
Received July 23, 2020, accepted August 8, 2020, date of publication August 17, 2020, date of current version August 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3017014

Evolution-Based Real-Time Job Scheduling
for Co-Optimizing Processor and Memory
Power Savings
HYOKYUNG BAHN , (Member, IEEE), AND KYUNGWOON CHO
Department of Computer Engineering, Ewha University, Seoul 120-750, South Korea

Corresponding author: Hyokyung Bahn (bahn@ewha.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP)
under Grant 2019R1A2C1009275, and in part by the ICT Research and Development Program of MSIP/IITP (developing system software
technologies for emerging new memory that adaptively learn workload characteristics) under Grant 2019-0-00074.

ABSTRACT With the recent advances in battery-based mobile computing technologies, power-saving
techniques in real-time embedded devices are becoming increasingly important. This paper presents a novel
job scheduling policy for real-time systems, which aims at minimizing the power consumption of processor
and memory without missing the deadline constraints of real-time jobs. To do so, we formulate the power
saving techniques of processor voltage/frequency scaling and memory job placement as a unified measure,
and show that it is a complex search problem that has the exponential time complexity. Thus, an efficient
heuristic based on evolutionary computation is performed to cut down the huge searching space and find a
reasonable schedule within the feasible time budget. To evaluate the proposed scheduling policy, we conduct
experiments under various workload conditions. Our experimental results show that the proposed policy
significantly reduces the energy consumption of real-time systems. Specifically, the average reduction in the
energy consumption is 41.7% without deadline misses.

INDEX TERMS Real-time job scheduling, evolutionary computation, power saving, genetic algorithm,
dynamic voltage/frequency scaling, deadline.

I. INTRODUCTION
Due to the recent advances in IoT (Internet of Things) and
mobile computing technologies, reducing the power con-
sumptions in battery-based real-time systems is becoming
increasingly important. In this paper, we propose a novel
real-time job scheduling policy that aims at minimizing the
power consumption in processor and memory subsystems.
Specifically, we jointly optimize the computational speed of
a processor and job placement in low-power memory. To do
so, we formulate the processor’s dynamic voltage/frequency
scaling problem and the memory job placement problem as
a unified measure in order to co-optimize the power saving
techniques in processor and memory.

As part of processor power-saving techniques, dynamic
voltage/frequency scaling (DVFS) has been widely studied.
DVFS varies the supply voltage and clock frequency based on
the computation load of jobs [1]. By using DVFS, a real-time

The associate editor coordinating the review of this manuscript and

approving it for publication was Her-Terng Yau .

system could adjust the processor’s computational speed to
reduce power consumption when the load of jobs becomes
less than the processor’s capacity. Thus, the incorporation of
DVFS into real-time job scheduling offers more flexibilities
for energy-saving purposes.

Memory is another important source of power consump-
tion in mobile embedded systems [2]. In particular, power
consumption in memory increases rapidly in modern smart
devices due to the ever growing size of DRAM to accommo-
date more applications [3]. Due to its volatile characteristics,
DRAM needs constant recharge of power to maintain its
data even though no read/write operation is being performed.
This recharge of power, which is called the refresh operation,
accounts for a significant portion ofmemory power consump-
tion as the size of DRAM increases [2], [4].

Non-volatile low-power memory (LPM) technologies have
caught interest as an attempt to reduce the power consump-
tion of DRAM. LPM such as PC-RAM (phase change ran-
dom access memory) and STT-MRAM (spin-transfer torque
magnetic random access memory) is a byte-addressable

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 152805

https://orcid.org/0000-0002-7188-3889
https://orcid.org/0000-0002-1187-1771


H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

memory medium like DRAM but it spends less power as
it is non-volatile and thus does not need refresh opera-
tions [4]–[6]. Although LPM can reduce power consumption,
it cannot replace DRAM in its entirety as its access time is
slower than that of DRAM [6]–[8]. Instead of total substitu-
tion, thus, we use LPM and DRAM together in order to make
a tradeoff between the power consumption and the access
latency of DRAM and LPM [6], [7]. Our idea is that LPM is
slow but placing jobs on LPM is possible if it does not influ-
ence the scheduling possibility of the given job set. Thus, we
load jobs on LPM instead of DRAM unless it incurs deadline
misses, thereby saving the power consumption further. To this
end, we formulate the low power techniques for processor and
memory as a unified measure, and co-optimize the processor
voltage/frequency scaling and memory placement of jobs
(i.e., DRAMor LPM)with respect to the power-saving. By so
doing, we show that power consumption in real-time systems
can be further reduced without deadline misses.

Real-time job scheduling is one of the representative opti-
mization problems. In a real-time job scheduling problem,
time-critical tasks should be serviced within certain pre-
assigned deadlines dictated by the physical environment.
As shown in Figure 1, each job has its own release time,
deadline, and the worst-case execution time. A job can start
its execution after its release time, and should be serviced for
the worst case execution time before its deadline. In other
words, the worst case execution time of a job should be
located between the release time and the deadline. Then,
the scheduling problem becomes a placement problem of
each job in its time slot.

FIGURE 1. Examples of real-time jobs.

