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ABSTRACT In this paper, we apply deep reinforcement learning (DRL) to solve the flocking control
problem of multi-robot systems in complex environments with dynamic obstacles. Starting from the
traditional flocking model, we propose a DRL framework for implementing multi-robot flocking control,
eliminating the tedious work of modeling and control designing.We adopt the multi-agent deep deterministic
policy gradient (MADDPG) algorithm, which additionally uses the information of multiple robots in
the learning process to better predict the actions that robots will take. To address the problems such
as low learning efficiency and slow convergence speed of the MADDPG algorithm, this paper studies
a prioritized experience replay (PER)mechanism and proposes the Prioritized Experience Replay-MADDPG
(PER-MADDPG) algorithm. Based on the temporal difference (TD) error, a priority evaluation function
is designed to determine which experiences are sampled preferentially from the replay buffer. In the end,
the simulation results verify the effectiveness of the proposed algorithm. It has a faster convergence speed
and enables the robot group to complete the flocking task in the environment with obstacles.

INDEX TERMS Multi-robot, deep reinforcement learning, flocking control, PER-MADDPG.

I. INTRODUCTION
Multi-robot systems play an important role in a wide range of
applications, such as target tracking and navigation, collabo-
rative patrol, search, rescue, forest inspection, and agricul-
tural spraying [3]–[7]. When multiple robots work together
in a complex environment, it is crucial to ensure the safety
of each robot. Inspired by the group behavior of biological
colony, such as bird migration and fish gathering, where the
entire system is in a coordinated and orderly state to respond
to external threats without any organizer, many scholars
conduct research on multi-robot flocking control. However,
when the working environment of the robot group is rela-
tively complex, the group behavior strategy is required to be
real-time and able to avoid various obstacles. Besides, due
to the limitation of actual communication capabilities, each
robot’s communication range is limited. Therefore, the robot
group must consider connectivity during the task to ensure
that the robots can communicate with each other.

Regarding the flocking problem, Reynolds et al. [8]
have come up with three basic rules, namely separation,
aggregation, and consistency of velocity. The three rules are
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instructive to the establishment of flocking motion models,
and most of the subsequent flocking models proposed are
based on the three rules. Vicsek [9] studied the consistency
of velocities in Reynolds’ rules, then he controlled agents
perturbed by random noise such that their dictions of motions
converge. Tian et al. [10] proposed an improved Vicsek
model with limited field of view, and this model was further
extended by Zhang et al. [11] with random line-of-sight
directions. Among the extensive studies on flocking control
problems, most of them used traditional methods such as
those based on LQR [12], PCA [13] or a virtual leader [14],
which are not effective in dealing with the external distur-
bance and the nonlinear time-varying nature of the flocking
control problem. This paper uses the deep reinforcement
learning (DRL) method to complete the flocking task without
requiring accurate modeling and sophisticated control design
that are required in traditional methods.

This paper adopts the DRL method, multi-agent deep
deterministic policy gradient (MADDPG) [1], which com-
bines neural network and deterministic policy gradient algo-
rithm, to solve the multi-robot flocking control problem
in 2D environments. Based on the MADDPG algorithm,
we propose an improved version, called PER-MADDPG
algorithm, by introducing the prioritized experience
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replay (PER) [2] mechanism. Our new algorithm effectively
improves the training efficiency and shortens the convergence
time. The three main contributions of this paper are as fol-
lows: (1) To the best of our knowledge, this is the first work
to use MADDPG method to solve the multi-robot flocking
problem. (2) Combined with the features of centralized train-
ing and decentralized execution of the MADDPG algorithm,
we use only one replay buffer to store information of all the
robots. (3) We propose the PER-MADDPG algorithm that
combines MADDPG and PER. Simulation results show that
this new algorithm has significantly improved the training
efficiency.

The rest of the paper is structured as follows: Section II
overviews the existing studies on reinforcement learning in
the field of cooperative flocking control. Section III for-
mulates the multi-robot flocking problem and illustrates
the multi-robot reinforcement learning process. Section IV
introduces the algorithmic framework for the flocking task
proposed in this paper. Section V verifies the algorithm
through simulation experiments. Finally, Section VI con-
cludes the paper.

