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ABSTRACT LLC resonant converters can achieve soft switching and loss reduction. However, the analysis
methods of wide frequency range LLC converters generally have problems with incomplete working
condition analysis at non-resonant frequencies and there is always a tradeoff between the accuracy and the
simplicity. These problems will affect the loss calculation, synchronous rectification and so on. The research
objective of this paper focuses on the full-bridge LLC resonant converter. In this paper, three conditions are
analyzed in time-domain including switching frequency lower than the resonant frequency at heavy load,
switching frequency lower than the resonant frequency at light load, and switching frequency larger than
the resonant frequency. Based on proper assumption and simplification, the approximate equivalent of the
trigonometric function is used to simplify the complex time-domain equations. The simplified equations are
obtained with the resonant capacitor voltage and resonant inductor current as the key variables. In order to
make the simplified equations easy to use, an iterative calculation model is proposed with more simplicity
than sophisticated software to solve nonlinear equations. The simplified equations and the model proposed
in this paper are verified by comparison with the fundamental analysis methods, the simulation, and the
experiments. By using the iterative calculation model, the voltage, current, time and other variables of
switching points can be obtained with the relative error less than 3% to theoretic values, which can be used
in loss calculation, synchronous rectification and so on. And the iterative calculation model can be realized
on DSP or other processors in real-time.

INDEX TERMS LLC resonant converter, time domain, simplified equations, and iterative calculation.

I. INTRODUCTION
In recent years, LLC resonant converters have been widely
applied in photovoltaic, electric vehicles and other fields
because of their characteristics of soft switching in the full
load range, and are developing towards high frequency, high
efficiency and high power density with the help of wide
band-gap devices [1]–[4].

Different from other DC-DC converters like Buck, Boost
and so on, the analysis of resonant converter cannot be carri-
ed out by the state-space average method. Several analy-
sis methods have been developed in the past. They can be
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summarized into three categories: 1) fundamental harmonic
approximation (FHA), 2) FHA with time-domain corrections
and 3) time domain analysis (TDA).

FHA method is the most widely used because that it is
easier to obtain the converter‘s voltage gain and the switch-
ing frequency range by concise mathematical formulas
[5]–[7]. However, because FHA method is a kind of fre-
quency domain method and assumes that only the fundamen-
tal component of primary square voltage transfers energy to
load, which is not very accurate since the fact is that high
harmonic components also transfer energy to load. Espe-
cially, when the switching frequency is far away from the
resonant frequency, the resonant current has a serious dis-
tortion. On the other hand, some electric parameters used
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to design LLC converters cannot be accurately analyzed by
FHAmethod, such as the peak resonant current used to design
the resonant inductor, the peak magnetizing current used to
design the transformer, the resonant current RMS value used
for the loss calculation and so on.

In order to improve the analysis accuracy, many studies
have been conducted to analyze the characteristics of the
converter based on time domainmethod in recent years. In the
literature [8], combiningwith TDAmethod and FHAmethod,
a novel over-current protection circuit for LLC converter is
proposed. But most of the analysis is on the basis of FHA
such as the primary current RMS value expression and the
voltage gain expression. So the analysis error is large. In the
literature [9], the voltage gain and the equivalent load under
discontinuous conduction mode are modified by using the
time-domain analysis. For this method, although the acc-
uracy of this method is slightly improved compared with
FHA, it still makes many assumptions, which will decrease
its accuracy compared with the practical results. For example,
the authors believe that the secondary current is sinusoidal,
which contradicts the fact that the primary resonant current
is not sinusoidal, especially in a wide output voltage range.
In the literature [10], the converter gain expression is rede-
fined by combining time domain and frequency domain, and
resonant factor and load factor are analyzed. But the defini-
tion of resonant factor and load factor is based on insufficient
basis and lacks the experimental verification. The derivation
procedure is complicated and the accuracy improvement is
not obvious. In the literature [11], [12], time domain methods
are used to find out all the possible parameters that can sat-
isfy the required peak gain in PN and PON modes. However,
the soft-switching condition of the converter will be lost and
the switching losses will be increased. Besides, all the design
results are just satisfied with the peak gain requirement, but
the conditions at full frequency range are not discussed.
In the literature [13], a voltage-fed full-bridge LLC reso-
nant converter with symmetrical quadrupler rectifier circuit is
analyzed with TDA method. But the equations are complex
and need further simplification. In the literature [14], [15],
the time-domain equations are simplified which make the
conduction angles of the synchronous rectifiers easier to
calculate. But some improper assumptions are used in the
simplification. For example, the authors think the resonant
current remain unchanged during the period while the LLC
converter’s rectifier is in the off-state, which only applies
if the excitation inductor is much larger than the resonant
inductor. In the literature [16], a new average small-signal
modeling technique is proposed based on [14], [15], so the
unsuitable assumptions still exist. In the literature [17]–[19],
the power loss estimation methods are presented with TDA
method. But the equations to be solved contains a large
number of unknowns and the difficulty of solving the equa-
tions is not considered. In the literature [20], the TDA is
used to analyze the LLC resonant converter in DCM boost
mode, and the formulas of voltage gain and current effective
value are given. But no detailed analysis has been made

on the working condition that the switching frequency is
larger than the resonance frequency. In the literature [21],
the TDA is used to optimize the efficiency of LLC resonant
converters and the equations composed of related variables
are given. But the solution process for the equations is not
mentioned.

