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ABSTRACT In this article, two efficient transmit antenna subset (TAS) selection schemes are proposed
for receive spatial modulation (RSM)-based massive multiple-input multiple-output. First, an incremental
TAS selection algorithm based on the maximization of the received signal-to-noise ratio is presented to
select NS active transmit antennas effectively among the available NT transmit antennas. Then, to reduce
complexity further, the modified TAS selection algorithm performs two consecutive selection stages. The
pre-processing stage selects active transmit antennas whose number NP is less than the number of NS of the
total transmit antennas to be selected and is equal to or greater than the number NR of the receive antennas.
Then the post-processing stage chooses the remaining NS − NP active antennas. In the first stage, a simple
norm-based algorithm is employed to reduce the complexity significantly. In the second stage, an incremental
selection strategy is performed to find additional transmit antennas. It is demonstrated that the bit error
rate and achievable rate of the proposed TAS selection algorithms are close to those of the decremental
algorithm. Further, the simulation results show that the proposed TAS selection schemes offer significantly
reduced complexity compared to the decremental TAS selection when the difference between the number of
selected transmit antennas and the number of total available transmit antennas available is large. Furthermore,
the impacts of the channel estimation error on the performance of TAS selection-based RSM systems are
examined.

INDEX TERMS Transmit antenna selection, multiple-input multiple-output (MIMO), precoding,
zero-forcing (ZF), receive spatial modulation.

I. INTRODUCTION
Spatial modulation (SM) has been considered as a promising
multiple-input multiple-output (MIMO) transmission tech-
nique for devices with low complexity and low power con-
sumption [1]–[4]. It exploits the transmit antenna index as an
additional means to convey information. In an SM scheme,
only a single transmit antenna is activated during transmis-
sion, thereby removing the problem of inter-channel interfer-
ence and employing only a single radio frequency (RF) chain
at the transmitter. In [5], a generalized version of SM called
GSM has been introduced to increase the system spectral effi-
ciency; in GSM, more than one transmit antenna is active at
the same time. Recently, precoding-aided spatial modulation
(PSM), also called receive SM [6]–[8] has been developed to
enhance MIMO spectral efficiency by utilizing the indices of
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the receive antennas to transmit more information. It can also
facilitate the designing of a simplified receiver structure for
downlink MIMO transmission. In [9] and [10], the original
PSM has been extended to the generalized PSM scheme,
which targets the exploiting of more than one receive antenna
to achieve higher spectral efficiency.

Antenna selection can be performed to enhance the
reliability of the SM systems [11]–[15]. Euclidean dis-
tance optimized antenna selection (EDAS) schemes with
low-complexity have been considered in [11] and [12].
They have obtained less computational complexity while
achieving the same symbol error rate performance as an
optimal exhaustive search-based EDAS algorithm. In [13],
the achievable transmit diversity order of SM systems using
EDAS has been analytically quantified. In [14], various
algorithms for transmit antenna subset (TAS) selection for
SM systems have been examined in terms of the bit error
rate (BER) performance versus the complexity tradeoff.
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For conventional PSM, receive antenna subset (RAS) selec-
tion has been introduced in [16]–[18]. In [16] and [17],
exhaustive search-based optimal and suboptimal RAS selec-
tion algorithms have been presented. A tradeoff exists
between the BER performance and the computational com-
plexity. In [18], the author derives the achievable diversity
order of the zero-forcing(ZF)-based PSM system with RAS
selection. The diversity order is the product of the respective
diversity orders offered by ZF-based precoding and RAS
selection. This means that, in the presence of NT transmit
antennas and NR receive antennas, the overall diversity gain
can be achieved by using (NT − NS ′ + 1) (NR − NS ′ + 1),
where NS ′ denotes the number of selected receive antennas.
By constrast, TAS selection can be performed to reduce

the number of RF units at the transmitter. The effects of
TAS selection on the performance of PSM systems have been
investigated in [19] and [20]. It examines the tradeoff between
system performance and the number of RF channels when the
TAS selection is applied to PSM. It has been demonstrated
that decreasing the number of activated RF units through TAS
selection in ZF-PSM systems always degrades the perfor-
mance. In addition, to reduce the computational complexity
of an exhaustive search-based optimal TAS selection algo-
rithm considerably, a decremental TAS selection algorithm
is presented. However, when the number of activated RF
units is significantly smaller than that of total transmit anten-
nas especially in massive MIMO systems, the computational
complexity of the decremental TAS selection remains high
even though it achieves reduced complexity compared to the
optimal search.