II. RELATED WORK
A. MULTI-ROBOT REINFORCEMENT LEARNING
The problem of single robot reinforcement learning has
been extensively studied, and a number of algorithms have
been proposed in the literature [15]–[19]. However, only
a few methods are available to solve the multi-agent rein-
forcement learning problem. Dai et al. [20] used DQN to
solve the multi-robot task assignment problem and achieved
some results. Sukhbaatar et al. [21] designed a neural net-
work called CommNet to enable continuous communication
in a collaborative environment. Also for multi-robot com-
munication problems, Foerster et al. [22] used Reinforced
Inter-Agent Learning (RIAL) and Differentiable Inter-Agent
Learning (DIAL) to enable the end-to-end collaborative com-
munication within multiple robots. Palmer et al. proposed
Lenient-DQN [23], which introduced Lenient loss function
based on Double DQN [24] to adapt to the cooperation
problem of multi-agent reinforcement learning. Foerster et al.
[25] proposed COMA, which uses the centralized critic. The
centralized critic can obtain global information to guide each
agent to further improve each agent’s modeling capabilities
for information. However, as there is only one centralized
critic, agents are not allowed to have different reward func-
tions. Recently, Rashid [26] proposed the QMIX algorithm,
which uses a hybrid network structure and adds global state
information to improve the algorithm’s performance during
the training process. The MADDPG algorithm, used in this
paper, adopts the centralized learning and decentralized exe-
cution mechanism and adds the action information of each
agent into the training process. Empirically, obtaining the
action information of each agent helps to understand the
policy of other agents so that the MADDPG algorithm can
be well adapted in the cooperative-competitive environment.
The MADDPG algorithm has been applied in many aspects,

such as multi-robot communication [27], multi-robot target
assignment and path planning [28], and multi-robot target
encirclement formation control [29].

B. THE APPLICATION OF REINFORCEMENT LEARNING
IN FLOCKING
Several studies have been conducted to apply reinforcement
learning methods to the flocking control problem. Having
considered the model of flocking behavior, Morihiro et al.
[30] proposed a multi-robot cooperative flocking control
framework based on the Q-learning algorithm and imple-
mented it in a simulation environment. On this basis,
Tomimasu et al. [31] studied cooperative flocking control
based on reinforcement learning. Adopting the Q-learning
algorithm and introducing potential field methods, they fur-
ther built a simulation model to make the robot learn flocking
behavior. Hung et al. [32], [33] studied the flocking control
problem of small fixed-wing UAVs under the background of
model-free reinforcement learning. Xu et al. [34] proposed
a flocking control framework based on the deep reinforce-
ment learning multi-vehicle system (MVS) after considering
the conditions with collision avoidance and communication
maintenance. Although the multi-robot cooperative flocking
control based on reinforcement learning methods has been
initially verified on the simulation and physical platforms,
most of the existing studies consider discrete action or state
space, and do not deal with some problems such as slow con-
vergence speed that may significantly deteriorate the control
performance in a complex environment. Therefore, we pro-
pose the PER-MADDPG algorithm that combines features
of both MADDPG and PER such that the training efficiency
and convergence speed have been both noticeably improved.
In addition, the introduction of the PER mechanism based on
MADDPG enables robots to output actions in the continuous
action space.

III. PROBLEM FORMULATION
A. SYSTEM MODELING
Suppose there are M obstacles and N homogeneous omnidi-
rectional robots with mass m in the two-dimensional space.
We use V = {r1, . . . , rN } to represent all robots and Io =
{o1, . . . , oM } to represent all obstacles, where N ,M are finite
numbers. In the flocking control problem, pt =

[
pt1, . . . , p

t
N

]
and vt =

[
vt1, . . . , v

t
N

]
are used to denote the positions and

velocities of N robots at time t , and p̃t =
[̃
pt1, . . . , p̃

t
M

]
is

used to denote the positions of M obstacles. The discretized
dynamic model for each robot ri is described asvt+1i = vti +

Fit

m
∆t

pt+1i = pti + v
t
i∆t,

(1)

where vti , p
t
i denote the velocity and the position of the

i-th robot respectively at time instance t , and ∆t denotes the
sampling period. We define the control input as uti = F ti ,
where F ti ∈ R2 is a force vector. In the following, if there is

