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ABSTRACT Recently, gait attracts attention as a practical biometric for devices that naturally possess
walking pattern sensing. In the present study, we explored the feasibility of using a multimodal smart insole
for identity recognition. We used sensor insoles designed and implemented by us to collect kinetic and
kinematic data from 59 participants that walked outdoors. Then, we evaluated the performance of four neural
network architectures, which are a baseline convolutional neural network (CNN), a CNN with a multi-stage
feature extractor, a CNN with an extreme learning machine classifier using sensor-level fusion and CNN with
extreme learning machine classifier using feature-level fusion. The networks were trained with segmented
insole data using 0%, 50%, and 70% segmentation overlap, respectively. For 70% segmentation overlap and
both-side data, we obtained mean accuracies of 72.8% +0.038, 80.9% +0.036, 80.1% +0.021 and 93.3%
£0.009, for the four networks, respectively. The results suggest that multimodal sensor-enabled footwear
could serve biometric purposes in the next generation of body sensor networks.

INDEX TERMS Gait recognition, smart insole, plantar pressure, wearable sensors, sensor fusion.
I. INTRODUCTION |
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FIGURE 1. Transmission pathway from sensors to cloud.

within Body Sensor Networks (BSN), through diverse signal
transmission mediums (Figure 1) and could thus become
an easy target to imposter attacks. Furthermore, tiny sensor
nodes do not possess enough computational power to process
in real time the complex security tokens that traditionally
ensure adequate levels of protection. For user access, wear-
able devices often do not possess traditional user interfaces

biometrics such as face image or fingerprint. Thus, new meth-
ods that have the potential to meet the specific demands for

to allow entering a password, nor can they use established
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security in BSNs become necessary. As human-body gener-
ated signals are unique to different individuals and available
for wearable collection, they are extensively studied as can-
didates for biometric traits in wearable devices.
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FIGURE 2. Human body characteristics serving as biometrics.

When evaluating a BSN biometric, a primary concern is
the level of security that it allows. Some human body charac-
teristics are considered more secure than others (Figure 2).
For instance, time-evolving traits, such as heart, brain,
and gait signals, when obtained at a single time instant,
do not possess enough statistics for identity recognition.
Thus, they are considered challenging to mimic. Another
vital issue is whether the biometric requires explicit user
input. Not only may traditional user interfaces be absent,
but schemes, where the cooperation of the user is required
may be perceived as obtrusive; thus, it may not be accept-
able for the user to be disturbed. The diverse aspects of
wearable-device biometric recognition were discussed in
surveys [3]-[5].

Among the human body traits, gait meets the require-
ments for a highly secure biometric that does not require
explicit user cooperation [4]. It is attractive for application
in wearable systems capable of sensing walking characteris-
tics, such as mobile phones, and fitness trackers. However,
mobile applications involving user identification based on
gait are practically absent since the gait as a biometric is still
challenging, and the feasibility of reliable gait-based person
identification based on data collected from wearable devices
is yet to be proved.

Motivated by the fact that sensor footwear is expected
to become prevalent in the foreseeable future, we focus on
exploring the feasibility of person recognition based on data
acquired from a multimodal sensor insole developed by us
and intelligent processing using a 1D convolutional neu-
ral network (CNN). Our contributions lie in the following
aspects:

e We collected a sensor insole dataset captured from
59 subjects during outdoors walking that includes records
with duration of at least ten minutes of both kinetic and
kinematic information. To our knowledge, so far, no other
studies involved multimodal sensor insole data with compa-
rable parameters.

e We explored the feasibility of person identification
using the collected multimodal sensor insole data; for that,
we developed a set of CNN models using various segmen-
tation window overlaps. Especially, we tested an extreme
learning machine classifier, a technique with potential perfor-
mance benefits in implementations requiring model training
in real time.
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With the suggested extensive battery of experiments over
large multimodal insole dataset, we extend the results of
existing studies on person recognition using smart footwear.

