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ABSTRACT Tide is a phenomenon of water level change caused by gravity. Tidal level forecasting is not
only a key theoretical topic but also crucial in coastal and ocean engineering applications. The waiting time
before a cargo ship enters a port affects the efficiency of cargo transportation, the tidal difference affects
the establishment of turbine generators, and an excessive tidal water level reduces vessel safety. With the
proliferation of information technology, the application of deep learning models in the analysis and study
of hydrological problems has become increasingly common. This study proposed a deep learning model
to predict the tidal water level. A forecasting model was developed on the basis of the long short-term
memory (LSTM) recurrent neural network for predicting the water levels of 17 harbors in Taiwan. Tidal
water level data for 21 years were collected from different observation stations. To objectively evaluate
model performance, the developed model was compared with six other forecasting models in terms of the
mean absolute percentage error (MAPE) and root mean square error (RMSE) of the forecasting results.
The results indicated that the LSTM model had the lowest forecasting error for the tidal water level for
up to 30 days. The average MAPE and RMSE values for the developed model were 6.97% and 0.049 m,
respectively; thus, the model could effectively reduce the overlapping problems caused by machine learning
methods in continuous forecasting.

INDEX TERMS Deep learning, long short-term memory, tidal level forecasting, time series.

I. INTRODUCTION
Tide is mainly affected by celestial gravity, climate, and air
pressure. Therefore, tide is a relatively regular phenomenon
in which the water level rises and falls. Tidal changes are
closely related to human activities, such as marine economic
activities, port development, research plans for coastal and
port construction projects, and budget control, which are cru-
cial for economic development [1]. Therefore, tide forecast-
ing requires high-precision tools and methods. For shallow
watercourses, tidal changes limit the time that large ships can
enter and exit a port. When ebb tide occurs, ships cannot enter
certain ports with large changes in tidal levels. According
to statistics from Taiwan International Ports Corporation,
Ltd. [2], from January to November 2019, 71 841 ships
entered or exited Taiwanese ports, with a total tonnage of
1 492 676 527 tons. Moreover, cargo throughput reached 174
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437 692 metric tons, with a trade value of approximately
NT$286 778 285. Cargo transported by ships significantly
influences Taiwan’s economy. Tidal changes should be con-
sidered when a ship is at a dock. The tightness of the moor-
ing should be considered to avoid collisions or grounding
due to cable breakage on account of excessive tide changes.
Accurate tide forecasts are critical to the safety of ships
entering and leaving ports as well as the efficiency of port
transportation.

Although tidal water levels change periodically, nonlinear
fluctuations in water level occur according to changes in the
terrain, pressure, time, andmoon position at a port. Therefore,
accurately predicting water levels is difficult. Tidal level data
are related to not only the current time but also previous
data. Harmonic analysis proposed by Godin in 1972 is a
crucial method for predicting tidal water level [3]. Harmonic
analysis has been improved over time [4]. The response [5]
and continuous wavelet transformmethods [6] have also been
applied in tidal water level prediction. After 2005, due to
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the rise of deep learning, artificial neural networks (ANNs)
have also been applied in tidal water level prediction [7], [8].
Because ANNs have excellent nonlinear problem processing
capabilities, they have gradually replaced other methods of
tidal water prediction.

Neural networks, also known as perceptual neuron models,
were proposed in the 1950s and mimic the human brain tissue
and manipulation method [9]. Prior to the 1980s, the expert
system was the most popular artificial intelligence method,
and neural network theory was still immature. In the 1980s,
the expert system encountered bottlenecks. Neural networks
have received increasing attention since their proposition by
Hopfield et al. [10]. New structures and theories of neural
networks are still being developed, and their computation
speeds are constantly increasing. Thus, the accuracy and
use of these networks is increasing. Deep neural networks
(DNNs) have been widely used in various fields over the
past 10 years [11]. DNNs have been used in fields such as
speech recognition [12], image recognition and classifica-
tion [13], overall survival prediction [14], and time series
prediction [15]. In response to the time series problem, DNNs
were improved to create recurrent neural networks (RNNs)
and long short-term memory (LSTM) networks [16], [17].
In addition to reducing the prediction error, the aforemen-
tioned networks solved the overfitting-related problems of
DNNs.