It can be summarized from the above literatures that the
TDA method has higher accuracy than FHA method and
can be used to analyze the loss, the design of the magnetic
components and synchronous rectification, etc. Without the
assumptions and simplification, the time-domain equations
contain a large number of trigonometric functions and un-
knowns which are difficult to deal with. So most TDA meth-
ods make assumptions and make simplifications based on
these assumptions. However, some of the assumptions are
wrong or only suitable for specific occasions and some of the
simplifications are of small significance.

In order to make more suitable assumptions, this paper
analyzes the full bridge LLC resonant converter under three
typical working conditions, which are divided based on the
switching frequency and load, in time-domain, and the time-
domain functions of each time period are obtained. Accord-
ing to the characteristics of each time period, the assumptions
are made so that many triangle functions that are difficult
to deal with in time domain analysis can be approximated.
These assumptions do not seriously violate the actual wave-
form shape and physical characteristics, and verified by using
the actual parameters in the reference.

Based on above assumptions, simplifications are made
from the following two perspectives: 1) using the relation
of inductance, capacitance, time and impedance to simplify,
2) making the resonant capacitor voltage and the resonant in-
ductor current of the switching points as key variables which
can be used to obtain the complete time-domain function
and analyze the loss, the design of the magnetic components
and so on. A simplified set of equations with the resonant
capacitor voltage and the resonant inductor current as key
variables is obtained after the simplifications.

In order to solve the simplified time domain equations
without sophisticated software to solve nonlinear equations,
an iterative calculation model is proposed. All variables are
divided into two groups. The iterative solution formula bet-
ween two groups of variables is obtained by simultaneous
multiple equations. The suitable initial solution is proposed
to put into the iterative formula, then all variables are solved
with the relative error less than 3% to theoretic values, which
can be used in loss calculation, synchronous rectification and
so on.

This paper is organized as follows. Time domain analysis
of the full-bridge LLC resonant converter under three typical
working conditions, the assumptions and simplifications are
analyzed in Section II. In Section III, the iterative calcula-
tion model is proposed. In Section IV, some experimental
and simulation results are presented to verify the simplified
time domain equations and the iterative calculation model.
In Section V, some conclusions about the simplified time
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domain equations and the iterative calculation model are
summarized.

FIGURE 1. Full-bridge LLC resonant converter topology.

II. SIMPLIFIED TIME DOMAIN EQUATIONS
The topology of full bridge LLC resonant converter is shown
in Fig. 1.

Where S1–S4 are active switches, D1–D4 are diodes, Lr is
the resonant inductor, Cr is the resonant capacitor, Lm is the
excitation inductance of primary side of the transformer, turn
ratio of transformer is N :1, Co is the output filter capacitor,
Rload is the load resistance. The switching frequency of the
primary switches is fs. The voltage of Cr is Vc, the current
of Lr is Ir, the excitation current is Im, the input voltage is
Vi, the output voltage is Vo and the output current is Io. The
reference direction is shown in Fig. 1.

The resonant frequency fr, the normalized switching fre-
quency fn, the angular velocity ωr and ωm, the inductance
coefficient Ln, the resonance impedance Zr, the voltage V ∗o
and the current I∗o are defined as:

fr =
1

2π
√
LrCr

(1.1)

fn =
fs
fr

(1.2)

ωr =
1
√
LrCr

(1.3)

ωm =
1

√
(Lr + Lm)Cr

(1.4)

Ln =
Lm
Lr

(1.5)

Zr =

√
Lr
Cr

(1.6)

V ∗o = NVo (1.7)

I∗o =
Io
N

(1.8)

In order to simplify the analysis, the influence of dead
time and other stray parameters are not considered. When
the primary leakage inductor cannot be ignored, it should be
regarded as a part of Lr. At the same time, it is assumed that
Co is large enough, and Vo will not change in the steady-state.
Under different working conditions, the equivalent circuit

of LLC resonant circuit varies in different periods, and the
load has little influence on the condition when the switching
frequency is greater than the resonant frequency. Therefore,

three working conditions are analyzed in this paper, including
Condition I: fn < 1with heavy load; Condition II: fn < 1with
light load; Condition III: fn > 1.
The waveforms of the resonant inductance current ir, the

excitation current im, the resonant capacitance voltage vc and
the primary winding voltage vt under three working con-
ditions are shown in Fig. 2. 0, t1, t2 and t3 are the time
when the switch states of the LLC resonant converter change.
In these moments, the resonant inductance currents and the
resonant capacitance voltage are defined as Ir0, Ir1, Ir2, Ir3,
Vc0, Vc1, Vc2 and Vc3.

A. SIMPLIFICATION OF CONDITION I
Referring to the known time-domain analysis [20], the time-
domain functions of each time period under Condition I can
be obtained:

0–t1:

vc(t) = Ir0Zr sin(ωrt)+ (Vc0 − Vi + V ∗o ) cos(ωrt)
+Vi − V ∗o

ir(t) = Ir0 cos(ωrt)−
Vc0 − Vi + V ∗o

Zr
sin(ωrt)

im(t) = Ir0 +
V ∗o
Lm

t

(1.9)

t1–t2:

vc(t) = Ir1
√
(Ln + 1)Zr sin(ωmt − ωmt1)
+(Vc1 − Vi) cos(ωmt − ωmt1)+ Vi

ir(t) = Ir1 cos(ωmt − ωmt1)−
Vc1 − Vi
√
(Ln + 1)Zr

× sin(ωmt − ωmt1)
im(t) = ir(t)