Il. BACKGROUND

The first practical, objective, and technical-tool-aided gait
recognition methods were based on video tracking through
cameras and restricted to laboratories [5]-[8]. These con-
firmed the technical feasibility of gait recognition but were
not suited to application in natural settings. The advance-
ment in sensor technologies made it possible to capture data
reflecting gait through miniature inertial and force sensors
paving the way to using gait recognition in BSN-applications.
An extensive survey [4] covers in detail the specifics of
gait analysis through inertial sensors. In wearable biometric
applications, the user and the owner of the wearable device
are typically the same person, and the trait of interest, such
as gait is viewed in the context of continuous authentication,
where information of the user is continuously collected to
re-confirm the identity [2], [10]. So far, most successful
studies that allowed capturing continuous gait information in
natural settings relied on using inertial sensors integrated into
mobile phones. That stems from the fact that mobile phones
provide an easy, unobtrusive, continuous signal collection
[10]-[18]. However, some limitations in the performance
of mobile phone-based gait recognition arise from the lim-
ited number and types of available sensors and the lack of
fixed location and alignment of sensors towards the human
body and joint axes [17], [19], [20]. Recently, sensor-enabled
footwear becomes sophisticated and practical enough for
daily use. In our previous work [9], we demonstrated a mul-
timodal sensor insole that allows capturing kinetic and kine-
matic information reflecting the foot dynamic characteristics.
Figure 3 illustrates several domains where smart footwear
enables mobile and pervasive applications involving health
monitoring, remote medical diagnostics, and sports enhance-
ment. Unlike mobile phones, smart footwear allows for fixed
sensor locations and alignment, and a higher number, and
different types of sensors. A combination of inertial and force
sensors forms a multimodal system that reflects both kine-
matic and kinetic characteristics associated with the gait and
functioning of lower limbs. Multiple modalities complement
each other and provide richer information about gait patterns,
determining better overall recognition performance than a
single modality, as elaborated in survey [3].

Numerous studies on wearable-device based gait recog-
nition utilized only kinematic variables obtained by inertial
sensors [4]. Those that explored the combination of kinetic
and kinematic data collected through a wearable device are
fewer [1], [2]. Yeh et al. [2] demonstrated a method of con-
tinuous authentication based on plantar data from a smart
insole. They used 14 samples and applied naive Bayes and
support vector machines with Gaussian radial basis function,
achieving accuracies as high as 96.6 %. However, they did
not use multimodal data. Choi et al. [1] suggested a method
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FIGURE 3. Various uses of smart footwear with potential implications of
gait recognition.

for user identification utilizing both force and accelerometric
data. They collected 3-minute recordings of walking from
14 subjects and used a non-linear discriminant analysis tech-
nique to map the input vector space to a lower-dimensionality
one, thus avoiding the problems arising from the small sample
size. Then they supplied the reduced-dimensionality vectors
to one nearest neighbor classifier and achieved recognition
accuracy of 95%. A common issue in these works is the small
sample size. However, state-of-the-art gait recognition algo-
rithms rely on deep learning methods that can offer superior
performance but require large datasets from many users for
model training. Also, as gait is a dynamic trait [4], and a
weak biometric [21], obtaining personal gait features requires
long-duration and long-term recordings, in contrast with traits
such as fingerprint that may only need a single scan. In terms
of inertial sensing, there were some successful attempts to
address this problem. Neverova et al. [18] collected daily
gait data from 1500 users over several months by inertial
sensors incorporated into mobile phones. They then applied a
Long Short-Term Memory network for identity recognition.
Zou et al. [22] used data from 118 subjects collected through
mobile phones to supply a deep learning method and achieved
an accuracy of 93.5% for person identification and 93.7% for
person authentication, respectively. Gadaleta and Rossi [23]
collected gait data by mobile phones from 50 users for six
months and implemented an orientation-invariant algorithm
IDNet involving convolution neural networks. They reported
a misclassification rate of less than 0.15% when supplying
less than five walking cycles. Ngo et al. [24] provided the first
large publicly available inertial sensor dataset collected from
744 subjects, intended to supply person recognition studies
and balanced by gender and age. However, large datasets
containing plantar pressure data from sensor insoles, or mul-
timodal ones are yet to be constructed and made available to
the community.