In Figure 1, there are four jobs that have their own release
time and deadline, and a valid schedule that places each
job in an appropriate time slot is exemplified. The prob-
lem in this paper is based on this real-time job scheduling
problem, but our problem is even more complicated as the
worst case execution time can be varied by changing the
processor’s computing speed and the memory location of
jobs. In particular, the worst case execution time of each
job will be increased as the processor is in the low volt-
age/frequency mode and/or the job is located at the slow
LPM. Then, the problem becomes the optimization problem
of determining the processor’s voltage/frequency mode and
the memory location of each job for minimizing the power

consumption without missing deadlines. Note that this is a
typical combinatorial optimization problem without a known
method to be solved in polynomial time. That is, finding
an optimal solution in an efficient way is not known, and it
can only be found by enumerating all possible combinations
and then evaluating them. The complexity of the problem
search domain is O(MnV n), where n is the number of jobs,
M is the number of memory types, and V is the number
of processor’s voltage/frequency modes. That is, for each
job n, there are V possible voltage/frequency modes and
M possible memory locations, which should be determined,
and as the configurations of the processor and the memory
are independent, the number of possible combinations is
MnV n. If one could afford to evaluate the cost (i.e., power
consumptions of processor and memory) of each solution,
then one would do well to select the solution of the lowest
cost without deadline misses. For example, there are 20 jobs
to schedule, and if the number of voltage/frequency modes is
4 and the number of memory types is 2, all possible schedules
reaches 820, which is more than 1018. Even with high-end
server systems, it is not feasible to scan all these cases to
find one with the minimum cost within a given time budget.
Thus, we need an algorithm that can find a good, but possibly
not optimal, solution in an efficient way. To cope with this
situation, we use an evolutionary computation method based
on genetic algorithms. To evaluate the proposed schedul-
ing policy, we conduct experiments under various work-
load conditions. Our experimental results show that the pro-
posed policy significantly reduces the power consumption
of real-time systems. Specifically, the average reduction in
the energy consumption is 41.7% without deadline misses.
The contributions made in this paper can be summarized as
follows.

• First, unlike traditional real-time job models that only
consider the execution in the processor, we define an
extended job model to consider the memory configura-
tion of jobs as well as the processor side. Specifically,
in our job model, the definition of a job includes the
size of the memory footprint and the number of memory
read/write operations on that job. Based on this, the
worst-case execution time of a job is re-evaluated by
reflecting the read/write characteristics of the memory
medium the job resides.

• Second, we propose a hybrid memory architecture con-
sisting of DRAMand LPM for real-time systems. Unlike
composing DRAM and LPM hierarchically, we present
both DRAM and LPM at the same main memory level,
managing them under a single address space. Note that
general-purpose systems usually compose DRAM and
LPM as a hierarchical architecture to improve the virtual
memory system performances, but this is difficult in
real-time systems as page faults cannot be predicted
beforehand, making the deadline guaranteed service
difficult. Thus, in our architecture, we set the mem-
ory size large enough not to incur unexpected page

152806 VOLUME 8, 2020



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

faults, but focusing on the reduction of DRAM’s power
consumptions.

• Third, our model tightly evaluates the scaled worst-case
execution time of a job, considering the overlapped
latency between processor and memory. That is,
the scaled worst case execution time of a job is deter-
mined by the slower time component of executing
instructions in processor and accessing memory. Thus,
we can reduce the power consumption of real-time
systems further by adopting LPM without influencing
scheduling possibilities.

• Fourth, we design a genetic algorithm that aims at
minimizing the power consumption in processor and
memory with a constraint that the deadlines of all jobs
are satisfied. To co-optimize the power consumption
in processor and memory without deadline misses,
we define our cost function as the total energy con-
sumption that would be yielded by the processor and
memory states the solution represents; and we add some
penalty cost to a solution if the solution does notmeet the
deadline of jobs. This avoids too much discrimination
and searches the wide area of problem space, not leading
to premature convergence to a local optimum.

The remainder of this paper is organized as follows.
Section II describes the problem model of real-time job
scheduling with respect to the processor and memory power-
saving. In Section III, the optimization technique based on
genetic algorithms is presented. Section IV presents the per-
formance evaluation results to assess the effectiveness of the
proposed policy. In Section V, we briefly summarize some
related studies of this paper. Finally, Section VI concludes
this paper.

II. PROBLEM MODEL
A. JOB MODEL
Suppose that 0 = {τ1, τ2, . . . , τn} is the set of real-time
jobs, and the target system has a processor whose volt-
age/frequency level can be adjusted dynamically, and main
memory consists of DRAM and LPM as shown in Figure 2.
A job τi is represented by< ti, pi, mi >, where ti is the worst
case execution time of τi with the default voltage/frequency
mode of a processor and DRAM memory placement, pi is
the period of τi, and mi is the memory configuration of τi,
which is defined as < si, ri, wi >, where si is the size of τi’s
memory footprint, and ri and wi are the number of memory
read and write operations, respectively, during the execution
of τi. As real-time jobs can usually be modeled by periodic
jobs, we only consider a periodic job, of which the period
implicitly determines the deadline of a job.

By following the common assumptions in previous
work [1], we make the six assumptions in our real-time
system and job model.

A1. We consider the independent job model, in which a job
does not affect other jobs.

FIGURE 2. The target architecture of the proposed policy.

A2. Although the size of DRAM is set to the entire footprint
of all jobs, we partially hibernate DRAM to save the
memory power consumption if jobs in DRAM move to
LPM.

A3. The overhead of processor’s context switching from one
job to another is negligible.

A4. The overhead of changing the processor’s
voltage/frequency mode from one to another is
negligible.

A5. A job’s relative deadline is equal to its period.
A6. A job can be preempted during its execution.

In our job model, the worst case execution time ti of a
job is determined by the slower component of processor
and memory with the given voltage/frequency mode and the
memory medium. In particular, as ti should consider the
longest time path between memory and processor, our model
applies a function f that scales ti for considering DVFS and
LPM. During this process, we tightly estimate the latency that
may overlap between processor and memory, leading to min-
imized power consumption. The schedulability of real-time
job set 0 in our model is tested by the utilization U of a
processor as follows.

U =
n∑
i=1

f (ti)
pi
≤ 1 (1)

Once a real-time job set passes the schedulability test,
we can determine the execution order of the jobs based on
the earliest deadline first (EDF) algorithm, which is known
to schedule real-time jobs without missing their deadlines if
any feasible schedule exists [1]. Note that EDF schedules the
job with the nearest deadline first.