(1.10)

t1 and t2 are defined as follows:
t1 =

TkTr
2

t2 =
TnTr
2

(1.11)

where Tr is LrCr resonant period, Tk is the time coefficient to
be calculated and Tn are defined as:

Tn =
1
fn

(1.12)

In most conditions, Lm is larger than Lr, ωm is smaller than
ωr and the time period from t1 to t2 is short. So the change of
ir is very small in this period and the time period from 0 to
t1 can be regarded as Tr/2 in [10], [16]. But the requirements
‘‘Ir0 + Ir1 = 0’’ and ‘‘Vc0 + Vc1 = 0’’ are only met when
fs is equal to fr. This means t1 is not equal to Tr/2. So Tk is
introduced to describe the relationship between t1 and Tr/2.
And Tk is approx. equal to 1 in most conditions.
For the approximations of the time-domain functions in 0–

t1, due to Tk ≈ 1 and ωrt1 ≈ π , the following approximation
can be obtained.{

sin(ωrt1) ≈ π (1− Tk)
cos(ωrt1) ≈ −1

(1.13)
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FIGURE 2. Related waveforms of resonant converter under: (a) Condition I; (b) Condition II; (c) Condition III, where ir: the
resonant inductance current; im: the excitation current; vc: the resonant capacitance voltage; vt: the primary winding voltage.

By combining t = t1, (1.9), (1.11) and (1.13), the following
equation can be obtained.

π (Tk − 1)× Ir0Zr+(Vc0 + Vc1) = 2× (Vi − V ∗o ) (1.14)

(Ir0Zr + Ir1Zr) = −π (Tk − 1)× (Vi − V ∗o − Vc0) (1.15)

−Ir0Zr + Ir1Zr =
π

Ln
TkV ∗o (1.16)

For the approximations of the time-domain functions in t1–
t2, due to ωmt2 – ωmt1 ≈ 0, the following approximation can
be obtained.{

sin(ωmt2 − ωmt1) ≈ ωmt2 − ωmt1
cos(ωmt2 − ωmt1) ≈ 1

(1.17)

In order to verify the validity of the approximation, ωmt2 –
ωmt1 can be transformed as follow.

ωmt2 − ωmt1 ≈
π ( 1fn − 1)
√
(Ln + 1)

(1.18)

The data in several papers are cited to calculate the appro-
ximate scope of ωmt2 – ωmt1. The results are shown in the
table below.

From the table above, it can be seen that the requirement
‘‘ωmt2 – ωmt1 < 0.5’’ is generally met. The larger the value
of ωmt2 – ωmt1 is, the larger the approximate error will be.
When the requirement of ‘‘ωmt2 – ωmt1 = 0.5’’ is met, the
approximate error can be calculated as shown below.∣∣∣∣cos(ωmt2 − ωmt1)− 1

cos(ωmt2 − ωmt1)

∣∣∣∣ ≈ 0.14 (1.19)∣∣∣∣ sin(ωmt2 − ωmt1)− (ωmt2 − ωmt1)
sin(ωmt2 − ωmt1)

∣∣∣∣ ≈ 0.04 (1.20)

When the requirement of ‘‘ ωmt2 – ωmt1 <0.5’’ is met,
the approximate error of sine function is small enough to be

TABLE 1. Related parameters in other papers.

acceptable. But the approximate error of cosine function is
still large, which means further correction is still needed.

By combining (1.10) and (1.17), the following equations
can be obtained.

vc(t) =
Ir1
Cr

(t − t1)+ Vc1

ir(t) = Ir1 −
Vc1 − Vi
(Ln + 1)Lr

(t − t1)
(1.21)

It can be seen from (1.21) that Ir1 determines the change
rate of the resonant capacitor voltage and is a constant, but
in fact, the change rate is affected by the resonant inductor
current and is not a constant. This contradiction is caused
by the approximate error. In order to solve this contradiction,
the equivalent current is introduced to replace Ir1 in the expre-
ssion of the resonant capacitor voltage. In the period from t1
to t2, the resonant inductor current keeps changing and the
change is nearly linear. So the average value of the resonant
inductor current in this period can be regard as the equivalent
current and can be expressed as (Ir1 + Ir1)/2. Similarly, the
equivalent voltage expressed as (Vc1+Vc2)/2 is introduced to
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replace Vc1 in the expression of the resonant inductor voltage.
After the above correction, the equations of the period from
t1 to t2 can be obtained as follow.

Vc2 =
Ir1 + Ir2
2Cr

(t2 − t1)+ Vc1

Ir2 = Ir1 −
Vc1 + Vc2 − 2Vi
2(Ln + 1)Lr

(t2 − t1)
(1.22)

When the requirement of ‘‘ωmt2–ωmt1 >0.5’’ is met, the
approximate errors of sine and cosine functions are both large
even when the corrections are made. This will converge to
inaccurate or even wrong results when using the following
iterative algorithm. Therefore, it is not recommended to use
these simplified equations when fs is far lower than fr or Ln is
too small. In fact, a very wide frequency range will make it
difficult to design magnetic components. And more and more
LLC designs use transformer leakage inductance as reson-
ance inductance, which means a large Ln. In other words,
the assumptions about the approximation and the correction
made in this paper are applicable to some extent.

The following equations can be seen from the symmetry of
resonance waveform:{

Vc2 = −Vc0
Ir2 = −Ir0

(1.23)

By combining (1.11), (1.22) and (1.23), the following
equation can be obtained.