In this article, we propose two efficient TAS selection
schemes to provide a better tradeoff between system perfor-
mance and computational complexity when the number of
selected transmit antennas is significantly smaller than that
of total transmit antennas. First, an incremental strategy is
considered to achieve the low-complexity. Next, a two-stage
TAS selection scheme similar to that in [21] is proposed
to reduce the computational complexity of the first TAS
selection algorithm further. In the first stage, a transmitter
selects NP(NR ≤ NP < NS ) transmit antennas from the
totalNT transmit antennas using a low-complexity algorithm.
In the second stage, NS − NP transmit antennas are incre-
mentally selected among the NT − NP unselected transmit
antennas. We demonstrate that the TAS selection algorithm
developed in [21] for massive MIMO is unsuitable for the
PSM systems; this will be shown later in this article. We also
demonstrate that the proposed TAS selection algorithms
can achieve significantly reduced complexity compared to
the decremental algorithm in [19] and [20], especially for
NS � NT , at the cost of slight performance degradation. Fur-
ther, we compare the proposed algorithmswith the TAS selec-
tion methods introduced in [21] with respect to performance
and complexity. Moreover, we demonstrate it is possible to
adjust the tradeoff between performance and complexity by
introducing a new design parameter NP. Finally, in the pres-
ence of channel estimation errors, we show that the proposed

TAS selection algorithms can provide more robustness than
other low-complexity algorithms.

The remainder of this article is organized as follows.
In Section II, a system model of the PSM system with TAS
selection, based on the ZF precoder is briefly presented.
In Section III, the two suboptimal TAS selection algorithms
with low-complexity are proposed. The computational com-
plexity is derived in Section IV. The simulation results are
presented in Section V. Finally, some conclusions are drawn
in Section VI.
Notation: Throughout this article, the boldface lower-case

and upper-case letters represent the vectors and matrices,
respectively. We use the superscript ∗ to denote the con-
jugate of a complex number. Further, we use the super-
script H to denote the Hermitian transpose of a matrix or
a vector. Tr(·) and (·)−1 represent the trace operation and
inverse operation, respectively. E [·] and ‖ · ‖ denote the
expectation and the Euclidean norm, respectively. In and
Q(·) are the n × n identity matrix and the Q function,
respectively.X(:, k) denotes the k-th column vector of matrix
X.X( :, [1 : (k−1) (k+1) : end ] ) represents the remaining
submatrix obtained by deleting the k-th column vector in
matrix X.

II. SYSTEM MODEL OF TAS-PSM
We consider a MIMO system with an NT antenna transmitter
and an NR(NR � NT ) antenna receiver. The transmitter is
equipped with only NS (NR ≤ NS < NT ) RF transmission
units. Thus, we assume that NS antennas are selected out of
the NT transmit antennas. The full channel matrix is rep-
resented as a quasi-static channel matrix of H ∈ CNR×NT ,
whose elements are independent and identically distributed
(i.i.d.) circularly symmetric complex Gaussian random vari-
ables with zero mean and unit variance denoted by CN (0, 1).
The spatial modulated super-symbol vector is given as xrm ∈
CNR×1, which can be described as xrm = sm er where sm
with E [ sm s∗m] = 1 is the m-th symbol generated from
the M -ary quadrature amplitude modulation or phase-shift
keying (PSK) constellation set and er denotes the r-th column
of the NR-dimensional unit matrix, thereby indicating that the
r-th receive antenna is activated. The super-symbol xrm is first
precoded before transmission. Then the transmit signal vector
is given by β P xrm where P ∈ CNS×NR is a precoding matrix
and β is a power normalization factor that is used to ensure
E
[ ∥∥β P xrm

∥∥2] = 1.

A. PERFECT CHANNEL ESTIMATION CASE
We assume that the transmitter of the PSM system has perfect
knowledge of the channel side information (CSI). Then the
ZF precoder can be given by [22]

PZF = HH
S

(
HSHH

S

)−1
(1)

where HS ∈ CNR×NS denotes the channel submatrix selected
by a TAS selection algorithm.
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The received block signal at the receiver can be represented
as

y = βS HS P xrm + n = βS xrm + n (2)

where the power normalization factor related to the selected
TAS can be expressed as

βS =

√√√√ NR

Tr
[(

HSHH
S

)−1] (3)

and n ∈ CNR×1 is an i.i.d. additive white Gaussian noise
vector whose elements are the zero-mean circular com-
plex white Gaussian noise component of a variance of σ 2

n .
Hence, the optimal maximum likelihood (ML) detector for
the ZF-PSM can be given by

< r̂, ŝm > = x̂rm = arg min
xrm

∥∥ y− βS xrm∥∥2 (4)

Then, the average BER (ABER) for the PSM systems can
be obtained by using the union bounding technique [23].
An upper bound on the ABER can be expressed as

ABER ≤
1
2L

2L∑
i=1

2L∑
j=1

N
(
xi→ xj

)
L

EHS

{
PEPS (xi→ xj)

}
(5)

where L is the total number of bits conveyed in each trans-
mission, N ( xi → xj) is the number of bits in error between
xi and xj with xi and xj denoting two possible super-symbols,
and PEPS ( xi → xj) is the pairwise error probability (PEP)
for a given HS when xi is transmitted but xj is detected.
From [19], the PEP for a given HS , i.e., βS can be expressed
as