Let us now see an example situation consisting of three
jobs τ1, τ2, and τ3, whose worst case execution times t1,
t2, and t3 are 2, 1, and 1, respectively, and their periods are
8, 10, and 12, respectively. The schedulability of the jobs
can be tested by calculating the utilization of the three jobs,
i.e., U = 2/8 + 1/10 + 1/12 = 0.433. Since the utilization
U < 1 is satisfied, the jobs are schedulable. Figure 3(a)
depicts the scheduling result for this example. Although the
jobs are schedulable, the scheduling result incurs a large
proportion of idle intervals. This inefficiency can be relieved
by adjusting the processor’s voltage/frequency for some idle
intervals. For example, if two low frequency levels of 0.5 and

VOLUME 8, 2020 152807



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

FIGURE 3. Comparison of the scheduled results.

0.25 are applied for jobs τ1 and τ2, respectively, the scaled
worst case execution time f (t1) and f (t2) will be 4 and 4,
respectively. As a result, the utilization of the processor
increases to U = 4/8 + 4/10 + 1/12 = 0.983, in which
U < 1 is still satisfied and is, thus, schedulable. Moreover,
if we locate τ2 in LPM whose access latency is twice that
of DRAM, one may think that the scaled worst case execu-
tion time f (t2) will be 8, and thus it is not schedulable as
U = 4/8 + 8/10 + 1/12 = 1.383 > 1. However, we tightly
evaluate the scaled worst case execution time considering
the overlapped latency between processor and memory. That
is, the scaled worst case execution time f (ti) of a job τi
is determined by the slower time component of executing
instructions in processor and accessing memory as follows.

f (ti) = max{fDVFS (ti), fLPM (ti)} + µ (2)

where µ is a stall factor that limits the overlapped execution
between processor and memory in the given architecture, and
fDVFS (ti) and fLPM (ti) are the scaled worst case execution time
of τi by applying DVFS and LPM, respectively, which can be
subsequently defined as follows.

fDVFS (ti) = ti/ε (3)

fLPM (ti) = t∗i (α
∗ri + β∗wi) (4)

where ε is the voltage/frequency mode parameter for the
given processor state, and α and β are the read and write
latency parameters for the given memory type.

Thus, in the aforementioned example, the worst case
execution time f (t2) will be still 4 and the utilization of
the processor by adopting both DVFS and LPM becomes
less than 1, still being schedulable. Figure 3(b) depicts the
scheduling result with our model when the aforementioned

voltage/frequency scaling and memory placement are used.
As can be seen, idle intervals almost disappear in comparison
with the result given in Figure 3(a), which will lead to a
significant reduction in power consumptions.

B. ENERGY POWER MODEL
In this paper, we analyze the energy consumptions of proces-
sor and memory separately and then accumulate them. The
energy consumption E is evaluated as

E = ECPU + EMEM (5)

where ECPU is the processor energy consumption andEMEM
is the memory energy consumption. Note that we do not
consider other resources such as cache memory. The pro-
cessor energy consumption ECPU can be modeled as the
sum of active energy consumption ECPU_act and static energy
consumption ECPU_stat [35], [36], that is

ECPU = ECPU_act + ECPU_stat (6)

The energy consumption of CMOS processors is dominated
by active energy, which mainly results from charging and
discharging of gates in the circuits, and can be formulated as a
function of supply voltage and operating frequency [35], [36],
that is

ECPU_act =
∑
τi

c V 2
i fi ti (7)

where c is the effective capacitance, Vi is the supply voltage
for executing job τi, fi is the operating frequency for executing
job τi, and ti is the actual time to execute job τi.
In our model, the voltage Vi is adjusted according as the

clock frequency fi is varied. It is known that the clock fre-
quency and the supply voltage have almost linear relations,

152808 VOLUME 8, 2020



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

but for real processors, the supply voltage may not decrease
linearly with lowered clock frequency [35]. Thus, we use a
real processor model, Transmeta model [35], [37] as listed
in Table 1. The static energy consumption of a processor
ECPU_stat mainly results from the leakage current and is
expressed as

ECPU_stat = Ngate ∗ Vi ∗ Ileak ∗ T (8)

where Ngate is the number of gates, Vi is the supply voltage,
Ileak is the leakage current, and T is the total execution time.

TABLE 1. Frequency and supply voltage of Transmeta Crusoe.

The memory energy consumption EMEM can be modeled
as the sum of active energy consumption EMEM_act and static
energy consumption EMEM_stat [38], [39], that is

EMEM = EMEM_act + EMEM_stat (9)

The active energy consumption EMEM_act refers to the
energy dissipated while a read or a write operation is per-
formed [40], [41], which can be calculated as

EMEM_act =
∑

τi∈DRAM

{ri∗E_readDRAM + wi∗E_writeDRAM}

+

∑
τi∈LPM

{ri∗E_readLPM + wi∗E_writeLPM}

(10)

where ri andwi are the number of read andwrite operations on
the job τi, respectively, E_readDRAM and E_writeDRAM refer
to the read and write energy consumptions for a word size in
DRAM, respectively, and E_readLPM and E_writeLPM refer
to the read and write energy consumptions for a word size in
in LPM, respectively.

The static energy consumption EMEM_stat refers to the
energy consumed consistently regardless of any operations
in memory [41], which can be modeled as

EMEM_stat =
∑

τi∈DRAM

{Unit_static_powerDRAM∗si∗T }

+

∑
τi∈LPM

{Unit_static_powerLPM∗si∗T }

(11)

where Unit_static_powerDRAM is the static power of DRAM
per capacity including leakage power and refresh power,
Unit_static_powerLPM is the static power of LPM per capac-
ity including leakage power, si is the aligned size of job τi
on the given memory type, and T is the total execution time.
The leakage power refers to the power consumed even when
the memory is idle. Note that the leakage power of LPM is

very small in comparison with that of DRAM. The refresh
power refers to the power consumed to recharge cells to retain
the stored data. As DRAM memory cells store data in small
capacitors that lose their charge over time, it needs consid-
erable refresh power to sustain refresh cycles irrespective of
read and write operations. Note that LPM does not need the
refresh power as it is a non-volatile medium.