−
π

2
(Tn − Tk)× (Ir0Zr − Ir1Zr)+(Vc0 + Vc1) = 0 (1.24)

2
π
(Ln + 1)× (Ir0Zr + Ir1Zr) = −(Tn − Tk)

×(2Vi + Vc0 − Vc1) (1.25)

From the perspective of energy transfer, the following
equation is also considered.∫ t2

0
(ir − im)dt =

∫ t2

0
I∗o dt (1.26)

Using (1.9) and (1.10) to simplify (1.26), we can get:

−Tk × (Ir0Zr + Ir1Zr)−
2
π
× (Vc0 − Vc1) = 2Tn × I∗o Zr

(1.27)

The simplified time-domain equation for Condition I is as
follows.

π (Tk − 1)× Ir0Zr+(Vc0 + Vc1) = 2× (Vi − V ∗o )
(Ir0Zr + Ir1Zr) = −π (Tk − 1)× (Vi − V ∗o − Vc0)

−(Ir0Zr − Ir1Zr) =
π

Ln
Tk × V ∗o

−
π

2
(Tn − Tk)× (Ir0Zr − Ir1Zr)+(Vc0 + Vc1) = 0

2
π
(Ln + 1)× (Ir0Zr + Ir1Zr)

= −(Tn − Tk)× (2Vi + Vc0 − Vc1)

−Tk × (Ir0Zr + Ir1Zr)−
2
π
× (Vc0 − Vc1) = 2Tn

×I∗o Zr

(1.28)

In order to clarify the relationship between variables,
the matrix of equations can be obtained as follow by trans-
forming (1.28). Eq. (1.29), as shown at the bottom of the next
page.

By comparing with the equations solved in other papers,
equations we proposed in this manuscript are simpler. From
the matrix form of the equation shown below, it is noted that
the parts at both ends of the equal sign are the product of
a coefficient matrix and a voltage matrix without variables
related to time and frequency. Tk and Tn are coefficients
without units. Therefore when the resonance frequency chan-
ges, as long as Vi, V ∗o , I

∗
o , Zr and Ln are the same, the shapes

of voltage and current waveforms remain the same as well as
Vc0, Vc1, Ir0 and Ir1. This characteristic also exists in FHA
method, which has never been mentioned in other existing
TDA papers.

B. SIMPLIFICATION OF CONDITION II
The analysis in 0–t2 under Condition II is the same as that
under Condition I. In t2–t3, the primary winding voltage is too
low to make rectifier diodes on secondary side conduct. The
circuit state and equivalent circuit in this period are shown
in Fig. 3 and Fig. 4.

From the above analysis, it can be seen that there is the
following equation at t3:

(Vc3 + Vi)
Lm

Lr + Lm
= V ∗o (1.30)

FIGURE 3. The circuit state in t2– t3 under Condition II.

FIGURE 4. The equivalent circuit in t2– t3 under Condition II.

Similar to the time-domain analysis in [20], the time-
domain functions in t2–t3 under Condition I can be obtained:

vc(t) = Ir2
√
(Ln + 1)Zr sin(ωmt − ωmt2)
+(Vc2 + Vi) cos(ωmt − ωmt2)− Vi

ir(t) = Ir2 cos(ωmt − ωmt2)

−
Vc2 + Vi
√
(Ln + 1)Zr

sin(ωmt − ωmt2)

im(t) = Ir2 cos(ωmt − ωmt2)

−
Vc2 + Vi
√
(Ln + 1)Zr

sin(ωmt − ωmt2)

(1.31)
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Define t1, t2 and t3 as follows. Similar to Tk, Td is intro-
duced to describe the relationship between t2 and Ts/2. The
time period from t2 to t3 is usually short, so Td ≈ 1.

t1 =
TkTr
2

t2 =
TdTnTr

2
t3 =

TnTr
2

(1.32)

Similar to (1.17) and (1.22), the approximation and the
correction are applied to (1.31). For details, please see
the Appendix B. The simplified time-domain equations of
Condition II are given as (1.33), as shown at the bottom of
the page.

C. SIMPLIFICATION OF CONDITION III
The analysis in 0–t1 under Condition III is the same as that
under Condition I. At time t1, the states of switches change.
In t1–t2, the circuit state and equivalent circuit under Con-
dition III are shown in Fig. 5 and Fig. 6.

Define t1 and t2 as (1.11).
It can be seen from Fig. 6 that Vi and V ∗o act on Lr and Cr

together, which makes the resonant current decrease rapidly,

so the time period of t1–t2 is generally very short and Tk is
approximately equal to Tn.

FIGURE 5. The circuit state in t1– t2 under Condition III.

FIGURE 6. The equivalent circuit in t1– t2 under Condition III.