To make positioning of this work in gait recognition stud-
ies clear, we recall some basic definitions. Gait recognition
could refer to distinguishing between normal and patho-
logical gait [25], [26], pathological gaits, evaluation of the
gait efficiency, or identifying an individual by gait [4], [5].
The latter subdivides into identification, verification, and
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authentication [4], [27]. When the recognition is based on
machine learning, a recognition model is trained [28]. In the
verification task, the user claims identity to the recognition
system explicitly, and it is a one-class classification problem.
Authentication is to continuously verify whether the claimed
user remains the same during the access session. In the
identification task, the system identifies the user without
user’s identity being claimed. As a multi-class classification
problem, with no hint of identity provided, identification is
most challenging [3]. When all identities in the test dataset
were used in training, they are familiar to the system, and the
recognition is of closed-set type; otherwise, it is an open-set
recognition [29], [30]. We focus on person identification by
gait of closed-set type.

Ill. SYSTEM DESIGN AND METHODOLOGY

A. HARDWARE IMPLEMENTATION

1) SENSOR INSOLE PROTOTYPE

The sensor insole used in the present study is designed,
implemented, and tested by us. It inherits our previous design
described in [9]. The components of the system are shown
in Fig. 4. It involves a control module affixed on the frontal
part of the shoe with an incorporated inertial sensor of
type BMI160 (Bosch Sensortec, Germany). By a tiny cable,
the module connects a sole insert with nine force sensors
attached to a thin, flexible printed circuit board and allocated
under the main weight-bearing areas of the foot. These are the
big toe (T1), the five metatarsal heads (M1-MS5), the midfoot
(MF1), and the heel (LH1, MH1). To read force sensor sig-
nals, we applied channel multiplexing. It allowed for reliable
operation, small control module, and low power consumption
of less than 3 mA in an active mode of operation. In contrast
with our previous design, we used a force sensor of type RP-
C-10 (FilmSensor, China) with a lower range of 100 N and
higher sensitivity, respectively. Besides, for convenient and
reliable data collection outdoors, we used a new BSN data
logger described below.

wireless
system-on-chip  radio

force
sensor

textile
part

flexible
board

FIGURE 4. Components of the system (a) sensor insole prototype
(b) control module (c) experimental setting.
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The sampling rates for all sensors were 100 Hz. The sam-
pling interval accuracy of force sensors was ensured by a
crystal oscillator incorporated in the control board, whereas
the sampling of the inertial sensor was controlled by its built-
in RC oscillator, and its output rate accuracy was in the range
of approximately +1.5%. The range of accelerometer was set
to 16 G, and the range of gyroscope was set to 2000 DPS.

2) BODY SENSOR NETWORK DATA LOGGER

For the present study, we developed a standalone, bare-metal
data logger, illustrated in Fig. 5. It is provided with Bluetooth
Low Energy connectivity and an SD card to store data. Com-
pared to smartphones, it is not limited by operating system
or resource sharing with other applications, and allows full
real-time control of the data reception. Thus, it was easy to
automate and simplify the experimental procedure. To ensure
data integrity, a series of checks were performed continuously
(Fig. 5b). Also, the external antenna enabled stable signal
reception. For preventing massive data loss in case of system
failure, data were stored on the SD card in sequentially -
numbered files, each containing information of a 5-minute
fraction of the complete recording. During the offline pro-
cessing, these files were concatenated. Data packets were
recorded entirely, including the overhead containing start and
end of packets, sample counter, and a checksum. This kind of
self-documentary recording allows identifying problems with
the transportation of the packets during offline processing.

=

main | | Bluetooth
| _module |

alarm

processing no

lost packets

battery ok

yes
(a) (b)

FIGURE 5. (a) custom datalogger (b) continuous checks.

B. EXPERIMENTAL PROCEDURE AND DATA

ACQUISITION

We recruited 59 volunteers in total, from the Chengdu Uni-
versity of Technology and Shenzhen Institute of Advanced
Technologies. The experimental procedure was approved by
the ethics committees of both institutions and conformed to
the Declaration of Helsinki. All volunteers were introduced
to the experimental procedure and safety precautions, and
consent for participation was obtained from each of them.
Upon the time of the experiment, volunteers were in normal
general health with no known foot anatomical or functional
deficits, aged between 20 and 40, with foot sizes of 39, 40 or
44, body weight between 50 and 76 kg, and body height
between 165 and 188 cm. Each participant put a pair of
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FIGURE 6. Foot contact phases reflected by insole signals; 1 - heel
sensor signal; 2 - forefoot sensor signal.