C. EXTENDING THE BASIC MODEL
In this subsection, we discuss how our basic model can be
extended to more general cases. In general, real-time jobs
cannot necessarily be modeled by periodic jobs. For example,
a sporadic job or an aperiodic job can be included in a
real-time job set, where a sporadic job is similar to a periodic
job but its period is not regular and an aperiodic job has no
deadline. If our job set 0 is extended to include sporadic jobs,
the period pi of a sporadic job can be defined as the minimum
inter-arrival time of the job. Then, the same utilization test
in Expression (1) can be applied as if it is a periodic job.
An aperiodic job can also be modeled like a periodic job as
we can create some periodic server to handle the execution of
aperiodic jobs, which is periodically activated and executes
aperiodic jobs.

In our basic model, we assume that a job’s relative deadline
is equal to its period. In the case that a job’s deadline is not
equal to its period, our utilization test in Expression (1) is not
a safe schedulability test, and a more complex test is neces-
sary. Specifically, the demand bound function should be con-
sidered for the schedulability test of a real-time job set instead
of the utilization function [31], [32]. Then, the schedulability
test of Expression (1) should be replaced by the following
demand bound function test.

∀t(0 ≤ t ≤ p),
∑
τi∈0

dbf (τi, t) ≤ t (12)

where p is the lowest common multiple of all jobs’ periods
and dbf(τi, t) denotes the maximum amount of time executed
by job τi before time t . More details of the demand bound
function test can be found in the study of Baruah et al. [31].

III. OPTIMIZATIONS WITH GENETIC ALGORITHMS
In this section, we describe the details of our genetic algo-
rithms to optimize the dynamic voltage/frequency scaling of a
processor and job placement between DRAM and low-power
memory with respect to the minimization of power consump-
tion. As this is a typical combinatorial optimization problem
without a known method to be solved in polynomial time,
we use an optimization technique based on genetic algo-
rithms. Genetic algorithm is a stochastic algorithm, which
mimics the natural evolution of population genetics in prob-
lem solving or simulation [9]–[15].

In this paper, the problem is determining the processor’s
voltage/frequency mode and the memory location of each
job for minimizing the energy consumption with the con-
straints of each job’s deadline. To this end, our genetic
algorithm maintains a certain number of candidate solutions,

VOLUME 8, 2020 152809



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

and evolves the solution set to obtain the best solution that
decides the processor and memory configurations. Specifi-
cally, our genetic algorithm first generates an initial solution
set; then it selects two solutions in the set and merges as
one solution by the crossover and mutation operations; then
the solution set is evolved by substituting a solution in the
old set with the newly generated solution. Such processes
continue until the solution set converges. Finally, the best
solution in the converged set is chosen to determine the volt-
age/frequency mode and the memory placement of each job.

A. ENCODING
In a genetic algorithm, a solution is typically encoded by a
linear string. The choice of this encoding is a major feature of
a genetic algorithm. In our problem, a solution should deter-
mine the memory allocation and processor voltage/frequency
states of all real-time jobs in the system. Thus, our encoding
represents a solution by two strings as shown in Figure 4. The
first string represents the processor state and the second string
represents the memory allocation information to service the
jobs. The length of each string is set to the number of jobs
in the system and each position within a string represents
the processor and memory states of a job. That is, the value
of the entry in the first and the second string refers to the
state of the processor voltage/frequency level and thememory
allocation for the corresponding job, respectively.

FIGURE 4. Encoding of the problem.

For example, if there are four frequency modes and two
memory types, each entry in the processor string can have the
value of 0, 1, 2, or 3, and each entry in the memory string can
have the value of 0 or 1. As shown in Figure 4, the value of 0,
1, 2, and 3 in the processor string represents the frequency
mode of 1, 0.5, 0.25, and 0.125, respectively, and the value
of 0 and 1 in the memory string indicates that the location
of the job is DRAM and LPM, respectively. Note that Job 1
is placed on LPM and it is executed under the processor’s
frequency mode of 0.125. Based on this encoding method,
we generate 100 random solutions as the initial solution set.

In a genetic algorithm, we need a cost function for measur-
ing the quality of each solution. As our goal is minimizing
the energy consumption without missing the deadlines of
the real-time jobs, we define our cost function as the total
energy consumption that would be yielded by the processor
and memory states the solution represents; and we add some
penalty cost to a solution if the solution does not meet the

deadline constraint of the jobs, which is checked through the
utilization test explained in Expression (1).

B. SELECTION OPERATIONS
A selection operation selects two solutions in the current set
that will be the parents of the next generation. It is based
on a probabilistic rule that favors better solutions based on
their fitness measure. In our problem, the fitness measure
refers to the energy consumption of the solution. However,
this operation should avoid too much discrimination. That
is, if there exist one or two extremely superior solutions in
terms of the energy consumption, the selection pressure may
focus narrowly on these extreme ones, and the characteristics
from these solutions may dominate the solution space rapidly,
potentially causing premature convergence to a local opti-
mum. To resolve this issue, we normalize the fitness measure
of the solutions so that the best solution in the set is 4 times
more probable to be chosen than the worst one. This is a
standard normalization method frequently used in genetic
algorithms [16]. The normalized fitness measure of a solution
is defined as

NV i = (Rw − Ri)+ (Rw − Rb)/3 (13)

where Rw, Rb, and Ri are the rankings of the worst solution,
the best solution, and solution i, respectively, in the current
set. Based on the normalized fitness measure, a roulette wheel
selection is used as a selection operator, which assigns each
solution i a slot with the size equal to its normalized fitness
measure NVi. The pointer of the wheel is a random real
number ranging from 0 to

∑
NVi. A solutionwhose slot spans

the pointer is chosen and becomes a parent.