The approximation of (1.17) and the correction of (1.22)
are unable to meet the needs under Condition III. The follow-
ing equations are obtained after t = t1 and (1.11) are plugged



π (Tk − 1) 0 1 1
1 1 −π (Tk − 1) 0
−1 1 0 0

−
π

2
(Tn − Tk)

π

2
(Tn − Tk) 1 1

2
π
(Ln + 1)

2
π
(Ln + 1) (Tn − Tk) −(Tn − Tk)

−Tk −Tk −
2
π

2
π




Ir0Zr
Ir1Zr
Vc0
Vc1

=


2 −2 0
−π (Tk − 1) π (Tk − 1) 0

0
π

Ln
Tk 0

0 0 0
−2(Tn − Tk) 0 0

0 0 2Tn


 Vi
V ∗o
I∗o Zr



(1.29)



π (Tk − 1) 0 0 1 1 0
1 1 0 −π (Tk − 1) 0 0
−1 1 0 0 0 0
0 π

2 (Tk − TdTn)
π
2 (Tk − TdTn) 0 −1 1

0 2
π
(Ln + 1) −

2
π
(Ln + 1) 0 (Tk − TdTn) (Tk − TdTn)

−Tk −Tk 0 −
2
π

2
π

0
π
2 Tn(1− Td) 0 −

π
2 Tn(1− Td) −1 0 −1

2
π
(Ln + 1) 0 2

π
(Ln + 1) Tn(1− Td) 0 −Tn(1− Td)

0 0 0 1 0 0




Ir0Zr
Ir1Zr
Ir2Zr
Vc0
Vc1
Vc2



=



2 −2 0
−π (Tk − 1) π (Tk − 1) 0

0 π
Ln
Tk 0

0 0 0
2(Tk − TdTn) 0 0

0 0 2Tn
0 0 0

2Tn(1− Td) 0 0
1 −( 1

Ln
+ 1) 0



 Vi
V ∗o
I∗o Zr

 (1.33)
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into (1.9).
Vc1 − Vi + V ∗o = Ir0Zr sin(πTk)+ (Vc0 − Vi

+V ∗o ) cos(πTk)
Ir1Zr = Ir0Zr cos(πTk)− (Vc0 − Vi + V ∗o ) sin(πTk)

(1.34)

Using the analysis method of SOTC for reference [22],
(1.30) can be reduced to the following equations:(

Vc0−Vi+V ∗o
)2
+(Ir0Zr)2=

(
Vc1 − Vi + V ∗o

)2
+ (Ir1Zr)2

(1.35)

tan(πTk)=

(
Vc1 − Vi + V ∗o

)
Ir0Zr −

(
Vc0−Vi+V ∗o

)
Ir1Zr

Ir0Ir1Z2
r +

(
Vc1 − Vi + V ∗o

) (
Vc0 − Vi + V ∗o

)
(1.36)

Equation (1.31) can be simplified as follows:

(Vc0−Vc1)
(
Vc0+Vc1−2Vi+2V ∗o

)
=(Ir1−Ir0) (Ir1+Ir0)Z2

r

(1.37)

In general, considering the design of the magnetic com-
ponents and the loss of the primary side switch, the switching
frequency will not be more than twice of the resonance fre-
quency and 0.5< Tn < 1. Due to the relationship of Tk ≈ Tn,
0.5π < πTk < π is usually satisfied under Condition III,
namely, |π (1 − Tk)| < 0.5π . Then Taylor expansion can be
used as follow.

tan(x) =
∞∑
n=1

(−1)n−1 22n
(
22n − 1

)
B2n

(2n)!
x2n−1, |x| <

π

2

(1.38)

where B2n is the 2n term of Bernoulli number. According
to the requirement of precision, tan(x) can be expanded by
selecting the appropriate items. If two terms are taken here
for expansion, the following equation can be obtained:

− tan(πTk) ≈ π (1− Tk)+
π3

3
(1− Tk)3 (1.39)

Due to the relationship of Tk ≈ Tn, when fr < fs <

1.275fr, the approximate relative error of (1.39) is less than
3% because 0.784 < Tk < 1. If the switching frequency is
too high to meet the above conditions, more items shall be
taken for expansion to ensure the calculation accuracy.

By combining (1.36) and (1.39), the univariate third-order
lacunary equation can be obtained with Tk as the unknown
number. According to the practical significance, the effective
solution is real solution, then the Cardano’s Formula can be
used to solve it, as follows:

X =

(
Vc1 − Vi + V ∗o

)
Ir0Zr −

(
Vc0 − Vi + V ∗o

)
Ir1Zr

Ir0Ir1Z2
r +

(
Vc1 − Vi + V ∗o

) (
Vc0 − Vi + V ∗o

)
(1.40)

Tk = 1+
1
π

 3

√√√√3X
2
+

√
9X2

4
+ 1+

3

√√√√3X
2
−

√
9X2

4
+ 1


(1.41)

Equations (1.40) and (1.41) are parts of the simplified time-
domain equation. Similar to Condition I and Condition II, the
approximation and the correction are applied to the period
t1–t2 of Condition III. Details are shown in the Appendix C.
The rest parts of the simplified time-domain equations of
Condition III are given as follows.


π

2
(Tk − Tn) −

π

2
(Tk − Tn) 1 1

2
π

2
π

(Tn − Tk) −(Tn − Tk)

1 0 0 0
0 0 −1 0



×


Ir0Zr
Ir1Zr
Vc0
Vc1



=


0 0 0

2(Tn − Tk) 2(Tn − Tk) 0

0 −
Tn
2Ln

0

0 0
π

2
Tn


 Vi
V ∗o
I∗o Zr

 (1.42)

III. ITERATIVE CALCULATION MODEL
Three sets of simplified time-domain equations are obtained.
All variables can be calculated by solving these equations
so that all waveforms of LLC resonant converter can be
reproduced. But the accurate expressions of variables are
difficult to derive. The traditional numerical methods need
large amount of calculation cost and are difficult to realize on
the microprocessors in real-time.

In this paper, an iterative algorithm is designed to improve
the practicability of the simplified time-domain equations and
can be realized on DSP or other processors in real time.