150398 VOLUME 8, 2020



P. Zhu et al.: Multi-Robot Flocking Control Based on Deep Reinforcement Learning

FIGURE 1. (a) When any two robots in the group or robot and obstacle are too close together, a force will be generated to increase their distance.
(b) When the distance between one robot and the other robots in the group is greater than the communication radius, this robot will approach the
others. The blue dotted line in the figure indicates that the two robots have established communication. (c) Robots will move towards the target area,
and those with inconsistent velocity will generate a force to correct the direction of the movement.

no superscript, the default is to represent the information at
time t .

B. DESCRIPTION OF MULTI-ROBOT FLOCKING
CONTROL PROBLEM
In this paper, an undirected graph G = (V, E) is used to
describe the communication graph ofN robots, where E is the
edge set, defined as E = {(ri, rj)|d(ri, rj) =

∥∥pi − pj∥∥ ≤ ρc},
where ρc is the maximum communication distance. In other
words, when the distance between two robots is less than
the maximum communication distance, there is an undirected
edge between them and they can communicate with each
other. Therefore, we can define the neighbor set of ri as
Ni = {rj|

(
ri, rj

)
∈ E, j 6= i}. The flocking task consists of

three parts: reaching the target position, avoiding collision,
and maintaining connectivity, as shown in Fig. 1.

(1) Reaching the target position: Given a target position g,
the control target is to minimize the sum of distance between

the robot and the target in the flocking: e =
N
6
i=1
||pi − g||2

(2) Avoiding collision: The safe distance between robots
and that between the robot and the obstacle are given as ρn
and ρo. Then d(ri, rj) ≥ ρn and d(ri, oj) = ||pi − p̃j|| ≥
ρo, ∀ri, rj ∈ V , ∀oj ∈ Io should be satisfied, where p̃j
represents the position of the j-th obstacle.
(3) Maintaining connectivity: Given that maximum com-

munication distance between two robots is ρc. To ensure
the robots can communicate with each other, the distance
between two robots should not exceed the perception range,
i.e., d(ri, rj) ≤ ρc,∀ri ∈ V, rj ∈ Ni.
To better conform to the actual situation of flocking,

we assume that the target area is globally perceived, and the
positions of the obstacles are locally perceived. We define a
distance ρp (ρp > ρo), then the robot can locally perceive
the obstacle when d(ri, oj) ≤ ρp. When a robot in the group
senses the obstacle, the other robots within its communication
range can also obtain their relative positions to the obstacle,
as shown in Fig. 2.

FIGURE 2. (a)When a robot senses an obstacle, it can obtain the position
relative to the obstacle. (b)As the robots communicating, other robots
within the communication range can obtain the position relative to the
obstacle. The red circle means that the robot has sensed the location of
the obstacle.

C. MULTI-AGENT REINFORCEMENT LEARNING (MARL)
Solving the multi-agent problem through reinforcement
learning can avoid modeling the behavior of the agent in
advance and control designing. The agent only needs to
interact with the environment to generate its strategy.

The reinforcement learning is usually described as a
Markov decision process (MDP). The Markov process
of multi-robot flocking can be represented as a tuple
G = 〈N ,S,A, T ,R,O〉, where S is the state space to
describe the state of the environment and the state of the
robot. The joint actions of all robots can be expressed as
A = A1×· · ·×AN , where Ai ⊆ R2 is the two-dimension con-
tinuous action space for each robot. In the iteration, the state-
action pair of the robot can be expressed by the transition
function T (st , at , st+1) : S×A1×. . .×AN×S → [0, 1]. The
robot will get a reward R during the iteration according to the
reward function Ri (st , at , st+1) : S×A1×. . .×AN×S → R.
The observations of all robots can be expressed as O =

{O1,O2, · · · ,ON }, where Oi represents the observation of
the robot ri, and the observation includes its own velocity
and the positions of each robot and target. The multi-robot
learning process is shown in Fig. 3.