custom instrumented shoes of appropriate size and was asked
to walk outdoors freely at a self-selected speed for at least
ten minutes. The outdoor environment of data collection were
parks with a horizontal walking surface, allowing for mainly
straight-line walking. During the experiment, each participant
was accompanied by an operator who wore the data logger,
instructed the participant about the route of walking, and
ensured proper data collection. The duration of each session
was indicated by the data logger. The recorded multimodal
signals reflect spatial and temporal features of individual gait.
Figure 6 shows how insole force sensor signals reflect foot
contact phases. Upon heel contact, the heel force sensors
are almost simultaneously activated. The progression of the
foot contact ends with the toe-off when sensors under the
metatarsal heads become active. Thus, force sensors reflect
relatively accurately the temporal parameters, involving the
stance and swing phase, and cadence. As the number of force
sensors is low, the spatial resolution is also low. Thus, plantar
pressure distribution and its derivative parameters, such as
the path of the center of pressure are reflected only to a
certain extent. Such a partial picture of the plantar pressure
pattern raises the question of whether wearable force sens-
ing could provide enough discriminative features for person
identification. As to kinematic information, it is reflected by
the inertial sensor. In that, characteristic peaks in the signals
reflect each gait cycle; accelerometer signals also reflect the
orientation towards the Earth, and gyroscope signals reflect
the main axis of the rotational motion of the foot. Fig. 7 shows
a representative set of signals from all modalities.

C. DATASET PREPARATION

1) INITIAL DATA PREPARATION

The processing pipeline accepted in this study is illustrated
in Fig. 8. We aimed at collecting recordings with a duration
of at least ten minutes to be used for training and validation
of neural network models. An initial check was performed
to ensure the validity of recorded signals, which included
visual observation and file testing. During this process,
we disregarded all files that contained incompletely received
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FIGURE 7. Representative signals of the different sensing modalities of
the insole. (a) Force sensor signals (b) gyroscopic signals (c)
accelerometric signals.

packets and ensured that each subject had at least one unim-
paired 10-minute recording. For thirty-eight of the subjects,
the recording sessions exceeded the ten-minute duration
significantly. For each of these subjects, the additional data
reflecting a regular walking pattern were used to form a
test set.

Extracted signal time series for each participant were
stored into a comma-separated file. For each participant,
we obtained the raw sensor signal from thirty sensors (i.e.,
channels), sampled at 100 Hz. The sensors were a 3-axis
accelerometer, 3-axis gyroscope, and nine force sensors, for
the left and the right insole, respectively.

2) SENSOR SIGNAL SEGMENTATION

Neural networks allow raw signals to be fed to them directly,
without explicitly defining features. For that, the input series
can be segmented by individual gait cycles, or into frames
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with a fixed length [4], [22], [23]. Gait cycle detection is
sensitive to failures and irregularities in the walking pattern
and suffers from inter-cycle phase misalignment [31]. Hence,
it is desired to devise algorithms that are independent of gait
cycle detection and related features. In this work, we aimed
to use convolutional neural networks, and as these can extract
discriminative features from frames, we considered using
frame segmentation. For the frame length, we have chosen
500 samples (5 seconds), thus ensuring that most frames
will contain at least one gait cycle. Of all 59 recruited
subjects, 21 subjects completed one good recording (i.e.,
no lost packets during data transmission and mostly straight-
line walking) with a duration of exactly ten minutes. The
other 38 subjects executed much longer recording sessions.
As shown in Fig. 8, we used a ten-minute recording from
each of the 59 subjects to create a large dataset for training
and validation. As to testing, it is acceptable to be performed
with just a part of the subjects. Thus, we used the additional
good recordings beyond the 10-minute data of 38 subjects
to create a testing set, forming a ratio of 67:33 between the
“training+validation” set and the testing set. For applica-
tions utilizing real-time training, it is essential to set a proper
balance between accuracy and training resources. It can be
achieved by adjusting the segment overlap. Also, the infor-
mation from the two insoles in a pair could be redundant, and
using a single-insole data might be enough for satisfactory
performance. To obtain insights about optimal choices of
overlap and single/double side data, we explored the perfor-
mance for overlaps of 0%, 50%, and 70%, respectively, for
one and two insoles. Table 1 shows the number of segments
for different overlaps.