The basic idea of the iterative algorithm proposed in this
paper is as follows:

1) The variables to be solved are divided into two groups:
one is the time coefficients, including Tn, Tk and Td; the other
is the key variables related to voltage and current, including
Vc0, Vc1, Vc2, Ir0, Ir1 and Ir2.
2) The equations under the same working condition are

simplified and divided into two sets of solutions: the solu-
tions for Tn, Tk and Td which are expressed by Vi, V ∗o , I

∗
o , Zr,

Ln, Vc0, Vc1, Vc2, Ir0, Ir1 and Ir2; the solutions for Vc0, Vc1,
Vc2, Ir0, Ir1 and Ir2 which are expressed by Vi, V ∗o , I

∗
o , Zr, Ln,

Tn, Tk and Td.
3) Considering the approximate value of Tn, Tk and Td,

a set of suitable values can be taken as the initial value for
the iterative calculation.

4) When the errors of the last two groups of iterative vari-
ables are large, the iteration is continued until the accuracy
requirements are met, and the final solutions are obtained.

The simplification process of the three working condi-
tions is complex, and the derivation process is shown in
the Appendix A. The iterative formulas of Condition I is as
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follows in (2.1), as shown at the bottom of the page, where
(i) and (i+1) are iterative numbers.

Due to Tk ≈ 1, by combining Tk(0) = 1 and (2.2), as shown
at the bottom of the page, the initial value under Condition I
can be obtained as follows: Tk(0) = 1

Tn(0) = 1+
4Ln
π2 (1−

Vi
V ∗o

)
(2.3)

After simplification of the equations under Condition II,
it can be seen that two variables are fixed values:

Vc0 = Vi − (
1
Ln
+ 1)V ∗o

Ir1 =
πV ∗o
2LnZr

(2.4)

The iterative formulas of Condition II is as (2.5), as shown
at the bottom of the page, and (2.6), as shown at the bottom
of the page.

Because Condition II is similar to Condition I and Td ≈ 1,
the initial value under Condition II can be obtained as (2.7),
as shown at the bottom of the page.

The iterative formulas of Condition III can be expressed by
(2.8), as shown at the bottom of the next page, and (2.9), as
shown at the bottom of the next page.

Under Condition III, there is no approximate value for Tn
and Tk. However, the initial value under Condition I can still
be used, which is verified by the follow-up simulations. The
initial value under Condition III is shown as follows. Tn(0) = 1+

4Ln
π2 (1−

Vi
V ∗o

)

Tk(0) = Tn(0)
(2.10)

Since Tk is not used in (2.8), the initial values of the three
working conditions can be unified, namely, (2.7) can be the
initial value for all three working conditions. In the basic idea
of iterative algorithm, the identification of working condition



Ir0(i+1)=
π
(
Tk(i)

(
π2Tk(i)

(
Tn(i)−Tk(i)

)
− 4

)
V ∗o − 4Ln

(
Tk(i)V ∗o +

(
Tn(i) − Tk(i)

)
Vi
)
+ 2Lnπ

(
Tn(i)−Tk(i)

)
Tn(i)I∗o Zr

)
2Ln

(
4+ 4Ln−π2Tk(i)

(
Tn(i) − Tk(i)

))
Zr

Ir1(i+1)=
−π

(
Tk(i)

(
π2Tk(i)

(
Tn(i)−Tk(i)

)
− 4

)
V ∗o −4Ln

(
Tk(i)V ∗o −

(
Tn(i) − Tk(i)

)
Vi
)
− 2Lnπ

(
Tn(i) − Tk(i)

)
Tn(i)I∗o Zr

)
2Ln

(
4+ 4Ln − π2Tk(i)

(
Tn(i) − Tk(i)

))
Zr

Vc0(i+1) = Vi − V ∗o +
1
4
π
(
2Ir0(i+1) − 3Ir0(i+1)Tk(i) − Ir1(i+1)Tk(i) − 2I∗o Tn(i)

)
Zr

Vc1(i+1) = Vi − V ∗o +
1
4
π
(
2Ir0(i+1) − Ir0(i+1)Tk(i) + Ir1(i+1)Tk(i) + 2I∗o Tn(i)

)
Zr

(2.1)


Tk(i+1) = 1+

(
Ir1(i) + Ir0(i)

)
Zr

π
(
Vc0(i) − Vi + V ∗o

)
Tn(i+1) = Tk(i+1) +

2Ln
π2Tk(i+1)V ∗o

(π (Tk(i+1) − 1)Ir0(i)Zr + 2(V ∗o − Vi))
(2.2)



Ir0(i+1) = π (
1
2
− Tk(i))

V ∗o
LnZr

Vc1(i+1) = πTn(i)I∗o Zr +
π2

2Ln
Tk(i)(1− Tk(i))V ∗o + Vc0

Vc2(i+1) =
(I2r0(i+1) − I

2
r1)(Ln + 1)Z2

r + (Vc0 − Vc1(i+1))(Vc0 + Vc1(i+1) − 2Vi)

4Vi

Ir2(i+1) =

√
(Vc1(i+1) − Vc2(i+1))(Vc1(i+1) + Vc2(i+1) − 2Vi)

(Ln + 1)Z2
r

+ I2r1

(2.5)



Tk(i+1) =
2
3
+

1
3

√
6Tn(i)LnI∗o Zr

πV ∗o
+ 1−

12
π2

Tn(i+1) =
2(Vc0(i) + Vc2(i))
π (Ir0(i) − Ir2(i))Zr

−
2(Vc1(i) − Vc2(i))
π (Ir1(i) + Ir2(i))Zr

+ Tk(i+1)

Td(i+1) = 1−
2(Vc0(i) + Vc2(i))

πTn(i+1)(Ir0(i) − Ir2(i))Zr

(2.6)


Tk(0) = 1
Td(0) = 1

Tn(0) = 1+
4Ln
π2 (1−

Vi
V ∗o

)
(2.7)
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is added to form a complete iterative algorithm. Under
Condition I and Condition II, V ∗o > Vi; Under Condition III,
V ∗o < Vi. The relationship between Vi and V ∗o can be used to
distinguish the first two conditions and the third condition.
Vc0 under Condition II is the fixed value, but Vc0 under
Condition I is less than this fixed value. So Vc0 can be used
to distinguish Condition I and Condition II.