During the flocking task, each robot computes its action
in continuous two-dimensional space through learned policy
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FIGURE 3. Multi-robot reinforcement learning process.

based on observation. The action taken by the robot ri is
defined by the policy πθi (at |st) : Oi × Ai → P (A), where
P (A) is the probability calculated through A, and θi ∈ Rl

is a parameter with l elements. The actions convert the state
st to a new state st+1 according to the transition function T .
During the training process, the goal of the robots is to learn
the best policy to maximize its own cumulative discounted
reward Gt :

Gt = γ 0Rt+1 + γ 1Rt+2 + . . . =
∞∑
k=1

γ k−1Rt+k , (2)

where γ (0 < γ < 1) represents the discount factor in each
step.

IV. THE FLOCKING CONTROL BASED ON PER-MADDPG
A. PRIORITIZED EXPERIENCE REPLAY MADDPG
1) MADDPG
The MADDPG algorithm is an extention of DDPG [19].
Similar to DDPG, MADDPG also uses the actor-critic [16]
structure, and both of the actor and the critic have an online
policy network and a target policy network. The actor online
network calculates the action ai = πi(oi) to be performed
only based on the current state oi observed by robot ri, and
the critic online network evaluates the action to improve the
performance of the actor online network. The target network
regularly copies parameters from the online network.

In the stochastic policy gradient algorithm, if we use π =
{π1, . . . , πN } to represent the robots’ policy of N robots and
use θ = {θ1, . . . , θN } to represent the policy parameters, then
we can write the gradient of the expected return for robot ri,
J (θi) = E [Ri] as:

∇θiJ (θi) = Es∼pπ ,ai∼πi
[
∇θi logπi (ai|oi)Q

π
i (s, a)

]
, (3)

where pπ is the state distribution, s = (o1, . . . , oN ) represents
the joint state, a = (a1, . . . aN ) represents the joint action, and
Qπi (s, a) is a centralized action-value function, whose inputs
are the joint action and joint state of all robots, and its output
is the Q value of the robot ri.

However, MADDPG adopts the deterministic policy
gradient. If we consider N continuous policies µθi with
parameters θi (abbreviated as µi), the gradient can be written
as:

∇θiJ (µi) = Es,a∼D
[
∇θiµi (ai|oi)∇aiQ

µ
i (s, a)

∣∣
ai=µi(oi)

]
,

(4)

whereµ = {µ1, . . . , µN },D represents the experience replay
buffer which contains a series of tuples

〈
s, s′, a, r

〉
recording

the experiences of all robots, s′ is the new state of the robots
after executing the actions and the r = (r1, . . . rN ) is the
reward of all robots.

Every once in a while, experiences will be randomly
sampled from D to update network parameters. The critic
network Qµi is updated by the loss function as follows:

L (θi) = Es,a,r,s′
[(
Qµi (s, a)− y

)2]
, (5)

y = ri + γQ
µ′

i

(
s′, a′

)∣∣∣
a′i=µ

′
i(oi)

, (6)

where µ′ =
{
µ′1, . . . , µ

′
N

}
is the policy of the target network

with parameter θ ′i and a′ is the output of the actor target
network.

The actor network is updated by minimizing the policy
gradient of robot ri which can be written as:

∇θiJ≈
1
K

∑
k

∇θiµi

(
oki
)
∇aiQ

µ
i

(
sk , ak

)∣∣∣∣∣
ai=µi

(
oki
) , (7)

where K is the minibatch size of samples and k is the index
of samples.

2) PRIORITIZED EXPERIENCE REPLAY MECHANISM
The Experience Replay method overcomes the correlated
data problem and non-stationary distribution problem of
experience through storage-sampling. Due to the uneven
quality of randomly extracted experience led by random
sampling, the MADDPG algorithm faces difficulties of low
learning efficiency and slow convergence speed.

To solve the problem mentioned above, this paper
introduces the PER mechanism. The PER method has been
widely used in DQN, DDPG, and other algorithms, and
it performs well in the single-agent reinforcement learning
problem. However, in multi-agent tasks, as each agent has
a separate replay buffer to store its own experience, storing
and replaying according to their respective evaluation would
disrupt the relevance of the centralized experience training,
thereby failing to complete the training.