In tide analysis, a tide can be regarded as the result of water
level change caused by the superposition of the astronom-
ical tide affected by gravity and the nonlinear water level
affected by environmental factors. Harmonic analysis was
previously the main method used to predict tidal level [18];
however, its disadvantage is its requirement of long-term
data to achieve satisfactory accuracy. Long-term tidal pre-
diction is influenced by phenomena such as noises, seasonal
effects, missing data, and typhoon-induced surge [19], [20].
Although many neural network structures have been used to
solve this problem, most face the same problem [21]–[23].
In other words, the powerful learning ability of neural net-
works causes the disadvantage of easy overfitting during
training. Consequently, the trained models are only suitable
for current data. Moreover, they require numerous hyperpa-
rameter adjustments, which considerably increase the time
required for training.

This study proposes the addition of a network structure
based on LSTM to the fully connected layer for solving
the aforementioned problems. An LSTM recurrent neural
network comprises one control unit (gate) each for forgetting,
updating, and output [24]; thus, the LSTM recurrent neural
network has a different structure than does the general neural
network. Information can be stored long term in the LSTM
recurrent neural network. Moreover, meaningless informa-
tion is forgotten in the LSTM recurrent neural network, which
prevents the phenomenon of vanishing or exploding gradient
caused by gradient descent. The LSTM recurrent neural net-
work solves the problem of error superposition caused by the
application of a neural network to long-term tide prediction.

Error superposition leads to a large misalignment in predicted
result. According to the extended application of DNNs and
satisfactory results obtained in time series prediction, the tidal
water level prediction performance of the LSTM was com-
pared with that of five other methods commonly used in time
series prediction.

II. METHOD
A. NORMALIZATION
Because the conversion function of the LSTM recurrent neu-
ral network is a hyperbolic tangent function (tanh function:
ex − e−x /ex + e−x , whose function value ranges from 1 to
−1), the training and testing set data are normalized. The
normalization equation is as follows:

z =
x − min (x)

max (x)− min (x)

where max(x) and min(x) are the maximum and minimum
values in the training and testing sets, respectively, x is the
input value, and z is the converted value of x.

B. LSTM
LSTM networks are a variant of RNNs that have been applied
in fields such as biomedical science [25], speech recog-
nition [26], sentiment analysis [27], and image classifica-
tion [28]. However, LSTM recurrent neural networks have not
yet been applied in tidal water level forecasting.

The LSTM recurrent neural network provides a solution to
the time series problem. Although the backward transfer neu-
ral network can establish the correlation between data points
through feedback, the function of LSTM is more complete
because of the network structure of LSTMunits and the forget
gates added to the system. These gates can record past crucial
features during training and select unimportant features to
forget according to weights.

One-step-ahead prediction of the tidal water level time
series requires not only current tidal data but also previ-
ous data. The RNN model has a self-feedback mechanism
in the hidden layer. Because of this mechanism, the RNN
model has an advantage in managing long-term dependence
problems; however, difficulties remain in practical applica-
tion [29]. To solve the RNN’s problem of gradient van-
ishing, Hochreiter and Schmidhuber proposed the LSTM
model in 1997 [24]. This model was recently improved by
Graves [30]. An LSTM unit consists of a memory cell that
stores information and is updated by three specialized gates:
the input, forget, and output gates. The structure of an LSTM
unit is displayed in Fig. 1.