C. CROSSOVER AND MUTATION OPERATIONS
After selecting two parent solutions, a crossover operation
is performed. The idea of the crossover operation, which is
regarded as the most important search operator in genetic
algorithms, is that useful segments of the selected parents
should be combined to yield a child that will lead to better
solutions as time progresses.

A classical 1-point crossover operation works by randomly
generating a crossover point and then a child is generated
by copying the left part of a parent and the right part of
the other parent. In our problem, solutions are encoded as
two strings. Thus, we generate crossover points for the two
strings independently to perform the crossover operation.
Figure 5 depicts an example of the proposed crossover oper-
ation. A random number between 1 and n–1, where n is the
number of jobs, is generated and a new solution is formed by
inheriting the left and the right segments of parents 1 and 2,
respectively.

Mutation perturbs some parts of the child solution gener-
ated by crossover. The mission of mutation is to search wide
area of the problem space and avoid premature convergence.
We use a classical mutation operator, which selects some ran-
dom part of a solution and changes it to a random value [17].

152810 VOLUME 8, 2020



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

FIGURE 5. Crossover operations in the proposed scheduling algorithm.

D. REPLACEMENT OPERATIONS
When a child solution is generated, a new solution set is
produced by replacing a solution in the current generation by
the child solution. In this paper, we substitute the solution that
incurs the highest cost in the current set with the newly gen-
erated child, which is the most commonly used replacement
operation in genetic algorithms.

E. STOP CONDITIONS
There are several ways to set the stop condition of genetic
algorithms. The two most common methods are (1) to set
the maximum number of iterations and (2) to stop the loop
when the diversity of solutions in the set falls below a certain
level [16], [17]. To analyze the diversity, it is common to
compare the fitness values of all solutions in the current set,
and check whether they are homogeneous. We use the second
method to ensure the convergence of our genetic algorithms.

It is not an easy matter to prove the complexity of
the genetic algorithm theoretically as it is sensitive to the
experimental parameters of the genetic algorithm. However,
in empirical aspects, we found that our genetic algorithm
safely converges with a constant number of generations
regardless of the number of jobs (up to 1,000 jobs we exper-
imented), and thus the complexity of our genetic algorithm
can be considered as O(1).

IV. PERFORMANCE EVALUATIONS
We compare our policy called COOP-GA (Co-optimization
with genetic algorithms) with ORIGINAL, DVFS, LPM,
and DVFS-LPM, where ORIGINAL is a baseline condi-
tion that adopts neither dynamic voltage/frequency scaling

nor low-power memory technologies, DVFS uses dynamic
voltage/frequency scaling but does not use low-power
memory, LPM uses low-power memory but does not use
dynamic voltage/frequency scaling, and DVFS-LPM uses
both dynamic voltage/frequency scaling and low-power
memory. Similar to COOP-GA, DVFS-LPM uses both
dynamic voltage/frequency scaling and low-power memory
technologies, but its optimization is performed simply by the
hill climbing method instead of genetic algorithms.

Before showing the comparison results, Figure 6 plots the
evolution of COOP-GA as time progresses. That is, the fitness
measure of the best and the worst solutions among 100 solu-
tions in the current searching space and their average are

FIGURE 6. Convergence of the solutions as time progresses.

VOLUME 8, 2020 152811



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

plotted as the generation evolves. As we see in the figure,
the quality of solutions improves significantly according to
the evolution of the generation, and finally they converge.

In our experiments, the sizes of DRAM and LPM are
equally set to accommodate the full job set. Table 2 shows
the power consumption and the read/write latency of DRAM
and PC-RAM, which is a type of LPM we experimented.
Theoretically, we can set the unlimited number of different
voltage/frequency levels of a processor. However, commer-
cial processors usually allow a certain limited number of
voltage/frequency modes for practical reasons. By consider-
ing this, we set 4 frequency levels of 1, 0.5, 0.25, and 0.125.

TABLE 2. Characteristics of LPM and DRAM.

We perform experiments under both synthetic and realistic
workload conditions. In the synthetic workload, the experi-
ments were performed with four different workload condi-
tions, where the utilizations of the workloads are 0.25, 0.5,
0.75, and 0.95, assuming the default system configuration
(i.e., the utilization value under the full voltage/frequency
mode of a processor and DRAM only placement). The num-
ber of jobs in our synthetic workload is set to 100 and the
worst-case execution times of jobs are randomly generated
between 1ms and 500ms. The average period of the workload
is determined based on the target utilization of the work-
load (i.e., 0.25, 0.5, 0.75, and 0.95) and the period of each
job is randomly generated between 0.5 to 1.5 times of the
average period. For realistic workloads, we use the Robotic
Highway Safety Marker (RSM) workload [33] and the IoT
workload [34]. Tables 3 and 4 depict the parameters of the
RSM and IoT workloads, respectively [33], [34].

A. SYNTHETIC WORKLOADS
Figure 7 shows the energy consumption of ORIGINAL,
DVFS, LPM, DVFS-LPM, and COOP-GA as the utilization
of the workload is varied. The numbers on the y-axis mean the
energy consumption of the algorithm normalized to ORIG-
INAL. That is, the energy consumption of the ORIGINAL
is set to 1.0 and the relative value scaled to ORIGINAL
is plotted. As we see in the figure, COOP-GA performs
the best for all cases regardless of the workload conditions.
The reduced energy consumption of COOP-GA is 41.7% on
average and up to 73.8% in comparison with the ORIGI-
NAL system. Specifically, COOP-GA performs even better
when the utilization becomes small. This is because there
are more possibilities of resource optimization when the
workload is not heavy. As the load of jobs increases and
the utilization becomes close to 1, it is more likely that

TABLE 3. Parameters of the RSM workload.