In view of the characteristics of the centralized training
of the MADDPG algorithm, this paper uses a centralized
experience buffer, which stores the joint information of the
agents

(
s, a, r, s′

)
. And then the agents preferentially sample

experience according to the importance, thereby improving
the algorithm’s efficiency.

The main idea of PER is to replay more frequently those
experiences that are more important to network updates,
so how to define the importance of these experiences is the
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FIGURE 4. (a)Uniform random sampling.(b)Prioritized sampling.

critical issue. TD-error is often used in most reinforcement
learning algorithms to update the estimate of the critic net-
work Qµi (s, a). Since the TD-error performs the maximum
likelihood estimation, its value can be used as a correction for
estimation. It can implicitly reflect the degree that the agent
can learn from the experience, thereby making the estimated
result more in line with the trend of future data. The bigger
the value of the TD-error, the more positive the correlation
of the expected action-value. On the contrary, the smaller
the TD-error value is, the worse the action taken by the
agent in this state would be. Replaying these experiences
more frequently helps the agents gradually get the correct
result of the wrong behaviors and avoids the wrong behaviors
occurring again, thereby improving the overall performance
of the algorithm. In this paper, we use the absolute value of
the TD-error |δ| as the basis for ranking. The TD-error of
experience k is calculated through the formula below:

δk = r + γQµ
′

i (s′, a′)− Qµi (s, a). (8)

The larger TD-error shows that the difference between the
evaluation value of the target network and the actual value for
this experience is significant. Hence, the sampling frequency
needs to be increased to update the value of the target network
as well as the evaluation network as soon as possible to
achieve the optimal training effect. We define the probability
that experience k is sampled as:

P(k) =
Dαk∑
j D

α
j
. (9)

In the formula, Dk = 1
rank(k) > 0 and rank(k) represents

the rank of experience k in the experience replay buffer
based on the absolute value of the TD-error. The parame-
ter α determines the degree of priority, and when α = 0,
it becomes the uniform sampling. The relationship between
the probability of experience being sampled and rank is
shown in Fig. 4. From the definition of sampling probability,
it can be seen that even the experience with lower TD-error
value is also probable to be sampled, thereby ensuring the
diversity of the sampled experience and preventing the neural
network from overfitting. Nevertheless, those experiences
with higher TD-error value will replay more frequently, thus
changing the sampling frequency of each state and further
resulting in oscillation or even divergence during training.
To deal with this issue, we adopt importance sampling to
adjust and update the model by reducing the weight of

the top-ranking experience.

ωk =
1

Sβ · P(k)β
, (10)

where S is the size of the experience replay buffer, P(k) is the
probability of the sampled experience k , and the parameter β
is used to control the impact of importance sampling weights
on learning. The parameter β will gradually increase to 1 dur-
ing the training process. As β increases, the weight of the
high-priority samples is almost unchanged in (10), while the
weight of the low-priority samples is greatly increased.When
training starts to converge eventually, the unbiased update is
crucial for error convergence. In order to improve the stability
of the algorithmmodel training, we always normalize weights
by 1/maxk ωk so that they only scale the update down-
wards. Therefore, the definition of the loss function in (5) is
changed to

L (θi) =
1
K

∑
k

ωkδ
2
k . (11)

Based on the above introduced prioritized experience
replay method, an integrated algorithm of MADDPG with
prioritized experience replay is shown as in Algorithm 1. The
framework of PER-MADDPG is shown in Fig. 5.

B. REWARD FUNCTION SETTING
Based on this algorithm framework, we design the reward
function of the robot, according to the multi-robot flocking
behavior. As shown below, the reward function is mainly used
to reward the expected behaviors and punish the undesirable
actions:

Ri = ωgR
g
i + ωsR

s
i + ωcR

c
i + ωoR

o
i + ωpR

p
i , (12)

where Rgi is the reward for reaching the target point in the
flocking task, Rsi is the reward for generating a separation
force to avoid collision among robots, Rci is the reward for
maintaining the flocking aggregation to enable robots’ com-
munication, Roi is the reward for ensuring that robots in the
group can avoid obstacles, and Rpi is the reward for making
the velocity of each robot relatively smooth. In the expres-
sion (12), ωg, ωs, ωc, ωo, ωp are positive weighting factors.
Details about the reward function are given below.