At time t , xt is the input data of the LSTM cell, ht−1 is
the output of the LSTM cell at time t− 1, ct is the value of
the memory cell, and ht is the output of the LSTM cell. The
calculation process of the LSTMunit comprises the following
steps:
(1) First, the value of the candidate memory cell c̃t is

calculated using (1). In (1),Wc is the weight matrix and
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FIGURE 1. Long short-term memory recurrent neural network architecture for data forecasting. Above � is Hadamard product. σ represents the sigmoid
function. tanh represents the hyperbolic function.

bc is the bias.

c̃t = tanh(Wc · [ht−1, xt ]+ bc) (1)

(2) The value of the input gate it is then calculated using (2).
The input gate controls the updating of the current input
data to the state value of the memory cell. In (2), σ is
the sigmoid function,Wi is the weight matrix, and bi is
the bias.

it = σ (Wi · [ht−1, xt ]+ bi) (2)

(3) The value of the forget gate ft is calculated using (3).
The forget gate controls the updating of the historical
data to the state value of the memory cell. In (3), Wf is
the weight matrix and bf is the bias.

ft = σ (Wf · [ht−1, xt ]+ bf ) (3)

(4) The value of the current moment memory cell ct is
calculated using (4), in which ct−1 is the state value of
the last LSTM unit.

ct = ft × ct−1 + it × c̃t (4)

(5) The value of the output gate ot is calculated using (5).
The output gate controls the output of the state value
of the memory cell. In (5),Wo is the weight matrix and
bo is the bias.

ot = σ (Wo · [ht−1, xt ]+ bo) (5)

(6) Finally, the output of the LSTM unit ht is calculated
using (6).

ht = ot × tanh(ct ) (6)

The three control gates and memory cell of the LSTM unit
allow it to maintain, read, reset, and update long-time infor-
mation easily. Because of the sharing mechanism of the
LSTM internal parameters, the dimensions of the output
can be controlled by setting the dimensions of the weight
matrix. In the LSTM unit, a long delay occurs between input

FIGURE 2. Flowchart of dropout.

and feedback. The gradient neither explodes nor disappears
because the internal state of the memory cell in the LSTM
architecture maintains a constant error flow.

C. DROPOUT
During neural network training, preventing overfitting is cru-
cial. Hinton proposed the dropout method to prevent over-
fitting in neural network training [31]. During the training
process between layers in a neural network, some neurons
are randomly dropped from the network with a certain prob-
ability, as displayed in Fig. 2.

D. PROPOSED METHOD
To establish a tidal water level forecasting model, this study
used two layers of LSTM units. Because the output of the
LSTM unit is a multidimensional vector, three fully con-
nected layers are used in each unit. The predicted value
is output at the sixth layer. The complete network model
structure is displayed in Fig. 3.

Neural network hyperparameters lead how the network
functions, and further determine its accuracy and validity.
In order to achieve successful performance in each prob-
lem domain, LSTM hyperparameters must be adjusted. The
hyperparameters of LSTM include number of hidden layers,
number of neurons, learning rate, activation function, batch
size, epoch and loss function. In this study, depending on how
the tuned hyperparameter values affect model performance,
LSTM hyperparameters optimization were adjusted manu-
ally by the experts. The following hyperparameters settings
were obtained, the learning rate is 0.0001, and there are
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FIGURE 3. Flowchart of the LSTM recurrent neural network.

FIGURE 4. Network structure of the proposed model.

three hidden layers, the number of neurons are 200, 150, 50,
respectively.

To extract features (Fig. 4), layer 3 has 50 neurons and the
output layer has only one neuron, which is also used as the
output of the predicted value yt . All the activation functions
use rectified linear units (ReLUs) because in addition to
the simple calculation process, ReLUs can perform gradient
descent and reverse transfer efficiently, thereby preventing
gradient explosion and vanishing.

E. STATISTICAL METHOD
1) AUTOREGRESSIVE INTEGRATED
MOVING AVERAGE MODEL
The autoregressive integrated moving average (ARIMA)
model was proposed by Box and Jenkins in 1976 [32] and
is also known as the Box–Jenkins model. In the ARIMA
method, several fragments formed after a time series has
passed are used as input. Moreover, regression analysis is
performed to establish a mathematical forecasting model,
which is often used for the prediction of short-term economic
trends.