With Vi, V ∗o , I
∗
o , Zr and Ln as input and Tn, Tk, Td, Vc0, Vc1,

Vc2, Ir0, Ir1 and Ir2 as output, the iterative calculation model
is shown in Fig. 7.

FIGURE 7. The flow chart of iterative algorithm.

Where the error is expressed as follows:

error =

∣∣Tn(i+1) − Tn(i)∣∣
Tn(i)

× 100% (2.11)

All variables influence each other in the iteration process.
When the error of Tn is small enough, the error of other
variables will also be small.

Take the Condition I as an example: Vi, V ∗o , I
∗
o , Zr and Ln

are taken as the input of the iterative calculation model and
Tn, Tk, Vc0, Vc1, Ir0 and Ir1 are obtained.
Then the complete time-domain function are obtained as

follow, which can be used to draw all waveform.

t ∈ (0,
TkTr
2

):

vc(t) = Ir0Zr sin(ωrt)+ (Vc0 − Vi + V ∗o ) cos(ωrt)
+Vi − V ∗o

ir(t) = Ir0 cos(ωrt)−
Vc0 − Vi + V ∗o

Zr
sin(ωrt)

im(t) = Ir0 +
V ∗o
Lm

t

(2.12)

t ∈ (
TkTr
2
,
TnTr
2

):

vc(t) = Ir1
√
(Ln + 1)Zr sin(ωmt − ωm

TkTr
2

)

+(Vc1 − Vi) cos(ωmt − ωm
TkTr
2

)+ Vi

ir(t) = Ir1 cos(ωmt − ωm
TkTr
2

)

−
Vc1 − Vi
√
(Ln + 1)Zr

sin(ωmt − ωm
TkTr
2

)

im(t) = ir(t)

(2.13)

It is noted from the waveform characteristics of the Con-
dition I and the complete time domain functions that syn-
chronous rectification can be easily achieved.

Based on the complete time-domain function, the peak
resonant current Irp and the peak magnetizing current Irm can
be both obtained very easily as follow. The two values can be
used to design the resonant inductor and the transformer.

Irp = max(

√
I2r0 +

(
Vc0 − Vi + V ∗o

Zr

)2

,−Ir0) (2.14)

Imp = max(Ir1,−Ir0) (2.15)



Ir0(i+1) = −
Tn(i)V ∗o
2LnZr

Vc0(i+1) = −
π

2
Tn(i)I∗o Zr

Vc1(i+1) = −
V ∗o
Vi
Vc0(i+1)

Ir1(i+1) =
1
Zr

√(
Vc0(i+1) − Vc1(i+1)

) (
Vc0(i+1) + Vc1(i+1) − 2Vi + 2V ∗o

)
+ I2r0(i+1)Z

2
r

(2.8)



X(i+1) =

(
Vc1(i) − Vi + V ∗o

)
Ir0(i)Zr −

(
Vc0(i) − Vi + V ∗o

)
Ir1(i)Zr

Ir0(i)Ir1(i)Z2
r +

(
Vc1(i) − Vi + V ∗o

) (
Vc0(i) − Vi + V ∗o

)
Tk(i+1) = 1+

1
π

 3

√√√√3X(i+1)
2
+

√
9X2

(i+1)

4
+ 1+

3

√√√√3X(i+1)
2
−

√
9X2

(i+1)

4
+ 1


Tn(i+1) =

2(Vc1(i) + Vc0(i))
π (Ir0(i) − Ir1(i))Zr

+ Tk(i+1)

(2.9)
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Similar to the calculation for Irp and Irm, the loss expression
can be easily obtained based on the complete time-domain
function. But the loss expression of algebraic is complex and
is not the focus of this paper. Thus, the specific expressions
about the loss will not be presented here.

IV. VERIFICATION
In order to demonstrate the advantages of the methods pro-
posed in this paper, the comparison will be made from global
and local perspective.

From the global perspective, voltage gain is the most con-
cerned design requirements of LLC converter, and is also the
frequently analyzed object in FHA method. Besides, when
the demand of maximum voltage gain under heavy load is
satisfied, the demand of maximum voltage gain under light
loadwill also be satisfied. Therefore, the curve of voltage gain
under heavy load is regarded as the key comparison objective
from a global perspective.

From the local perspective, in some specific working con-
dition, the magnetic component design, loss analysis and
synchronous rectification analysis will be more accurate with
a more accurate waveform. The waveform can be deduced by
time-domain function with the key variables Vi, V ∗o , I

∗
o , Zr,

Ln, Tn, Tk, Td, Vc0, Vc1, Vc2, Ir0, Ir1 and Ir2 involved. There-
fore, these key variables are regarded as the key compari-
son objectives from the local perspective. At the same time,
the deduced waveform is compared with the real waveform.
These above comparisons are carried out under three typical
working conditions including Condition I, Condition II and
Condition III.