PEPS (xi→ xj) = Pr
{
‖ y− βS xi ‖2 >

∥∥ y− βS xj∥∥2}
= Q

√ β2S

2σ 2
n

∥∥ zij∥∥2
 (6)

Minimizing the ABER of the ZF-PSM systems is equivalent
to maximizing the term β2S . Hence, the TAS problem for the
ZF-PSM systems can be described as

Sopt = arg max
S∈ { Sk ,k=1,2,··· ,C (NT ,NS ) }

β2S (7)

where Sk is the k-th enumeration of the set of all available
C (NT ,NS) TASs. Here C (NT ,NS) is the total number of
combinations for selecting NS antennas among the NT trans-
mit antennas. Hence, the optimal TAS selection algorithm for
the PSM system can be expressed as [19]

Sopt = arg min
S∈ { Sk ,k=1,2,··· ,C (NT ,NS ) }

Tr
[(

HSHH
S

)−1]
(8)

It should be noted that the computational complexity required
for an optimal selection in (8) is prohibitive owing to an
exhaustive search, especially when the number of all the
possible TASs is large.

B. IMPERFECT CHANNEL ESTIMATION CASE
Under the assumption of imperfect CSI at the transmitter,
the ZF precoder can be given by

PZF,err = HH
S,err

(
HS,errHH

S,err

)−1
(9)

where HS,err ∈ CNR×NS is the channel submatrix with CSI
errors, which is chosen by a TAS selection algorithm from the
full channel matrix,Herr ∈ CNR×NT , with channel estimation
errors. Here, the estimated channel coefficient from the a-
th transmit antenna to the b-th receive antenna, which is an
element corresponding to the b-th row and a-th column of
Herr , is given by ĥba = hba + eba, where hba is the (b, a)-th
element of H distributed with CN (0, 1) and eba indicates the
error component caused by the imperfect channel estimation
and is modeled as an i.i.d. circular complex Gaussian random
variable with zero mean and a variance of σ 2

e .
The received block signal at the receiver can be written as

y = βS,err HS PZF,err xrm + n (10)

where the power normalization factor associated with the
selected TAS is given by

βS,err =

√√√√√ NR

Tr
[(

HS,errHH
S,err

)−1] (11)

Then the ML detection at the ZF-PSM receiver is given by

< r̂, ŝm > = x̂rm = arg min
xrm

∥∥ y− βS,err xrm∥∥2 (12)

It should be noted that the optimal TAS selection is performed
using HS,err instead of the HS in (8).

III. PROPOSED INCREMENTAL TAS SELECTION
ALGORITHMS
It should be noted that the computational complexity of (8)
while finding an optimal TAS is very high owing to an
exhaustive search with the computation of (HSHH

S )
−1.

To obtain efficient TAS selection algorithms with a signif-
icantly reduced-complexity, we adopt an incremental selec-
tion strategy. Here we present two types of incremental TAS
selection algorithms. The first is based on the minimization
of the trace of (8) at each intermediate step for incremen-
tal selection. The second is a more efficient version of the
first one and consists of two distinct consecutive processing
stages. In the first pre-processing stage, a simple norm-based
algorithm is used to select a TAS subset. Then the second
post-processing stage employs an incremental algorithm to
select the remaining antennas.

A. INCREMENTAL TAS SELECTION ALGORITHM
The first TAS selection algorithm begins with an empty set
of a selected TAS and selects one transmit antenna at each
incremental step. After taking n incremental steps, n transmit
antennas are selected; then the corresponding channel sub-
matrix is denoted by Hn ∈ CNR×n, where 1 ≤ n ≤ NS . After

152036 VOLUME 8, 2020



S. Kim: Efficient Transmit Antenna Selection for RSM-Based Massive MIMO

selecting (n + 1) antennas, the selected submatrix of H can
be expressed as

Hn+1 = [Hnhn+1] (13)

where hn+1 is the column vector of H corresponding to the
(n + 1)-th selected antenna. Based on the pre-determined
channel Hn, the (n + 1)-th selected antenna can be obtained
using the following optimization.

Sn+1 = arg min
(n+1)∈Rn

Tr
[(

Hn+1HH
n+1

)−1]
(14)

where Sn+1 denotes the TAS selected at the (n+1)-th selection
step and Rn is the TAS unselected at the n-th selection step.
In each step of the greedy procedure, the expensive

computational burden is due to the calculation of the
matrix product Hn+1HH

n+1 and the matrix inversion in
(Hn+1HH

n+1)
−1. To reduce the computational complexity fur-

ther, the popular Sherman-Morrison formula is employed.
Then (Hn+1HH

n+1)
−1 can be re-expressed as(

Hn+1HH
n+1

)−1
=

(
HnHH

n + hn+1hHn+1
)−1

=

(
HnHH

n

)−1
−

(
HnHH

n
)−1 hn+1hHn+1 (HnHH

n
)−1

1+ hHn+1
(
HnHH

n
)−1 hn+1 (15)