2) TRIGONOMETRIC SEASONALITY, BOX–COX
TRANSFORMATION, ARMA ERRORS, AND TREND SEASONAL
COMPONENTS MODEL
The trigonometric seasonality, Box–Cox transformation,
ARMA errors, and trend seasonal components (TBATS)
model, which was proposed by Livera in 2011 [33],
is a new method that combines trigonometric seasonal-
ity, Box–Cox transformation, ARMA errors, trend, and

seasonal components. The TBATS model is based on the
Exponential smoothing. It can predict whether seasonal data
exists and can analyze this data. Although a combination of
multiple models can provide highly accurate results, consid-
erable training time is required for such a combination, which
results in slow calculations.

F. MACHINE LEARNING
1) SUPPORT VECTOR REGRESSION
Support vector regression (SVR) was proposed by
Vapnik et al. in 1997 [34]. The SVR algorithm includes
functions such as the insensitive loss and penalty factor
functions; thus, it is more robust than is the support vec-
tor machine algorithm [35], [36]. After the SVR algorithm
projects the data onto a high-dimensional hyperplane, the
total distance from each point to the hyperplane is calculated.
If a hyperplane is identified using theminimum total distance,
this hyperplane is the solution. Prior to the emergence of deep
learning, SVR was the most common method for predicting
entire time series.

2) PARTICLE SWARM OPTIMIZATION-BASED SUPPORT
VECTOR REGRESSION
Particle swarm optimization (PSO), proposed by Kennedy
and Eberhart in 1995, originated from analysis of bird flight
when foraging. In particular, birds provide constant updates
on the location of insect food sources to the entire group,
and the group decides on the optimal feeding ground, akin
to solving an optimization problem [37]. In SVR modeling,
the parameter settings affect the performance of a forecast
time series, as mentioned in the preceding discussion on PSO.
The crucial parameters are the regularization parameter (C),
bandwidth of the kernel function (σ ), and tube size of the
ε-insensitive loss function (ε). Inappropriately selected
parameter values can result in either overfitting or under-
fitting [38]. Consequently, selecting the optimal parameters
is crucial when employing SVR to forecast a time series.
Liu et al. used PSO-based SVR to forecast tourist
arrivals [38].

3) ARTIFICIAL NEURAL NETWORK
The backpropagation network (BPN) proposed by Hinton is
the most commonly used supervised-learning ANN model
[39]. The BPN is an optimization algorithm that combines
the backward pass, gradient descent [40], and chain rules in
calculus. The gradient descent method is used to advance
from the initial position of the parameter to the steepest
downhill direction and to update the parameter position. The
slope information is obtained using the derivative function
(to calculate the function slope). Gradient descent uses this
characteristic to optimize the cost function.

4) CONVOLUTION NEURAL NETWROK
Convolution neural network (CNN) was proposed by LeCun
in 1989 [41]. CNN is a multilayer neural network structure
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simulating the operation mechanism of a biological vision
system. It is a neural network composed of a multilayer con-
volution layer and a descending sampling layer. Moreover,
CNN can obtain useful feature descriptions from original
data, which is an effective method to extract features from
data [42].

CNN is a special type of NN that introduces convolu-
tion and pooling operations to generate deep features, thus
improving the network’s ability to recognize patterns. Many
studies have shown that CNNs are effective tools for han-
dling complex tasks, such as image recognition [43], text
recognition [44], and video recognition [45]. Thus, because
of the properties of its convolutional layers, CNN is plausibly
appropriate for a seasonal time series with trends. A CNN
framework containing convolutional layers, pooling layers,
and fully connected layers for time series classification was
designed in [46]. This framework performs well in discover-
ing and extracting the internal structure of data.

G. PERFORMANCE CRITERIA
The root mean square error (RMSE) and mean absolute
percentage error (MAPE), which are common statistical vari-
ables, are used to compare the deviation of the real value
from the forecasted value for evaluating the forecasting per-
formance of DNNs. The RMSE, the MAPE, and R2 are
expressed in (7), (8) and (9), respectively.