In order to demonstrate the simplicity of iterative calcu-
lation, the calculation cost of iterative calculation is analyzed.

The relevant parameters of LLC resonant converter used in
the experimental verification are shown in the table below.

TABLE 2. Related parameters of LLC resonant converter.

Considering the influence of diodes’ on-resistance and
conductance voltage, Vo is modified in iterative calculation
and fundamental harmonic analysis.

A. VOLTAGE GAIN CURVE COMPARISON
The voltage gain curve of LLC resonant converter deter-
mines the voltage conversion range of the converter, which
is of great significance to the design of the converter.

The fundamental harmonic analysis method has simple
calculation and low accuracy while the simulation based on

Simulink has complex calculation and high accuracy. Com-
pared with the fundamental harmonic analysis method and
the simulation, the simplicity and the accuracy of the iterative
calculation model can be presented. Compared with experi-
mental results, the accuracy of the iterative calculation model
can be further proved.

1.35 � load resistance is taken as the heavy load
condition, the switch frequency changes at the range of
130-250 kHz, and the output voltage curves are compared
with the switching frequency under the fundamental har-
monic analysis method (I), simulation results (II), experimen-
tal results (III) and the method proposed in this paper (IV).

For calculation simplicity, the iterative times of the model
is less than 10, which means the calculation is less than the
simulation method.

For calculation accuracy, it can be seen from Fig. 8 that
the fundamental analysis method is close to the simulation
and experiment when the switching frequency is close to the
resonance frequency, but when the switching frequency is far
away from the resonance frequency, the error becomes larger
and larger. In contrast, the curve of the iterative calculation
method is basically consistent with the curve of simulation
and experiment, the accuracy is very high, and the error
will not increase when the difference between the switching
frequency and resonant frequency increase.

FIGURE 8. Comparison of output voltage curve with switch frequency.

B. KEY VARIABLES COMPARISON
On the basis of above analysis, the corresponding points
of the three conditions (Condition I: fs = 160 kHz and
R = 1.35�; Condition II: fs = 160 kHz and R = 2.7�;
Condition III: fs = 220 kHz and R = 1.35�) are selected
for further experiments, and the variables of iterative calcula-
tion are compared with simulation and experiment. Tektronix
p2200 probes and Cybertek CPL8100B probes are used to
measure the voltage of the resonant capacitor and the current
of the resonant inductor. And the simulation results are based
on the Simulink.

It can be seen from the comparison table of key variables
that the calculation results based on the method proposed in
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TABLE 3. Comparison of key variables.

this paper are the same as the simulation results under ideal
conditions and the relative errors are less than 3%. But the
error between the calculation results and the experimental
results is large. Both simulation and calculation models are
based on ideal models, so the calculation model and the-
oretical analysis are consistent under ideal conditions. The
main differences between the experiment and ideal condition
are practical stray and parasitics, which cause such large
error. The switching frequency used in the experiment is low,
so the inductance parameters are large and the influence of
the practical stray or parasitics is small. When the switching
frequency increases, the influence of the practical stray or
parasitics cannot be ignored. Therefore, the influence need to
be analyzed to correct the related parameters in the iterative
calculation model, which does not change the model and its
accuracy.

The calculation waveforms of Fig. 9 are drawn according
to the time-domain function expression by using the results of
the iterative model. For example, Fig. 9(a) is drawn according
to (2.12) and (2.13). The simulation waveform is basically the
same as the calculated waveform. Here, only the difference
between the calculated waveform and the actual waveform is
compared.

It can be seen from Fig. 9 that although there are some
errors due to practical stray and parasitics, the calculated
waveform is very similar to the experimental waveform. And

FIGURE 9. Comparison of calculation (left) and experiment (right)
waveforms under: (a) fs = 160 kHz and R = 1.35 �; (b) fs = 160 kHz and
R = 2.7 �; (c) fs = 220 kHz and R = 1.35 �.

the accuracy of the method proposed in this paper can meet
the requirements of the design phase for LLC converters.

C. SIMPLICITY OF ITERATIVE CALCULATION
By analyzing the iterative model, the following table about
the calculation cost for each iteration step can be obtained.
See Appendix D for detailed analysis.

TABLE 4. The calculation cost for each iteration step.

10 or less iterations are spent in the previous comparison
experiments. Compared with non-linear solution software,
the calculation cost of our proposed model are much fewer.
That means the proposed model has the capability to be
embedded into the DSP or other processors to be run in real-
time with few resource occupation.

V. CONCLUSION
Based on suitable assumption and simplification, the time-
domain equations are simplified by using the voltage, current
and time of the switching points as variables. The simplified
time-domain equations under three conditions are obtained,
and an effective iterative model is designed to solve the
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relevant variables of the switching points without sophis-
ticated nonlinear solution software. From a global pers-
pective, the method in this paper can obtain a voltage gain
curvewith high accuracy in a relatively wide frequency range.
From a local perspective, the relative errors between the
calculated results and the simulation results are less than 3%.
The relative errors between the calculation and the experi-
ment is a little large because of practical stray and parasitics
which will be added to the simplified equations to further
improve accuracy in the future. And more model-based anal-
ysis about the loss, the design of the magnetic components,
and the synchronous rectification will be done in the future.
Besides, the calculation of iterative model is very less and can
be realized on DSP or other processors in real-time.
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