Thus (14) can be written as

Sn+1
= arg min

(n+1)∈Rn
Tr

×

[(
HnHH

n

)−1
−

(
HnHH

n
)−1 hn+1hHn+1 (HnHH

n
)−1

1+ hHn+1
(
HnHH

n
)−1 hn+1

]
(16)

where the inverse of HnHH
n is iteratively updated using the

previous inverse result ofHn−1HH
n−1 and can be expressed as

4n = 4n−1 −
4n−1hnhHn 4n−1

1+ hHn 4n−1hn
(17)

where 4n =
(
HnHH

n
)−1 and 4n−1 =

(
Hn−1HH

n−1

)−1.
Further, (12) can be re-expressed as

Sn+1 = arg min
(n+1)∈Rn

Tr

[
4n −

4nhn+1hHn+14n

1+ hHn+14nhn+1

]
(18)

Based on the above analysis, the procedure of the pro-
posed incremental TAS selection algorithm is summarized
in Table 1. Here H̄n−1(:, q) denotes the q-th column vector
of the channel submatrix H̄n−1, which is associated with the
transmit antennas that are unselected after completing the
(n−1)-th step. It should be noted that under the knowledge of
imperfect CSI, Herr is used as an input of the proposed TAS
selection algorithm.

TABLE 1. Proposed incremental TAS selection algorithm.

B. TWO-STAGE TAS SELECTION ALGORITHM
To decrease the complexity of the first incremental TAS selec-
tion algorithm further, we propose a two-stage TAS selection
algorithm in which the first stage is a pre-selection stage and
the second is a post-processing stage. In the pre-selection
stage, NP(NR ≤ NP < NS ) transmit antennas from the total
NT transmit antennas are selected by employing a simple
norm-based algorithm [19], which is able to contribute to the
effective reduction of the number of candidate combinations
for the subsequent second-stage selection; therefore, it can
contribute to the reduction of the overall complexity with
marginal performance degradation. The resulting submatrix
can be represented as HNP ∈ C

NR×NP . In the proposed two-
stage algorithm, the second-stage selection operates under
the condition of NS > NP. In the post-processing stage,
NS − NP transmit antennas from the NT − NP unselected
transmit antennas are incrementally selected. Here, the NS −
NP transmit antennas that can offer the best incremental
signal-to-noise ratio (SNR) of the ZF-PSM MIMO systems
are selected sequentially. The optimization criterion for the
second-stage selection is equivalent to (14). Thus the second
stage employs the incremental optimization method of (18).
We can anticipate that the two-stage TAS selection algorithm
depends on the result of the pre-selection method. It should
be noted that in the case of NS ≤ NP, the proposed two-stage
algorithm performs only the first-stage processing and, there-
fore, is equivalent to the norm-based algorithm.

The proposed TAS selection algorithm is described
in Table 2. It begins with an NR × NT full channel matrix H.
First, NP antennas is selected from NT transmit antennas by
computing the Frobenius norms, given by Cn = ‖H (:, n)‖2,
where n = 1, 2, · · · ,NT , of each column vector H (:, n) of
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TABLE 2. Proposed two-stage TAS selection algorithm.

the full channel matrix H and then obtaining the antenna
indices, { u (1), u (2), · · · , u (NP)}, corresponding to the NP
largest values. After determining the NP transmit antennas,
the resulting submatrix can be formed as HS = H(:, u(1) :
u(NP)) ∈ CNR×NP . After completing a pre-selection, a post-
selection based on the optimization, as shown in (18), is con-
ducted for the unselected columns of H to find the NS − NP
antennas among the remaining transmit antennas. In this case,
4n = (HnHH

n )
−1 is calculated with 4n−1 and H̄n−1(:, q)

by the matrix inversion lemma and then 4n is updated using
4n−1 and H̄n−1(:, q̂), where q̂ is the selected column vector
in the channel submatrix H̄n−1, until the NS − NP transmit
antennas are selected. Finally, a selected channel matrix is
given asHS (:,NP+1 : NS ) ∈ CNR×NS by adding the channel
column vectors corresponding to the transmit antennas that
were selected during the NS −NP incremental steps toHS by
columns, which is pre-determined in the pre-selection stage.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
Considering the number of real multiplications (RMs) and
the number of real summations (RSs) [24], the computational
complexity of various TAS selection algorithms such as the
two proposed schemes, the decremental method [19], and the
two-stage algorithm of [21], are analytically evaluated and
compared. Here a complex multiplication requires 4 RMs
and 2 RSs whereas a complex summation uses 2 RSs. From
(8), the computational complexities of the exhaustive search-
based TAS selection algorithm in terms of the RMs and RSs,
respectively, can be evaluated as follows

NRM
exhaustive=C (NT ,NS)

(
2NSN 2

R+2NSNR+2N
3
R + 6N 2

R

)
(19)

NRS
exhaustive = C (NT ,NS)

×

(
2NSN 2

R+2NSNR−N
2
R − NR+2N

3
R+2N

2
R

)
(20)