RMSE =

√√√√ 1
N

N∑
i=1

(yi − fi)2 (7)

MAPE =
1
N

N∑
i=1

∣∣∣∣yi − fiyi

∣∣∣∣× 100% (8)

R2 =

 ∑n
i=1 (ηio − ηo)(ηiM − ηM )√∑n

i=1 (ηio − ηo)
2∑n

i=1 (ηiM − ηM )2

2

(9)

where ηio is the observed tidal water level at the ith time step,
ηiM is the corresponding simulated tidal water level, n is the
number of time steps, ηo is the mean of observational values,
and ηM is the mean value of the simulations.
Table 1 indicates that most ports had a low skewness in

their tidal data and close to Gaussian distribution. However,
the absolute coefficients of variation (COV) of ports 1116,
1246, 1366, 1396, and 1436 were considerably larger than
those of other ports. The higher the absolute COV, the greater
the degree of data dispersibility is. The average difference
between the highest and lowest observed tidal water level
reached 7.36m. Such extreme data can be interpreted as water
level rise caused by changes in the terrain natural disasters
such as typhoons and tsunamis, and sudden storms.

III. RESULTS
A. DATASETS
In this study, the data of 17 tide stations in Taiwan were
analyzed. The names of the 17 stations are Keelung (1516),

TABLE 1. Tidal water level statistics for 17 ports in Taiwan from
1998 to 2018.

FIGURE 5. Map of tide stations in Taiwan. Keelung (1516), Tamsui (1102),
Zhuwei (1116), Hsinchu (112), Waipu (113), Taichung (1436), Wengang
(1366), Dongshi (1166), Jiangjun (1176), Kaohsiung (1486), Xunguangzui
(1496), Su-ao (1246), Hualien (1256), Chenggong (1276), Fugang (1586),
Lanyu (1396), Penghu (1356).

Tamsui (1102), Zhuwei (1116), Hsinchu (112), Waipu (113),
Taichung Port (1436), Wengang (1366), Dongshi (1166),
Jiangjun (1176), Kaohsiung (1486), Xunguangzui (1496),
Su-ao (1246), Hualien (1256), Chenggong (1276), Fugang
(1586), Lanyu (1396), and Penghu (1356). Tidal water level
data for 21 years were obtained after removing the influence
of air pressure. In this study, the LSTM model was used to
predict the tidal water level. Study data for 1998–2018 were
obtained from the CentralWeather Bureau of Taiwan (Fig. 5).
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The tide stations were divided into two categories: sta-
tions using sonic tide gauges and those using pressure
tide gauges for tidal level detection. Sonic tide gauges use
microprocessor-based technologies to collect sea level data,
whereas pressure tide gauges use mechanical floats and
recorders. Modern monitoring stations use advanced acous-
tics and electronics. Currently used recorders send an audio
signal down a half-inch-wide ‘‘sounding tube’’ and measure
the time the reflected signal requires to travel back from the
water’s surface. Pressure tide gauges are installed on the sea
bed. The instantaneous wave height is calculated according to
the water pressure change caused by wave height. However,
a pressure tide gauge is suitable only for shallow sea areas
(approximately 20 m deep). The change in water pressure
caused by lifting is too small to obtain accurate data.

B. DATA PREPROCESSING
In this study, 21 years of data were divided into training and
testing sets. The training set comprised data from January 1,
1998 to November 30, 2018, and the testing set comprised
data from December 1 to December 30, 2018. To reduce
the sample size without considerably affecting prediction
accuracy, the training and testing sets were normalized such
that all data points were within the (0, 1) interval. In addition
to achieving standardization, normalization can increase the
speed of neural network training. When normalization is
performed, convergence can be achieved relatively rapidly,
and the possibility of falling into the local optimal solution is
relatively low [47]. Moreover, to eliminate the effect of miss-
ing values on the prediction, missing values were deleted to
prevent the learning of incorrect features during the learning
process.