TABLE 1. Number of segments for different overlaps.

overlap, % 0% 50% 70%
training and validation 7021 14042 23364
testing 3626 7252 12098

IV. CLASSIFICATION OF MULTIMODAL INSOLE DATA
FOR GAIT RECOGNITION

With a new dataset, the first task is to identify whether data
contain enough discriminative information. Convolutional
neural networks and long-short term memory networks are
most appropriate to learn features from raw sensor data.
Hence, for initial evaluation, we adopted a CNN. For the con-
struction of the CNN, there are no definite rules, and the opti-
mal structure was determined empirically. The architecture
was chosen as a trade-off between simplicity and discrimi-
native power. The structure of the proposed neural network
is given in Fig. 9. Feature vectors were obtained through a
1D convolutional neural network. Each feature vector (sig-
nature) is a numeric representation of the individual gait
patterns. We chose a baseline CNN architecture consisting
of three convolution layers, two max-pooling layers, and one
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global average pooling layer. The input vector had a length
of 500 x 30 channels. Before supplying features to the neural
network, they were scaled in the range of —1.0...+41.0 to
avoid an explosion of gradients. The output of the feature
extraction block is a feature vector of size 64. The feature
extraction block is followed by a fully-connected layer with
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a softmax operation. To reduce the overfitting, a dropout layer
was added before the final dense layer as a regularization
technique. The neural network is trained for a classification
task. Each class represented a unique identity from the train-
ing dataset. We assigned a class label between 0-58 to each
subject. For the baseline model A, we executed 100 train
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TABLE 2. Parameters of the 5-stage cascade for models B-D.

layer stage 1

stage 2

stage 3

stage 4

stage 5

1.ConvlD filters = 32

kernel size = 8

2. BatchNormalization

3. ReLU

4. ConvlD filters = 32

kernel size = 8

filters = 64
kernel size = 3

filters = 64
kernel size =3

filters = 128
kernel size =3

filters = 128
kernel size = 3

filters = 256
kernel size = 3

filters = 256
kernel size = 3

filters = 256
kernel size =3

filters = 256
kernel size = 3

5. BatchNormalization
6. ReLU

7. MaxPooling1D/
Global Average Pooling 1D

pool size =5 pool size =3

epochs, using a batch size of 128, and categorical cross-
entropy for the loss function with Adam optimizer.

As a subsequent step, we aimed at exploring a different
structure of the feature extractor and the classifier. The main
questions were whether a more complex feature extractor
would improve the accuracy and how the segmentation over-
lap affects the performance for each architecture. For the fea-
ture extractor, we considered a cascade of five units. Each unit
consisted of two repeating stages of convolution, followed by
batch normalization and activation. The last layer of the first
four units was max pooling, whereas the last layer of the fifth
unit was global average pooling. The structure of the single
unit is shown in Fig. 10a. The parameters of the single 5-stage
cascade are given in Table 2. Then, as shown in Fig. 10b, we
used the feature extractor to process all 30 channels, relying
on sensor-level fusion [3], [4], [32].

Person recognition technologies are mostly necessary
for real-time applications that need fast model training.
One possible solution is adopting the Extreme learning
machine (ELM) proposed by Huang et al. The foundations
of this technique were explained in [33]. ELMs do not need
tuning of the hidden node parameters. The latter are ran-
domly initialized without subsequent updates. The hidden
node output weights are learned in a single step. Thanks to
these specifics, ELMs learn much faster compared to net-
works using backpropagation; at the same time, they preserve
a comparable generalization performance. As ELM can be
very suitable for real-time training in security applications,
it motivated us to adopt it as one of the methods explored
in this work. We replaced the last layer of the CNN with an
extreme learning machine classifier, as shown in Fig. 10c.
Finally, having the given ELM classifier, we implemented
a more complex feature extractor that involved two parallel
cascades, each accepting data from one insole. The outputs
of the two cascades were concatenated to implement feature
level fusion. The proposed structure is given in Fig. 10d
as model D. For models B-D, the loss function was also
categorical cross-entropy.
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pool size =2