A. COMPLEXITY OF PROPOSED TAS SELECTION
ALGORITHMS
FromTable 1, the computational complexities of the proposed
incremental TAS selection algorithm in terms of the RMs and
RSs, respectively, can be analyzed line by line as follows:

Line 5:
• RM in µ = 4H

n−1 H̄n−1(:, q)⇒ 4N 2
R ,

• RS in µ = 4H
n−1 H̄n−1(:, q)⇒ 4N 2

R − 2NR,
• RM in µµH ⇒ 2N 2

R + 2NR,
• RS in µµH ⇒ N 2

R + NR,
• RM in H̄H

n−1(:, q)µ⇒ 4NR,
• RS in H̄H

n−1(:, q)µ⇒ 4NR − 2,
Line 6:
• RS in Tr

[
4n−1 −3n−1,q

]
⇒ NR − 1.

Thus the total complexities of the proposed incremental TAS
selection algorithm in terms of the RMs and RSs, respec-
tively, are given as

NRM
proposed incremental =

NS∑
n=1

(NT + 1− n)
(
6N 2

R + 6NR + 1
)
(21)

NRS
proposed incremental =

NS∑
n=1

(NT + 1− n)
(
5N 2

R + 5NR − 1
)
(22)

From Table 2, the computational complexities of the pro-
posed two-stage TAS selection algorithm in terms of the RMs
and RSs, respectively, can be summarized as follows:

Line 2:
• RM in ‖H (:, n)‖2 ⇒ 4NR,
• RS in ‖H (:, n)‖2 ⇒ 4NR − 2,

Line 10:
• RM in HSHH

S ⇒ 2NPN 2
R + 2NPNR,

• RS in HSHH
S ⇒ 2NPN 2

R + 2NPNR − N 2
R − NR,

• RM in (·)−1 ⇒ 2N 3
R + 6N 2

R ,
• RS in (·)−1 ⇒ 2N 3

R + 2N 2
R .
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Thus the total complexities of the proposed two-stage TAS
selection algorithm in terms of the RMs and RSs, respec-
tively, are given by

NRM
proposed two−stage

= 4NTNR + 2NPN 2
R + 2NPNR + 2N 3

R

+6N 2
R+

NS−NP∑
n=1

(NT − NP+1− n)
(
6N 2

R + 6NR+1
)
(23)

NRS
proposed two−stage

= 4NTNR − 2NT + 2NPN 2
R + 2NPNR + 2N 3

R

+N 2
R − NR+

NS−NP∑
n=1

(NT − NP+1− n)
(
5N 2

R+5NR − 1
)

(24)

where the complexities of lines 13 and 14 in Table 2 are
identical to those in lines 5 and 6 in Table 1.

B. COMPLEXITY OF DECREMENTAL TAS SELECTION
ALGORITHM
The decremental TAS selection procedure in [19], in which a
criterion for minimizing the received SNR loss is presented,
is based on the successive elimination of transmit antennas
until NS columns of H remain [19]. It begins with the entire
set of NT transmit antennas and successively removes (NT −
NS ) transmit antennas. At each iteration, one antenna with the
largest received SNR loss is deleted. Its complexity is given
by [20]

NRM
decremental

= 2NTN 2
R + 2NTNR + 4N 3

R + 8N 2
R

+

NT−NS∑
n=1

(NT − n+ 1)
(
8N 2

R + 8NR
)

(25)

NRS
decremental

= 2NTN 2
R + 2NTNR + 4N 3

R + 2N 2
R − 2NR

+

NT−NS∑
n=1

(
(NT − n+1)

(
8N 2

R+4NR − 4
)
+2N 2

R

)
(26)

C. COMPLEXITY OF PREVIOUS TWO-STAGE TAS
SELECTION ALGORITHM
In [21], the rectangular maximum-volume (RMV) theory
is introduced as an effective method to reduce the number
of RF chains in massive MIMO systems. The TAS selec-
tion scheme based on the RMV method is given in [21],
in which various previous algorithms could be employed
to obtain a square maximum-volume submatrix in the pre-
selection stage. To achieve this, this study considers a simple
norm-based approach as in the proposed two-stage algorithm
shown in Table 2 and an incremental strategy, which is iden-
tical to the proposed incremental algorithm shown in Table 1.
Thus the first one is termed a norm-RMV TAS selection
algorithm, and the second is called an incremental-RMV

selection method. Taking the same complexity analysis as
in Subsection III.A, the complexities of the norm-RMV-
based and incremental-RMV-based TAS selection algorithms
in terms of the RMs and RSs, respectively, are evaluated as

NRM
norm−RMV

=

(
4NTNR + 4N 3

R + 8N 2
R

)
+

NS∑
n=NR+1

((NT + 1− n) (4n− 4)+ 8nNR − 4NR) (27)

NRS
norm−RMV

=

(
4NTNR + 4N 3

R + 3N 2
R − 2NT − NR

)
+

NS∑
n=NR+1

((NT + 1− n) (4NR − 6)+ 8nNR − 8NR + 1)

(28)