TABLE 4. Parameters of the IoT workload.

low-power techniques incur deadline misses of jobs, difficult
to find better solutions. When we compare the five schemes,
COOP-GA reduces the energy consumption of ORIGINAL,
DVFS, LPM, and DVFS-LPM by 41.7%, 29.7%, 37.9%, and
24.0%, on average, respectively. DVFS performs better than
LPM, which implies that reducing the energy consumption in
a processor is more effective than that in memory. However,
DVFS-LPM performs better than DVFS and LPM, implying
that adopting the two low-power techniques together makes
even better results.

Figures 8 and 9 separately depict the energy consumption
in processor and memory, respectively, for the five policies
as the utilization is varied. As can be seen in Figure 8, DVFS,
DVFS-LPM, and COOP-GA, which adopt dynamic voltage/
frequency scaling, reduce a substantial amount of processor’s
energy consumption. However, COOP-GA performs even
better than the others by optimization with the genetic algo-
rithm. The energy consumption of LPM and ORIGINAL is
high as they do not use voltage/frequency scaling, although
the gap is small as the utilization becomes large. This is
because voltage/frequency scaling is less effective as the load
of jobs approaches the full capacity of a processor. That is,
the chance of utilizing idle periods of a processor by lower-
ing the supply voltage/frequency is difficult in these cases.
When comparing DVFS and DVFS-LPM, DVFS performs
better than DVFS-LPMwith respect to the processor’s energy
consumption. This is because low-powermemory is slow, and
thus the execution time of the processor is also increased,
which incurs additional energy consumption in the processor.

When we compare the energy consumption in memory,
policies that use low-power memory significantly reduces
the energy consumption. As shown in Figure 9, DVFS-LPM,
LPM, and COOP-GA consume less energy than DVFS and
ORIGINAL, which adopt only DRAM memory.

152812 VOLUME 8, 2020



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

FIGURE 7. Total energy consumptions as the utilization is varied (synthetic workload).

FIGURE 8. Energy consumptions in processor as the utilization is varied (synthetic workload).

The reason is that the static energy consumption of LPM
is very small, and thus adopting less DRAM by partially
substituting it with low-power memory saves the refresh

power of DRAM significantly. Specifically, policies adopting
low-power memory, i.e., LPM, DVFS-LPM, and COOP-GA,
consume 50-70% less energy than ORIGINAL and DVFS.

VOLUME 8, 2020 152813



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

FIGURE 9. Energy consumptions in memory as the utilization is varied (synthetic workload).

However, as the access latency of low-power memory is slow,
placing a job on low-power memory may degrade the exe-
cution time in the processor, possibly increasing processor’s
energy consumption. This can be seen in Figure 8 that LPM
spends more energy than ORIGNAL, and DVFS-LPM also
spends more energy than DVFS. However, the gap is not wide
and can be compensated by the energy-saving effect in mem-
ory. Also, COOP-GA does not degrade the energy-savings
in processor although it adopts low-power memory. This is
because energy-savings can be maximized by co-optimizing
the processor’s low voltage/frequency mode and placing jobs
on low-power memory. Another interesting result is that the
effectiveness of the low-power memory technique is less
influenced by the load of workloads. That is, low-power
memory techniques are still effective even when the utiliza-
tion is close to 1 as shown in Figure 9(d), which is different
from the processor voltage/frequency scaling cases.

Figures 10 and 11, respectively, show the active and static
energy consumptions. AlthoughCOOP-GAperforms slightly
worse than DVFS in terms of active energy consumption in
some cases, it significantly performs better than the other
four policies in static energy consumption, leading to the
minimized total energy consumption. In active energy con-
sumption, we can observe the significant effect of dynamic
voltage/frequency scaling as shown in Figure 10. Lowering
the voltage/frequency of a processor is effective in active
energy consumption because energy consumption in the
CMOS digital circuits is proportional to the square of the
supply voltage. Such effects can be seen apparently when

the utilization of the workload is low. This is because there
are more chances to lower the supply voltage in the idle
periods of a processor. Meanwhile, using low-power memory
slightly increases the active energy consumption as shown
in Figure 10. The reason is that low-power memory simulated
in our study needsmore energy thanDRAMwhen performing
read/write operations as shown in Table 2.

Now, let us see the static energy consumption. As can be
seen in Figure 11, the relative effect of dynamic voltage/
frequency scaling and low-power memory is similar with
respect to static energy consumption, and combining the
two techniques obtains even better results. Dynamic voltage/
frequency scaling is effective in static energy saving as the
idle intervals of a processor can be reduced by lowering the
supply voltage/frequency. Also, low-power memory is effec-
tive in static energy saving because power consumptions by
refresh operations can be reduced by substituting for DRAM.

B. REALISTIC WORKLOADS
To investigate the efficiency of COOP-GA in more real-
istic conditions, we simulate additional experiments under
two realistic workload situations, Robotic Highway Safety
Marker (RSM) workload [33] and IoT workload [34].

Figure 12 depicts the total energy consumption when RSM
and IoT workloads are used. Similar to synthetic work-
load cases, COOP-GA reduces the energy consumption of
real-time systems significantly. Specifically, the trend of the
graphs resembles the synthetic workload case with the uti-
lization of 0.25. COOP-GA reduces the energy consumption

152814 VOLUME 8, 2020



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

FIGURE 10. Active energy consumptions as the utilization is varied (synthetic workload).

FIGURE 11. Static energy consumptions as the utilization is varied (synthetic workload).

of ORIGINAL, DVFS, LPM, and DVFS-LPM by 85.5%,
71.8%, 79.9%, and 49.1%, respectively, under the RSM
workload and 76.3%, 64.7%, 71.7%, and 58.5%, respectively,
under the IoT workload.

Figures 13 and 14 separately show the energy consump-
tions in processor and memory under the RSM and IoT work-
loads. As we see in Figure 13, algorithms adopting DVFS
significantly reduce the processor’s energy consumption.

VOLUME 8, 2020 152815



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

FIGURE 12. Total energy consumptions (realistic workload).

