%
and 21%, respectively. Furthermore, the pattern recognition
accuracy of CFFO-CNN was the highest among all methods
under each sample quantity. Even in the case of a small num-
ber of samples, CFFO-CNN can still achieve a high accuracy
of more than 80%, which demonstrates that deep learning
network has more superior feature extraction capability that
enables CFFO-CNN to fully analyze the time-frequency char-
acteristics of the input image, extract the deeper features
superior to the general statistical parameters, and obtain a
better classification effect.

To verify the effectiveness of the features extracted by
CFFO-CNN, the PD pattern recognition tests are carried
out in classifier BPNN, meanwhile, three traditional image
feature extraction methods including histogram of oriented
gradient (HOG) [1], local binary pattern (LBP) [1] and gray-
level co-occurrence matrix (GLCM) [30] are compared with
the proposed method. The recognition results are shown
in Table 5.

From Table 5, it is shown that the features extracted by
CFFO-CNN achieve 98.5% accuracy in classifier BPNN,
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which is higher than the traditional image artificial feature
extraction methods. The features based on HOG, LBP and
GLCM pay more attention to the shallow texture features
of the VMD-CWD image, which cannot deeply mine the
internal PD type information contained in the VMD-CWD
image, resulting in a decrease in the recognition accuracy.
The proposed CFFO-CNN with strong nonlinear mapping
ability can adaptively extract the deep features of the image
and use the complementarity of the deep and shallow features
to improve the correct recognition accuracy.

D. COMPARISON WITH DIFFERENT DEEP
LEARNING METHODS
To further demonstrate the superiority of CFFO-CNN over
other deep learning algorithms in PD pattern recognition,
SSAE, DBN, AlexNet and VGG-11 are constructed in this
paper to identify PD types. The graymatrix of 64×64 is taken
as the input vector of these network, so the dimension of input
vector is 4096. The structure of SSAE is 4096-521-100-4with
two hidden layers. DBN adopts four hidden layers with 512,
128, 64 and 32 nodes respectively. Both AlexNet and VGG-
11 adopt classic structure. The number of iterations is set to
200. The comparison of these methods on PD recognition is
shown in Table 6.

TABLE 6. Recognition results based on different deep learning methods.

It can be clearly seen that the CFFO-CNN proposed in
this paper gets the most excellent accuracy as high as 99.5%
among the five methods. The accuracy of SSAE and DBN
is relatively low, which may be because they fail to take
the two-dimensional structure information of the image into
account and cannot fully extract the edge and spatial features
of the image. By comparison, the accuracies of Alexnet and
VGG-11 based on convolution operation structure are slightly
improved, but still lower than that of CFFO-CNN. Moreover,
VGG-11 is complex with many training parameters, which
will consume a lot of calculation and storage costs, resulting
in slower running speed. To sum up, the proposed CFFO-
CNN can directly process the 2D digital matrix of image and
retain the original structure information of the data. Also,
it can obtain a high recognition rate in each PD type, which
indicates that CFFO-CNN can effectively detect and extract
the inherent discharge type characteristics contained in the
VMD-CWD spectrum image of PD signal.

Based on 400 training samples and 200 testing samples,
CFFO-CNN was used to identify the VMD-CWD images
of four PD types. At the same time, the proposed method

TABLE 7. Recognition results of different discharge types.

was compared with the traditional BPNN recognition results
based on PRPD features, and the results are shown in Table 7.

As shown in Table 7, the overall accuracy based on VMD-
CWD and CFFO-CNN is much higher than that of tradi-
tional PRPD features. Among the four PD types, the phase
statistical characteristics of the needle-to-plate discharge and
floating discharge are similar, which makes it difficult to
distinguish them by PRPD features. In this paper, VMD-
CWD distribution is introduced to analyze the two types of
discharge from the time-frequency perspective, and it is found
that there is a big difference in the time-frequency spectrum,
which can be used to distinguish the characteristics of differ-
ent PD types. Furthermore, the proposed CFFO-CNN model
makes full use of the layer-to-layer information flow and
avoids the loss of effective features. PD pattern recognition
accuracy of CFFO-CNN for needle-to-plate discharge and
floating discharge is 100% and 98% respectively, which is
28.0% and 30.0% better than traditional PRPD method. The
results in Table 7 further show the superior feature extraction
ability of CFFO-CNN,whichmakes it have better recognition
performance than traditional PD pattern recognitionmethods.

V. CONCLUSION
In this paper, a method of PD pattern recognition based on
VMD-CWD spectrum image and CFFO-CNN has been pre-
sented to identify the PD signals generated by four kinds of
PD defect models constructedmanually in the laboratory. The
proposed technique was compared with traditional pattern
recognition methods. The contributions and conclusions of
the research are:

1) The VMD-CWD spectrum obtained by combining the
VMD algorithm with the CWD distribution can effectively
suppress the cross-interference terms in PD signal and has a
high time-frequency resolution. In the meanwhile, the VMD-
CWD distribution of different discharge signals is signifi-
cantly different, which provides an effective time-frequency
analysis method for PD signal pattern recognition.

2) The cross-layer feature fusion and optimization CNN
model is put forward. The network structure and hyper-
parameters are optimized by cross-layer connection and
Adam algorithm, which achieves the optimal effect in the
recognition accuracy and convergence speed. After fusion,
the accuracy is as high as 99.5% increasing by 2.0% in com-
parison to non-fusion method, which effectively improves
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the network performance. In addition, compared with the
traditional artificial feature extraction methods, CFFO-CNN
has better feature extraction ability.

3)When dealing with high-dimensional image data, CFFO-
CNN network has higher recognition accuracy than the tra-
ditional shallow artificial intelligence recognition method,
such as BPNN and SVM. Compared with the results of
traditional PRPD feature recognized by BPNN, the validity of
the proposed method based on VMD-CWD and CFFO-CNN
is further verified.

In the practical engineering application, there are noise
and other interference in the field measurement environment.
The proposed method needs to be further studied on the
basis of accumulating a large number of field PD signals
and cases. In addition, there are also discharge phenomena
undermultiple PD sources, whichmakes it hard to distinguish
the discharge type. This is a difficult problem in the field
of PD pattern recognition, which will be our major research
direction in the future.
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