pool size =2 Global Average Pooling 1D

V. RESULTS

All reported accuracies are based on training models with
data of all 59 samples and the given number of segments
determined by the selected overlap. For each model, the num-
ber of correctly classified samples was divided by the total
number of tested samples (i.e., 38). Each model training
was executed five times, and the average accuracy was cal-
culated. In most cases, the accuracy and validation losses
stabilized before reaching the 20th epoch. A representative
case is shown in Fig. 11. We initially performed a one-
sample Kolmogorov-Smirnov test on accuracies data, and
it showed that the requirement for normal distribution was
not satisfied (p<0.001). Therefore, we performed statistical
testing using a Kruskal-Wallis test. There was no significant
difference among accuracies for different segmentation over-
laps (p=0.930). However, statistically significant differences
were exhibited in testing by model (p<0.001) and foot com-
bination (p<0.001). Fig. 12 shows the results of statistical
testing, giving insights on how accuracy depends on network
architecture, segmentation overlap, and insole combination.
Table 3 shows results for single-side and both-side data, for
three segmentation overlap settings, for models A and B,
respectively. Table 4 shows the performance when using an
ELM classification with the single-cascade feature extractor;
the results for the two-cascade feature extractor are given
in Table 5.

V1. DISCUSSION

A. ACCURACY EVALUATION ON GENERAL TERMS

Table 6 shows a brief comparison of our results with others.
The recognition performance is likely to drop with a sig-
nificant increase in the number of classes. In [18], Google
Abacus Dataset was used that contained multimodal data
of 1500 mobile phone users collected for several months.
By applying a standard convolutional neural network, they
obtained an accuracy of 37% for the case when the claimed
identity was in the top 5% of the classes. As they used
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FIGURE 11. Training and validation losses by epochs using data of both
feet segmented without overlap for model B.
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FIGURE 12. Statistical testing for model selection (Kruskal-Wallis test)
by: (a) neural network architecture (b) segment overlap (c) insole
combination.

big data, it allowed for using 6 102 137 parameters, which
would not be possible with small datasets. With deep neural
networks, the amount of data for training is the leading factor
for obtaining high accuracy. However, despite reporting high
accuracies in the order of more than 90%, existing studies,
e.g.[22,25], confirm that lack of enough training data hinders
the algorithm results.
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TABLE 3. Performance for different overlaps and sides - model A and
model B.

overlap 0%

insole side model (avg.acc., avg.loss, std)
both A 73.2% 1.8 0.028
both B 77.5% 1.2 0.029
left A 83.6% 0.9 0.031
left B 92.2% 0.4 0.016
right A 85.7% 0.8 0.034
right B 90.7% 0.5 0.016
insole side model overlap 50%
(avg.acc., avg.loss, std)
both A 74.0% 2.5 0.018
both B 78.4% 1.4 0.020
left A 86.0% 0.9 0.045
left B 90.9% 0.5 0.017
right A 87.0% 0.9 0.027
right B 91.3% 0.5 0.018
insole side model overlap 70%
(avg.acc., avg.loss, std)
both A 72.8% 39 0.038
both B 80.9% 1.2 0.036
left A 83.3% 1.9 0.035
left B 90.8% 0.5 0.022
right A 85.1% 1.4 0.036
right B 92.1% 0.5 0.011

TABLE 4. Performance for different overlaps and sides - model C.

overlap 0%

insole side (avg.acc., std)

both 77.4% 0.027
left 91.5% 0.011
right 92.9% 0.008
- ] overlap 50%
insole side (avg.aclz., std)
both 81.4% 0.0095
left 92.1% 0.0081
right 92.7% 0.0111
) ) overlap 70%
insole side (avg,aclc):‘, std)
both 80.1% 0.021
left 92.8% 0.006
right 91.4% 0.012

TABLE 5. Performance for different overlaps - model D, both sides.

overlap 70%
(avg.acc., std)

93.3% 0.009

overlap 0%
(avg.acc., std)

92.9% 0.007

overlap 50%
(avg.acc., std)

92.8% 0.016

B. SINGLE-SIDE VS BOTH-SIDE ACCURACY

Surprisingly, models A-C showed much higher accuracy
when single-insole data were supplied. This result could be
attributed to several possible factors. First, system bias might
take place, due to the imperfect synchronization between
the acquisition of left and right insole data, as well as the
inaccuracies between sampling rates of the left and right
motion sensor. As a result, temporal relationships between
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TABLE 6. Comparison of recent studies for wearable gait recognition.