FIGURE 13. Energy consumptions in processor (realistic workload).

FIGURE 14. Energy consumptions in memory (realistic workload).

In particular, DVFS, DVFS-LPM, and COOP-GA reduce
the energy consumption in processor by 85.2%, 67.1%, and
79.1% under RSM, and 50.2%, 38.1%, and 69.9% under
IoT, compared to ORIGINAL, respectively, as shown in
Figure 13.

In case of the memory energy consumption, algorithms
adopting LPM significantly reduce the energy consumption
as shown in Figure 14. In particular, LPM, DVFS-LPM,
and COOP-GA reduce the memory energy consumption by
94.3%, 77.4%, and 94.0% under RSM, and 88.2%, 52.1%,
and 88.5% under IoT, respectively, in comparison with
ORIGINAL. This is because LPM’s static energy consump-
tion is very small.

V. RELATED WORKS
A. LOW-POWER MEMORY TECHNOLOGIES
Low-power memory (LPM) technologies have recently
been considered as an additional memory medium to save
the excessive power consumption of DRAM. As LPM is
byte-addressable medium like DRAM but its power con-
sumption is significantly less than DRAM due to no refresh
operations, it is expected to be used as the main memory
medium in emerging computing systems.Mogul et al. present
a novel scheme that manages DRAM and LPM together
as a unified memory system [5]. They aim at allocating
read-intensive data to LPM, whereas write-intensive data to
DRAM. This is because LPM is slower than DRAM specially

152816 VOLUME 8, 2020



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

for write operations. Dhiman et al. also use memory subsys-
tems composed of DRAM and LPM, and allow moving data
between DRAM and LPM for balancing the endurance of
LPM [6]. Unlike our scheme, the target architectuire of these
studies is not real-time systems, but general-purpose time-
sharing systems. Thus, they consider the limited endurance
of LPM rather than deadline constraints of real-time jobs in
locating data on memory.

Qureshi et al. present a multi-level memory subsystem
composed of LPM and DRAM [7]. In particular, they utilize
DRAM as a buffer to LPM writes for extending the lifetime
of LPM and alleviate the write latency of LPM. Zhou et al.
present a multi-level memory subsystem composed of LPM
and DRAM [8]. Specifically, they present a novel page evic-
tion scheme that improves the cache miss ratio as well as
the number of write operations from DRAM. These studies
compose DRAM and LPM as a hierarchical architecture
to improve memory system performances, not focusing on
deadline guaranteed services in real-time systems.

Lee et al. present a new memory management scheme for
the memory subsystem composed of LPM and DRAM [18].
Their scheme places read-intensive data on LPM whereas
write-intensive data on DRAM through the analysis study of
memory reference traces. Narayan et al. present a data allo-
cation scheme for memory subsystem composed of DRAM
and LPM in terms of the object level [19]. In particular, their
scheme tries to reduce power consumptions as well as to
improve performances, by allocating memory objects to the
best-fit memory module through their characterization stud-
ies. Kannan et al. present a management policy for memory
subsystems in virtualized environments [20]. They present a
guest operating system that aims at avoiding migrations by
locating data to appropriate memory media. They also pro-
pose data migration schemes and memory sharing schemes
for virtual machines to improve performances. Lin et al. use
greedy approximation and dynamic programming methods
to solve the memory mapping problem between heteroge-
neous memory media [21]. The targets of these studies are
also general-purpose systems, and thus they focus mainly
on the improvement of overall system performances rather
than the deadline-guranteed services in deciding memory
allocation.

Zhang et al. present a job placement policy for heteroge-
neous memory types for power-saving purposes [22]. In par-
ticular, their policy places jobs one by one on LPMand checks
the schedulability of the jobs, which is repeated until the
placement of all jobs is completed. This study focuses on
real-time embedded systems like our approach, but they only
consider the memory allocation problem, without consid-
ering the dynamic voltage/frequency scaling of processors.
Unlike previous studies, our model tightly evaluates the
scaled worst-case execution time of a job, considering the
overlapped latency between processor and memory, thereby
minimizing the power consumption of real-time systems
further.

B. DYNAMIC VOLTAGE/FREQNECY SCALING
Dynamic voltage/frequency scaling (DVFS) techniques have
been widely studied for power saving in real-time pro-
cessors [23]–[27]. Pillai and Shin present a technique to
determine the lowest voltage/frequency to satisfy the dead-
line constraints of given jobs [28]. Their technique consists
of static DVFS, cycle-conserving DVFS, and look-ahead
DVFS. Static DVFS chooses the voltage/frequency of a pro-
cessor statically, while cycle-conserving DVFS utilizes the
reclaimed cycles for decreasing the voltage/frequency if the
execution time of a job becomes shorter than the worst case
execution time. Look-ahead DVFS further decreases the volt-
age/frequency value by making use of future computation
requirement analysis and delaying the scheduling of the job
based on the analysis results.

Lee et al. utilize the slack time to decrease the voltage/
frequency of a processor [1]. In particular, voltage/frequency
values are adjusted when unused clock cycles are reclaimed
by finishing a job before its deadline. Ghor and Aggoune
determine the least voltage/frequency schedules of real-time
jobs by making use of slacks [24]. Specifically, their policy
stretches the execution time of jobs based on off-line schedul-
ing and determines the schedule of jobs as late as possible
without violating deadline constraints. Nam et al. present a
tight evaluation of real-time job schedulability considering
both dynamic voltage/frequency scaling and hybrid memory
allocation [29].

Unlike the aforementtioned studies that separately consider
the execution in processor and states in memory, we define
an extended job model to consider the memory allocation
of jobs as well as the processor configuration. Based on
this, the worst-case execution time of a job is re-evaluated
by reflecting the read/write characteristics of the memory
medium the job resides. Also, our model tightly evaluates
the scaled worst-case execution time of a job, considering the
overlapped latency between processor and memory, reducing
the power consumption of real-time systems further.