1) REACHING THE TARGET
This reward function is to ensure that the robot group can
reach the target. Each robot will receive a reward rgoal when
it reaches the target point g, and will get a punishment when it
moves away from the target. The punishment is proportional
to the distance from the robot to the target point.

Rgi =

{
rgoal if ||pi − g||2 ≤ ρg
−||pi − g||2 otherwise,

(13)

where pi represents the position of the robot ri, ρg > 0
represents the radius of the target area, and rgoal is a positive
constant.
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Algorithm 1MADDPG With Prioritized Experience Replay
1: Initialize priority parameters α, β and minibatch K , replay buffer D
2: for episode=1 to total-episode do
3: Initialize a random process N for action exploration
4: Receive initial state s = (o1, . . . , oN )
5: for t=1 to max-episode-length do
6: for each agent ri, select action ai = µi (oi)+Nt w.r.t the current policy and exploration
7: Execute actions a = (a1, . . . , aN ) and receive reward r and new state s′

8: Store
(
s, a, r, s′

)
in replay buffer D

9: s← s′

10: for agent ri=1 to ri=N do
11: for j=1 to K do
12: Sample experience k with probability P(k) from D
13: Compute corresponding importance-sampling weight ωk and TD-error δk
14: Update the priority of experience k according to absolute TD-error |δk |
15: end for
16: Uptate critic by minimizing the loss L (θi) = 1

K

∑
k ωkδ

2
k

17: Update actor using the sampled policy gradient:
18: ∇θiJ≈

1
K

∑
k∇θiµi

(
oki
)
∇aiQi

(
sk, ak

)∣∣∣
ai=µi

(
oki
)

19: end for
20: Uptate target network parameters for each agent ri:
21: θ ′i ← τθi + (1− τ )θ ′i
22: end for
23: end for

FIGURE 5. The framework of PER-MADDPG.

2) AVOIDING COLLISION
This reward function is used to avoid collisions among
robots. When the distance between two robots is less than
the minimum safety distance ρn > 0, they will be punished.
Conversely, if the distance is greater than the minimum safety
distance, they will be rewarded.

Rsi =

{
ravoid if d(ri, rj) ≥ ρn
−(ρn − d(ri, rj)) otherwise,

(14)

where ravoid is a positive constant.

FIGURE 6. The change of the robot’s position and velocity.

3) MAINTAINING COMMUNICATION
This reward is used to promote connectivity within the group.
When the distance between a robot and any other robot in
the group exceeds the maximum communication distance
ρc > 0, the robot will be punished. The greater the distance
is, the more severe the penalty will be. When the distance
between the two robots in the group is less than the maxi-
mum communication distance, they will get a reward. Such a
setting is to maintain connectivity within the group.

Rci =

{
rcomm if d(ri, rj) ≤ ρc
−(d(ri, rj)− ρc) otherwise,

(15)

where rcomm is a positive constant.

4) AVOIDING OBSTACLE
Besides, in order to effectively avoid the obstacles in the
process of completing the flocking task, a robot in the
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FIGURE 7. The results of the obstacle-free experiment.

FIGURE 8. The results of the experiment with static obstacles.

flocking will be punished when its distance to any obstacle
is less than the safe distance ρo > 0.

Roi =

{
robstacle if d(ri, oj) ≥ ρo
−(ρo − d(ri, oj)) otherwise ,

(16)

where robstcale is a positive constant.

5) SMOOTHING VELOCITY
Furthermore, we appropriately restrict the velocity direction
change to make sure that the robot group can move relatively
smoothly. Suppose the angle difference between velocities at
two consecutive time instances is denoted by ϕ (see Fig. 6),
then we do not want ϕ to be too large. Therefore, we define

the following reward:

Rpi = − arccos
〈
vti , v

t+1
i

〉
= −ϕ, (17)

where< a, b > denotes inner product of two vectors, and the
arccos function’s range is [0, π].

V. SIMULATION AND EXPERIMENT
A. EXPERIMENT SETTING
1) ENVIRONMENT SETTING
Wehave designed a simulation training environment ofmulti-
ple robots flocking based on the OPENAI platform, including
robots, obstacles, and target locations. The experimental area
is a square centered on the origin with a side of 2, and the
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FIGURE 9. The results of the experiment with dynamic obstacles.