NRM
incremental−RMV

=

NR∑
n=1

(NT + 1− n)
(
6N 2

R + 6NR + 1
)

+

NS∑
n=NR+1

((NT + 1− n) (4n− 4)+ 8nNR − 4NR)

−8NSNR + 4NR (29)

NRS
incremental−RMV

=

NR∑
n=1

(NT + 1− n)
(
5N 2

R + 5NR − 1
)

+

NS∑
n=NR+1

((NT + 1− n) (4NR − 6)+ 8nNR − 8NR + 1)

−8NSNR + 8NR − 1 (30)

V. SIMULATION RESULTS
In this section, several TAS selection algorithms for the
ZF-based PSM system, which hasNT transmit antennas and
NR receive antennas are evaluated throughMonte Carlo simu-
lations over Raleigh flat-fading channels. The SNR is defined
by the symbol energy to noise power spectral density ratio,
i.e., η = 1

/
σ 2
n . In the plots, (NT ,NS ,NR) represents that

NT transmit antennas, NS selected transmit antennas, and
NR receive antennas are employed as the system parame-
ters, whereas (NT ,NR) with two parameters represents no
TAS selection (named no-TAS). We assume that the CSI is
completely known at the transmitter of the ZF-PSM system
unless otherwise mentioned. The quadrature PSKmodulation
is assumed and the receiver is based on ML detection. In the
simulations, we compare the BER and achievable rate perfor-
mance of the ZF-based PSM system using the following TAS
selection algorithms.

• proposed incremental TAS selection
• proposed two-stage TAS selection for various NP values
where NP = NR + K and K (≥ 0) is an integer
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FIGURE 1. BER of the proposed TAS selection algorithms for the (16,8,4)
ZF-PSM system.

• norm-based TAS selection
• norm-RMV-based TAS selection
• incremental-RMV-based TAS selection
• decremental TAS selection [19]
• optimal TAS selection of (8)

Fig. 1 illustrates the BER results of the no-TAS, norm,
decremental, norm-RMV, incremental-RMV, and proposed
TAS selection algorithms. In this scenario, system param-
eters such as (NT ,NS ,NR) = (16, 8, 4) and (NT ,NR) =
(NS ,NR) = (8, 4) are employed. We demonstrate that the
performance of the proposed incremental TAS selection algo-
rithm is close to that of the decremental algorithm and bet-
ter than that of the incremental-RMV algorithm. It can be
observed that the BER performance of the proposed incre-
mental TAS selection is almost similar to that of the opti-
mal selection. Note that the simulation result of the optimal
selection algorithm at SNR = 7dB is omitted owing to the
huge computational complexity.Meanwhile, the performance
difference between the proposed two-stage TAS selection
algorithm with K = 0, which corresponds to NP = NR, and
the decremental algorithm is relatively small. As K increases
to two, the proposed two-stage TAS selection algorithm dis-
plays slightly degraded performance, but outperforms the
norm-RMV algorithm and the norm-based algorithm. It is
further observed from [19] that the transmit diversity order
of ZF-PSM with optimal TAS selection is achieved as G =
(NT − NR + 1). On the other hand, the (NS ,NR) ZF-PSM
systemwithout TAS selection has no selection diversity, but if
NS > NR, the transmit diversity is always available and then
the diversity gain is given by G = (NS − NR + 1), which is
smaller than that of optimal TAS selection if NT > NS . Thus
the ZF-PSM scheme using the proposed TAS selection algo-
rithms can achieve the diversity order of 13 for the (16, 8, 4)
system at high SNR ranges. It is obvious from Fig. 1 that TAS

FIGURE 2. Complexity comparison of the proposed TAS selection
algorithms for the (16,8,4) ZF-PSM system.

selection achieves better diversity gain than the no-TAS case
with G = 5. It can be noticed that if an optimal search is
used instead of the norm-based algorithm in the first stage of
the proposed two-stage algorithmwhile maintaining the same
algorithm in the second stage, the improvement of the BER
performance could be minor, but its complexity becomes
much higher, even if the simulation results are not included
here.

Meanwhile, Fig. 2 shows that the computational complex-
ity of the proposed incremental algorithms is lower than
that of the decremental algorithm for the (16, 8, 4) system.
Particularly, the computational complexities of the proposed
incremental TAS selection algorithm in terms of summation
of the RM and RS are equal to approximately 70.7% and
64.8 %, respectively, of those of the decremental algorithm
for the (16, 8, 4) systems. In addition, by increasing a new
design parameter value of NP( = NR + K ) in the proposed
two-stage TAS selection algorithm, the complexity decreases
significantly as shown in Fig. 2, whereas the BER perfor-
mance degrades slightly, as shown in Fig. 1. Particularly, the
proposed two-stage TAS selection algorithm with K = 2 can
achieve approximately 17.6% and 16.1% of the complexities
of the decremental algorithm in terms of the summation of
RM and RS, respectively. It should be noted that the proposed
two-stage algorithm with K = 2 for (16, 8, 4) systems
outperforms the norm-RMV TAS selection algorithm with
slightly higher complexity. It should be also noted that RM
and RS of the optimal selection algorithm are specified as
7,001,280 and 5,920,200, respectively, which are not plotted
in Fig. 2 because of significant gaps from those of the other
selection algorithms.