C. ANALYSIS OF FORECASTING RESULTS
The evaluation of the seven methods indicated that the LSTM
and ANN models had similar accuracy and superior perfor-
mance compared with the conventional statistical models.
Fig. 6 displays the observed tidal values and the forecasted
tidal level values generated by the optimal LSTM, CNN,
ANN, PSOSVR, SVR, TBATS, and ARIMA models during
prediction. The figure indicates that the LSTM and ANN
models had similar accuracies. Compared with the other
models, the statistical models had more decentralized predic-
tions. The prediction results indicated that an increase in the
prediction interval reduced model accuracy (Table 2). With
an increase time in the prediction interval, the R2 value of the
LSTM model reduced from 0.993 to 0.987, that of the CNN
model reduced from 0.982 to 0.953, that of the ANN model
reduced from 0.984 to 0.946, that of the PSOSVR model
reduced from 0.997 to 0.970, that of the SVR model reduced
from 0.889 to 0.870, that of the TBATS model reduced from
0.975 to 0.938, and that of the ARIMA model reduced from
0.814 to 0.804. The LSTMmodel outperformed the ARIMA,
TBATS, SVR, PSOSVR, ANN, and CNN models at all five
prediction intervals. The LSTM model exhibited the best
prediction results, and its scattered point distribution was the
closest to the regression line.

TABLE 2. R2 values of the ARIMA, TBATS, SVR, PSOSVR, ANN, CNN, and
LSTM models.

The parameter R2 represents the interpretability of the
forecastingmodel for the forecasting result. The higher theR2

value, the higher is the interpretability and the higher is the
model accuracy. As the forecast time increases, the accuracy
of the time series forecast decreases; however, exceptions
exist to this trend. Because of the increase in the amount of
data, a small amount of accurate data occasionally causes R2

to increase (e.g., the performance of the ARIMA models at
576 and 720 h; Table 2).

This study used LSTM recurrent neural networks for
the long-term prediction of tidal water levels. To demon-
strate the forecasting performance of our LSTM recurrent
neural networks, we evaluated LSTM’s forecasting perfor-
mance against those of two statistical methods (ARIMA and
TBATS methods) and four machine learning methods (SVR,
PSOSVR, ANN, and CNN). For all methods, the MAPE and
RMSE were used as indicators of forecasting performance;
their averages are presented in Table 3. The LSTM method’s
MAPE value was 86% and 62% lower than those of ARIMA
and TBATS, respectively; the LSTM method’s RMSE value
was 90% and 79% lower than those of ARIMA and TBATS,
respectively. The LSTM predicted tidal water level signifi-
cantly better than ARIMA and TBATS did (Fig. 7). As for
the machine learning methods, the LSTM method’s MAPE
value was 84%, 42%, 48%, and 40% lower than those of the
SVR, PSOSVR, ANN, and CNN approaches, respectively;
the LSTM method’s RMSE value was 75%, 55%, 65%, and
51% lower than those of SVR, PSOSVR, ANN, and CNN,
respectively. These results indicated that the LSTM model
significantly outperformed the machine learning methods,
which are commonly used in time series predictions of tidal
levels.

Fig. 8 illustrates the changes in the MAPE and RMSE
of the seven methods. The red solid line represents the
RMSE, and the blue solid line represents the MAPE. The
error value increased with the number of forecast days.
Figs. 7(b), (c), (d), and (f) indicate a significant increase in
error value when the total forecasting length was between
40% and 80% (approximately 12–24 days). The growth rate
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FIGURE 6. Scatterplots of observed versus forecasted tidal water levels from December 1 to December 30, 2018 (720 h prediction) for port 112 in
different methods: (a) ARIMA, autoregressive integrated moving average; (b) SVR, support vector regression; (c) TBATS, Box–Cox transformation,
ARMA errors, and trend seasonal components, (d) PSOSVR, particle swarm optimization-based support vector regression; (e) ANN, artificial
neural network; (f) CNN, convolutional neural network; (g) LSTM, long short-term memory.

of the MAPE was 158%, 20%, 22%, and 26%; however,
the error values of the ARIMA, ANN, and LSTM mod-
els increased slowly [Fig. 8(a), (e), and (g)]. The curve

was the most gentle, MAPE only increased by 10%,
9%, and 5% compared with the initial value. The LSTM
model had the lowest rate of increase; the LSTM model’s
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TABLE 3. Tidal level forecasted from December 1 to December 30, 2018 by using different methods.