FIGURE 10. (a) The robots’ trajectory when there are no obstacles in the scene. (b) The robots’ trajectory when there are static obstacles in the scene.

radius andmass of each robot are 0.05 and 1, respectively. The
maximum speed of the robot is limited to 2, and themaximum
acceleration is limited to 2. The radius of each obstacle is
0.05, and the radius of the target area is 0.1. At the beginning
of the training, the robots in the group are generated with
coordinates (-0.7, 0.7) (-0.7, 0.9) (-0.9, 0.7), and the obstacles
are generated with random coordinates {

(
Ox ,Oy

)
| − 1 ≤

Ox ,Oy ≤ 1}, and the target position is selected randomly
within the area of {

(
Tx ,Ty

)
|0.8 ≤ Tx ,Ty ≤ 1}.

2) PARAMETER SETTING AND THE TRAINING PROCESS
The four networks of Actor and Critic have the same struc-
ture, i.e., each network has three fully connected layers, and
each layer has 64 units. The learning rate lr is 0.01, and the
discount factor γ is 0.95. The mini-batch is 1024, and the
network parameters are updated every 100 steps. The robot
can move 60 steps per episode, and the total episode of train-
ing is set to 60,000. The action that the i-th robot takes is the
force F ti ∈ R2 at time instance t , so the velocity and position

are updated by (1). The maximum communication range ρc
is 0.2, the collision avoidance distance between robots ρn is
0.1, the target area radius is 0.125, and the collision avoidance
distance between robots and obstacles ρo is 0.1.

B. THE EXPERIMENTAL RESULTS
In order to verify the effectiveness of our PER-MADDPG
algorithm to complete the multi-robot flocking task in differ-
ent scenarios, we carried out experiments in the presence of
no obstacles, static obstacles and dynamic obstacles respec-
tively. We evaluate the performance of our algorithm and the
MADDPG algorithm in terms of four indices: the collision
counts between robot and robot(CCBRR), collision count
between robot and obstacle(CCBRO),mean distance between
robot and target(MDBRT), mean distance between robot and
robot(MDBRR). If the distance between the two robots is less
than ρn, the CCBRR will be increased by 1. If the distance
between the robot and obstacle is less than ρo, the CCBRO
will be increased by 1.
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1) OBSTACLE-FREE
We first conducted an experiment without obstacles.
We selected the results of the first 10,000 episodes as shown
in Fig. 7. It is obvious that PER-MADDPG has a faster con-
vergence speed. In addition, the PER-MADDPG algorithm
performs better in avoiding collisions among robots. The
paths of the trained robots are shown in Fig. 10a.

2) STATIC OBSTACLE
In this experiment, five randomly distributed obstacles are
added. The experiment results are shown in Fig. 8. It can
be seen that, in the stable stage, the difference between the
two reward curves is small, but in the process of conver-
gence, the convergence speed of PER-MADDPG is faster
thanMADDPG. Fig. 10b is the trajectory diagram of multiple
robots when there are static obstacles in the scene.

3) DYNAMIC OBSTACLE
The five randomly generated obstacles in this experiment all
move at random velocities within the range v = {(vx , vy)| −
0.5 < vx , vy < 0.5}, making it more difficult for the
robots to complete the flocking task. The training results are
shown in Fig. 9. In the dynamic obstacle scene, compared
to MADDPG, the convergence speed of PER-MADDPG has
been significantly improved, and the number of collisions
have been obviously reduced.

VI. CONCLUSION
This paper uses MADDPG to solve the multi-robot flocking
control problem without requiring complex control design as
most traditional analysis methods do. Besides, to solve the
algorithmic problem of low learning efficiency and slow con-
vergence speed, this paper proposes a novel deep reinforce-
ment learning algorithm, namely PER-MADDPG, by intro-
ducing the prioritized experience replay mechanism to enable
the training results to converge faster. In addition, the exper-
imental results also show that PER-MADDPG is better than
MADDPG in completing multi-robot flocking tasks, having
fewer collisions. Considering the cooperative features of the
flocking task, we will improve the algorithm’s training effi-
ciency through parameter sharing in the future.
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