In Figs. 3 and 4, the BER results of various TAS selection
algorithms together with no-TAS for (NT ,NR) = (NS , 4)
are plotted as a function of the number of selected transmit
antennas under two SNR values, namely 2 dB and 4 dB,
respectively, when NT = 32 and NR = 4 are given in
ZF-PSM system. It is obvious that all the TAS selection
algorithms outperform no-TAS owing to selection diversity.
As the number of selected transmit antennas increases, their
performance improves. It is shown that the proposed incre-
mental algorithm can achieve a BER performance close to
that of the decremental algorithm and much better than those
of the incremental-RMV and norm-RMV algorithm. Further-
more, the performance of the proposed two-stage algorithm
approaches that of the proposed incremental algorithm as
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FIGURE 3. BER of the proposed TAS selection algorithms for ZF-PSM
system with NT = 32 and NR = 4 under SNR = 2 dB.

FIGURE 4. BER of the proposed TAS selection algorithms for ZF-PSM
system with NT = 32 and NR = 4 under SNR = 4 dB.

well as that of the decremental algorithm as the number of
selected transmit antennas increases. However, increasing K
degrades the performance of the proposed two-stage algo-
rithm for a small number of selected transmit antennas. This
occurs because the pre-selection algorithm in the proposed
two-stage algorithmwith largerNP dominates the overall per-
formance for a small number of selected transmit antennas.
It should be noted that when NS ≤ NP( = NR + K ),
the proposed two-stage algorithm works as the norm-based
scheme. It is observed that if the number of selected trans-
mit antennas satisfies NS > NP + 2 under the simulation
scenario given as NT = 32 and NR = 4, the proposed two-
stage algorithm attains a performance similar to that of the
proposed incremental algorithm. Under the above-mentioned
simulation condition, the incremental algorithm employed
for the second post-selection stage in the proposed two-stage

FIGURE 5. Achievable rate of the proposed TAS selection algorithms for
the ZF-PSM system with NS = 8 and NR = 4 under SNR = 4 dB.

FIGURE 6. Achievable rate of the proposed TAS selection algorithms for
the ZF-PSM system with NS = 8 and NR = 4 under SNR = 8 dB.

algorithm appears to affect the good BER result considerably.
Hence, we believe that the proposed two-stage algorithm is
suitable when the number of selected transmit antennas is
greater than NR + K + 2, where NR � NT .
Figs. 5 and 6 present the achievable rate performance of the

above-mentioned TAS selection algorithms as a function of
the number of total available transmit antennas when NS = 8
and NR = 4 are fixed in the ZF-PSM system under two SNR
values, namely 4 dB and 8 dB, respectively. Fig. 7 shows the
achievable rate under the simulation setup with NS = 10 and
NR = 4 under SNR = 8dB. Here the achievable rate [25] is
given as

RS = log2
(
1+ β2S

/
(2σ 2

n )
)

(31)

The results indicate that the achievable rate of all the TAS
selection algorithms increases as the number of available
transmit antennas increases. It is shown that the proposed
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FIGURE 7. Achievable rate of the proposed TAS selection algorithms for
the ZF-PSM system with NS = 10 and NR = 4 under SNR = 8 dB.

FIGURE 8. BER of the proposed TAS selection algorithms for the (16,8,4)
ZF-PSM system with a channel estimation error of σ2

e = 0.04.

incremental TAS selection algorithm exhibits slightly worse
performance than the decremental TAS selection scheme and
its performance gap is insignificant. It is also observed that
the decrease in the achievable rate of the proposed two-stage
TAS selection algorithm for a fixed NT is coupled with the
increase in the NP value. Nevertheless, the proposed two-
stage TAS selection algorithm with K = 3 outperforms
the norm-RMV TAS selection algorithm. Particularly, Fig. 7
shows that the proposed two-stage TAS selection algorithm
with K = 3 outperforms the incremental-RMV for NS = 10,
which is larger than that in Figs. 5 and 6.

Thus far, it has been assumed that the transmitter in the
TAS selection and precoding scheme has perfect knowledge
of the channel fading coefficients. However, presently the
effects of imperfect CSI on the BER performance of various
TAS selection algorithms are being investigated. Under the

FIGURE 9. BER of the proposed TAS selection algorithms for the (16,8,4)
ZF-PSM system with a channel estimation error of σ2

e = 0.08.