long-term prediction performance was thus excellent and
stable. Figs. 9 and 10 illustrate the MAPE and RMSE of the
seven methods in each port. The LSTM model consistently

had the lowest RMSE and MAPE. Therefore, the LSTM
method was more stable and accurate than were the other six
methods.
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FIGURE 7. Tidal water levels forecasting result for port 112 when using seven methods for different forecast lengths: (a) ARIMA, (b) SVR,
(c) TBATS, (d) PSOSVR, (e) ANN, (f) CNN, and (g) LSTM models.

To verify the advantages and disadvantages of the pro-
posed LSTM forecasting model, a Wilcoxon signed-rank test
was conducted to compare the MAPE and RMSE values
of the ARIMA, SVR, TBATS, PSOSVR, ANN, CNN, and
LSTM methods. To analyze the differences in the prediction
results of each method, a null hypothesis (H0) and alternative
hypothesis (H1) were considered. H0 posited that the LSTM
method’s prediction results were not significantly different
from those of the other six methods, and H1 posited the
converse (that the prediction results significantly differed).
The prediction results differed with statistical significance
if p < .05. As detailed in Table 3, the LSTM method had
a significantly lower RMSE and MAPE than did the other
six methods; thus, the LSTM method outperformed the other
methods in tidal level prediction. According to the compari-
son test results, the LSTM method was more likely than the
other methods to provide a robust forecasting model with a
small error rate.

IV. DISCUSSION
A. COMPARISON OF ARIMA AND TBATS
The ARIMAmodel, with autoregressive movement assumed,
must refer to a large quantity of historical data to determine

the optimal parameter combination of the model. TBATSwas
proposed in 2011. Statistical hybrid models were designed to
compensate for inaccurate prediction results when a single
model is used: it pools the advantages of multiple models
and increases the number of calculations. However, it has the
disadvantage of being computationally expensive. Moreover,
and in general, statistical models still solve nonlinear prob-
lems with difficulty. In Fig 9 and 10, ARIMA and TBATS
consistently had the highest error values.

B. COMPARISON OF SVR AND PSOSVR
Machine learning has been popular and widely applied. Prior
to Hinton’s pioneering formulation of machine learning for
the time series prediction problem, SVR was the dominant
machine learning method. Therefore, we selected SVR as a
representative method for comparison.

The use of a single machine learning method is unlikely
to yield the best accuracy, and hybrid methods are likely
to be better. For example, PSOSVR uses PSO optimization
algorithms to improve on the shortcomings of the origi-
nal SVR. PSO, developed by Eberhart and Kennedy, is a
population-based iterative optimization algorithm inspired
by the social behavior of bird flocking. Because SVR has
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FIGURE 8. Tidal water level forecasting result for port 112 when using different forecast lengths and methods: (a) ARIMA, (b) SVR, (c) TBATS,
(d) PSOSVR, (e) ANN, (f) CNN, and (g) LSTM.

FIGURE 9. MAPE of the six methods for different forecast lengths.

three hyperparameters—the regularization parameter (C),
bandwidth of the kernel function (σ ), and tube size of
the ε-insensitive loss function (ε)—differences among these
parameters greatly affect SVR’s forecasting accuracy. The
automatic adjustment of these three hyperparameters in SVR
remains a prominent challenge for improving SVR’s forecast-
ing accuracy. Through an optimized algorithm, PSO can help
to adjust the hyperparameters to their appropriately selected
values to avoid either overfitting or underfitting [38]. This
study proved that the hyperparameters is crucial for SVR.
Therefore, compared with SVR, PSOSVR has a lowerMAPE
and RMSE (Figs. 9 and 10).

FIGURE 10. RMSE of the six methods for different forecast
lengths.