study modalities subjects sessions accuracy

our study 9 force sensors, accelerometer, gyroscope 59 10 min 93.3%, identification
Choi et al, 2019 [1] 8 force sensors and accelerometer 14 3 min 95%, identification

Yeh etal, 2018 [2] 6 force sensors 14 - 99.6% for authentication

left- and right-side features could be distorted. As evidence
of this hypothesis, the accuracies shown by model D are
significantly higher than both-side accuracies of models A-C.
In that, the feature-level fusion between the left and right
insole data makes the classifier insensitive to the lack of
sensor-level synchronization between the two insoles. Pos-
sibly, synchronization at a signal sample level would lead to
improved recognition. Such synchronization, however, may
not be practical in terms of energy preservation in the wear-
able device. Also, synchronizing the timestamp clocks of
independent sensor nodes communicating over wireless inter-
face could be challenging due to the unpredictable delays typ-
ical for wireless transmission. Another likely reason behind
the lower both-side accuracies is that when having the double-
limb data, the number of features doubles while the number
of segments of training data remains the same. Thus, some
part of the features between the left and right sides become
redundant, which works against accuracy; a possible signif-
icant increase in the volume of the training set could lead to
the opposite effect.

C. EVALUATION OF MODELS AND WINDOW OVERLAP
Intuitively, using a more complex feature extractor leads to
improved accuracy. Thus, model B consisting of five cas-
caded single units for feature extraction, shows generally bet-
ter performance than model A that contains a baseline CNN.
Also, the two-cascade structure of model D shows a higher
accuracy compared to model C and B. As expected, ELM
based algorithms show similar or better accuracy compared
to models B and A. The fact that the results of the 50%
segmentation overlap are, in some cases, higher than those of
the 70% overlap can be attributed to instabilities of accuracy
with small datasets.

D. OPEN QUESTIONS

In this study we demonstrated the application of CNN
for wearable-device-based person recognition. Despite the
promising results, the way neural networks interpret signals
is considered a black box and it was therefore not possible
to explain what gait features were important. Brute-force
procedures with hand-crafted features could shed light on
the most important features; however, these methods might
be biased and lacking accuracy. Instead, Layer-Wise Rel-
evance Propagation is a new technique that could reveal
what variables at exact time instances of the gait cycle are
responsible for the output [34].
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As to accuracy, several measures can help to improve
recognition performance: (1) more data from more subjects;
with the achievements in generative models, it might be pos-
sible to generate large synthetic datasets for training under the
open-set gait recognition paradigm; (2) apply activity recog-
nition to filter out the non-walking segments of the signal; (3)
transform the signal into a new orientation-independent refer-
ence system; (4) use cycle detection to segment the signal and
normalize it through fixed length, zero mean and unit variance
vectors; (5) ensure accurate sampling rates for all sensors,
precise synchronization at sample level, avoid saturation; (6)
model the temporal transitions with recurrent connections,
for example by adding a Long Short-Term Memory layer;
(7) apply augmentations on the training dataset to avoid
overfitting.

Among limitations of the current study was the lack of
synchronization between left and right insoles, as well as
between force and inertial sensors. Also, we did not design
the system to adapt dynamically for new users without com-
plete re-training of the model. In application aspect, intu-
itively, the next step would be to explore the feasibility of
gait recognition with longitudinal data. These matters are to
be addressed in future studies.

VII. CONCLUSION

In this work, we explored the feasibility of person iden-
tification by level walking outdoors through foot-mounted
inertial and force sensors. Compared to previous studies
[1], [2], we made a step further by having collected a large
multimodal sensor insole dataset. We used a custom sensor
insole and logger to collect walking data from 59 partici-
pants outdoors. Because of the higher number of subjects,
long recording sessions and multiple modalities reflecting
both kinetic and kinematic characteristics, the presented
dataset is appropriate to supply machine learning methods.
We explored the performance of four neural network archi-
tectures for different segmentation overlaps. Results confirm
that identity recognition through multimodal sensor insoles
is a viable option for increasing the security in Body Sensor
Networks.
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