FIGURE 10. Complexity comparison of the proposed TAS selection
algorithms in log scale as a function of NS .

same simulation conditions as shown in Fig. 1 and without
any channel estimation error, Figs. 8 and 9 comparatively
show the impacts of a channel estimation error of σ 2

e =

0.04 and σ 2
e = 0.08, respectively, on the BER perfor-

mance of various TAS selection algorithms. It is observed
that in comparison with the results of Fig. 1, the given
channel estimation errors cause degradation of the BER
performance in all TAS selection algorithms. Additionally,
an error floor begins at high SNR values owing to the
channel estimation error. It is evident that the proposed
incremental selection algorithm achieves BER results close
to the decremental one and better performance than the
incremental-RMV algorithm. Moreover, as σ 2

e increases,
the error floor becomes higher. Fig. 9 shows that the
proposed incremental selection algorithm outperforms the
incremental-RMV by approximately more than 5 dB prior
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FIGURE 11. Complexity comparison of the proposed TAS selection
algorithm for various K values as a function of NS .

FIGURE 12. Complexity comparison of the proposed TAS selection
algorithms in log scale as a function of NT .

to an error floor of the incremental-RMV. The proposed
two-stage TAS selection algorithm offers a worse BER
performance than the decremental algorithm at high SNR
values, whereas its BER results are lower than those
of the incremental-RMV algorithm. This means that the
incremental-RMV is more affected by channel estimation
errors than the proposed selection algorithms. Thus, the pro-
posed selection algorithms are more robust to channel estima-
tion errors than the incremental-RMV. It should be noted that
norm and norm-RMV algorithms still perform worse than the
proposed selection algorithms even under channel estimation
errors.

Fig. 10 compares the complexity of the proposed incre-
mental algorithm and the proposed two-stage scheme of
K = 0 with that of the optimal and decremental approaches
in log scale under a simulation setup such as NT = 32 and

FIGURE 13. Complexity comparison of the proposed TAS selection
algorithm for various K values as a function of NT .

NR = 4, which is the same situation as shown in Figs. 3 and 4.
It is found that the complexity of the suboptimal algorithms is
far less than that of the optimal algorithm. Fig. 11 exhibits the
complexity of various TAS selection algorithms as a function
of the number of selected transmit antennas under the same
simulation setup as that shown in Fig. 10. It can be observed
that as the number of selected transmit antennas increases,
the complexity of the proposed TAS selection algorithms
including the norm-RMV and incremental-RMV becomes
larger, whereas the decremental algorithm offers a decreas-
ing complexity. However, the proposed TAS selection algo-
rithms are capable of achieving much lower complexity than
the decremental algorithm, especially when the difference
between NT and NS is sufficiently large. It is also observed
that the complexity of the proposed two-stage TAS selection
algorithm depends on the new parameterNP. AsNP increases,
the complexity decreases. Thus the proposed two-stage TAS
selection algorithm with K = 4 provides a lower complexity
than the incremental-RMV selection algorithm. Especially
when NS ≤ NP( = NR + K ), its complexity is the same
as the norm-based case. Figs. 3 and 4 show that the former
outperforms the latter in terms of BER for values of NS
greater than approximately nine.

Fig. 12 shows the complexity curves of the proposed TAS
selection algorithms in log scale as a function of the number
of total transmit antennas available for NS = 8 and NR = 4.
It becomes obvious that the growth rate of complexity in the
optimal algorithm is significantly greater than the speed in
the suboptimal algorithms asNT becomes increasingly larger.
Fig. 13 presents the complexity of various TAS selection
algorithms as a function of NT for the same simulation con-
dition as that shown in Fig. 12. It is shown that the rate of
increase for the proposed algorithms is significantly smaller
than that for the decremental algorithm. The complexity of
the proposed two-stage algorithm with K = 3 is slightly
larger than that of norm-RMV, even for a large NT .
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VI. CONCLUSION
This article presents an incremental TAS selection scheme
to reduce the number of RF chains for ZF-PSM massive
MIMO systems effectively. When the number of selected
transmit antennas is sufficiently smaller than the number
of the total transmit antennas available, its complexity is
much less than that of the decremental algorithm, along
with the marginal BER performance degradation. In addition,
an efficient two-stage TAS selection algorithm consisting of
pre-selection and post-selection stages is proposed for mas-
sive MIMO systems. In the pre-selection stage, norm opera-
tions with simple computations are conducted to select the
NP transmit antennas effectively. In a follow-up stage,
the NS − NP transmit antennas are incrementally selected so
that the received SNR of the ZF-PSM systems is maximized.
The proposed two-stage TAS selection algorithm with NP =
NR achieves significantly better performance, which is close
to that of the decremental algorithm, compared to that of the
norm-RMVand incremental-RMVTAS selection algorithms.
Furthermore, it is able to achieve a tradeoff between per-
formance and complexity through a new parameter NP. The
simulation results show that the maximum transmit antenna
diversity gain can be obtained by the proposed TAS selection
algorithms. The proposed algorithms are well suited for the
case of NS � NT . Even under imperfect channel estimation,
the proposed incremental and two-stage selection algorithms
offer significantly better performance than incremental-RMV
and norm-RMV, respectively. Particularly near the error floor
of the incremental-RMV and norm-RMV, they demonstrate a
significant advantage in SNR values.
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