C. COMPARISON OF ANN, CNN AND LSTM
ANNs is a part of a neural network, which simulates how
the human brain learns. ANN is a model constructed by
transmitting neurons, and it has the advantage of good
feature extraction capabilities. After the backpropagation
neural network was proposed, ANNs also allowed shal-
low neural networks to contribute distinctively in machine
learning. Conventional ANNs with shallow architectures are
difficult to train if they become too complex—for example,
when the network includes many layers and, consequently,
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many parameters. It has been widely demonstrated that
deep ANN architectures, known as deep neural net-
works (DNNs), outperform conventional shallow ANN
architectures in several applications [48]. Recently, deep
learning has gained substantial popularity in the machine
learning community because it is considered a general
framework that facilitates the training of deep neural
networks with many hidden layers [49]. Many neural net-
work models have been widely used to solve several
types of time series forecasting problems. Of these mod-
els, recurrent neural networks (RNNs) have received much
attention [48], [50].

The reason for such attention is that RNNs are a class
of ANN models that possess an internal state or short-term
memory due to recurrent feedback connections, making
RNNs suitable for modeling sequential or time series data.
In such modeling, the RNN maintains a vector of acti-
vation parameters for each time step, especially when
short-term dependencies are included in the input data.
However, if an RNN is trained using stochastic gradient
descent, the RNN has difficulty learning long-term depen-
dencies that are encoded in the input sequences due to
the vanishing gradient problem [51], [52]. To then allow
the LSTM to learn long-term dependencies, a specialized
neuron or cell structure is employed in the LSTM net-
work, which maintains constant backward flow in the error
signal [24], [53].

Recently, deep learning in general and CNN in particular
has become the methodology of choice for image analysis,
following its tremendous success in routine computer vision
applications [54], [55]. CNN is more data efficient than fully
connected networks are due to CNN’s translationweight shar-
ing properties in the convolutional layers. Layers in CNN are
translation equivariant (i.e., when the network input is shifted,
internal representations are also shifted), which makes
transnational weight sharing effective in each layer. Time
series with trends are the most common data sets used in fore-
casting. Both the convolutional layer and the pooling layer of
a CNN can be used to extract crucial features and patterns that
reflect the seasonality, trends, and time lag correlation coef-
ficients in the data. Therefore, in addition to being applied
in image classification [56], semantic segmentation [57],
and object detection [58], CNN is applied in time series
forecasting.

Compared with CNNs and LSTMs, ANNs have the advan-
tages of lower computational cost and fewer neurons and
hidden layers but the disadvantage of a higher rate of error.
Although CNN has strong feature extraction capabilities, it is
mostly used in tasks such as image classification or image
recognition. Because CNN could not leverage on its advan-
tages in this study, its error rate was similar to that of ANN.
Because the intervals between past and future timepoints are
crucial to solving time series problems, LSTM, by virtue
of its special gate structure, can determine the relationship
between past and future timepoints and thus furnish accurate
predictions in a long series.

V. CONCLUSION
In this study, tidal water level prediction indicators and
related time series forecasting models were examined to
increase the transportation efficiency and safety of entry
for large vessels in commercial ports. The LSTM method
was proposed for long-term tidal water level prediction.
The proposed method was tested using 16 datasets. The
performance of the proposed method was compared with that
of five time series forecasting models, namely the ARIMA,
SVR, TBATS, PSOSVR, ANN, and CNNmodels. The exper-
imental results indicated that the LSTM model had a lower
MAPE and RMSE than the other six forecasting models did.
The LSTM model also had the highest R2 value among all
the compared models in all the prediction intervals. Thus, the
LSTM forecasting model provided more robust results than
the other five models did. In addition to lower error values,
the LSTM model exhibited a higher stability and more rapid
convergence compared with the other five models during
training. The prediction results of the LSTM model were
smooth and interpretable. The LSTM model also exhibited
a superior fit with the collected data compared with the
other models. Forecasting the tidal water level with a higher
accuracy than that achieved in this study may result in a
considerable increase in training time. Therefore, in future
studies, a suitable method should be developed for achieving
increased accuracy without increasing the training dimen-
sions and time.
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