VI. CONCLUSION
In this paper, we presented a novel real-time job scheduling
approach that aims at minimizing the power consumption
of processor and memory, without violating the deadline
constraint of real-time jobs. Our policy formulates the power
saving techniques of processor voltage/frequency scaling and
memory job placement as a unifiedmeasure and co-optimizes
the processor and memory power consumption. As our prob-
lem is a complex search problem, we made use of an efficient
heuristic based on genetic algorithms to cut down the huge
searching space and find a reasonable solution within a fea-
sible time budget. To evaluate the proposed policy, we con-
ducted experiments under various workload conditions. Our
experimental results showed that the proposed policy reduces
the energy consumption of real-time systems by 41.7% on
average and up to 73.8%, without deadline misses.

VOLUME 8, 2020 152817



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

As a future work, we consider measurement studies in
real systems for validating the effectiveness of the proposed
policy. We also plan to extend our policies by considering
(m, k)-firm deadlines [30], in which deadline constraints of
real-time jobs are relaxed such that a certain ratio of deadline
misses can be allowed.

Real-time scheduling assumes the worst case execution
time of a job, but the real execution may be finished much
earlier than the worst case, leading to the significant waste
of given resources. Some reactive strategies have been stud-
ied in order to address this issue. Chen et al. present an
uncertainty-aware scheduling algorithm that determines the
baseline schedule of real-time jobs beforehand, but during
the execution, the reactive strategy dynamically generates
new proactive baseline schedules by considering the com-
pletion of jobs or arrival of new jobs, allowing for more
efficient resource management [42], [43]. This is effective
in cloud environments as resources can be scaled up or
down in accordance with the workload situation changes.
However, our approach basically assumes the traditional hard
real-time scheduling problem, where the real-time jobs are
given beforehand and the resources are fixed, and thus,
the scheduling is determined offline. However, we can use
the basic idea of the reactive approach together with our
algorithm as adjusting the voltage/frequency mode of a pro-
cessor has the similar effect of scaling up/down of cloud
resources. For example, during the execution of jobs based
on the off-line schedule determined by our GA, if the actual
execution time of a job becomes shorter than its worst case
execution time, the voltage/frequency mode of a processor
can be lowered for the remaining time slot allocated to that
job. Through some preliminary experiments, we see that such
approaches can reduce the processor’s energy consumption
by 3-10% depending on the reduction of the job’s execution
time. Unlike cloud environments, however, as the resources
are fixed in our system, real-time jobs should be given before-
hand and abruptly arriving jobs are not allowed in order to
meet the deadline requirement. Thus, we plan to extend our
power-saving technique in processor and memory by making
use of the complete idea of the reactive approach in cloud
environments.

REFERENCES
[1] Y. Lee, Y. Doh, and C. Krishna, ‘‘EDF scheduling using two-mode volt-

age clock scaling for hard real-time systems,’’ in Proc. CASES, 2001,
pp. 221–228.

[2] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn, ‘‘Flikker: Saving
DRAM refresh-power through critical data partitioning,’’ in Proc. ACM
ASPLOS, 2011, pp. 213–224.

[3] A. Carroll and G. Heiser, ‘‘An analysis of power consumption in a smart-
phone,’’ in Proc. USENIX Annu. Tech. Conf., 2010, p. 21.

[4] S. Eilert, M. Leinwander, and G. Crisenza, ‘‘Phase change memory: A new
memory technology to enable new memory usage models,’’ in Proc. 1st
IEEE Int. Memory Workshop (IMW), 2009, pp. 1–2.

[5] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, ‘‘Operating system
support for NVM+DRAM hybrid main memory,’’ in Proc. HotOS, 2009,
pp. 4–14.

[6] G. Dhiman, R. Ayoub, and T. Rosing, ‘‘PDRAM: A hybrid PRAM and
DRAM main memory system,’’ in Proc. DAC, 2009, pp. 559–664.

[7] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, ‘‘Scalable high performance
main memory system using phase-change memory technology,’’ in Proc.
36th Annu. Int. Symp. Comput. Archit. (ISCA), 2009, pp. 24–33.

[8] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, ‘‘A durable and energy efficient
main memory using phase change memory technology,’’ in Proc. 36th
Annu. Int. Symp. Comput. Archit. (ISCA), 2009, pp. 14–23.

[9] H. Adeli and K. Sarma, Cost Optimization of Structures: Fuzzy Logic,
Genetic Algorithms, and Parallel Computing. West Sussex, U.K.: Wiley,
2006.

[10] M.-X. Jiang, X.-X. Luo, T. Hai, H.-Y. Wang, S. Yang, and A. N. Abdalla,
‘‘Visual object tracking in RGB-D data via genetic feature learning,’’
Complexity, vol. 2019, pp. 1–8, May 2019.

[11] W. Wang, Y. Dong, S. Zhong, and F. Liu, ‘‘Finite-time robust stability
of uncertain genetic regulatory networks with time-varying delays and
reaction-diffusion terms,’’ Complexity, vol. 2019, pp. 1–18, Mar. 2019.

[12] D.-Y. Lin and Y.-H. Ku, ‘‘Using genetic algorithms to optimize stopping
patterns for passenger rail transportation,’’ Comput.-Aided Civil Infras-
truct. Eng., vol. 29, no. 4, pp. 264–278, Apr. 2014.

[13] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1996.

[14] K. Park, B. K. Oh, H. S. Park, and S. W. Choi, ‘‘GA-based multi-objective
optimization for retrofit design on amulti-core PC cluster,’’Comput.-Aided
Civil Infrastruct. Eng., vol. 30, no. 12, pp. 965–980, Dec. 2015.

[15] Q. Gu, X. Li, and S. Jiang, ‘‘Hybrid genetic grey wolf algorithm
for large-scale global optimization,’’ Complexity, vol. 2019, Feb. 2019,
Art. no. 2653512.

[16] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Boston, MA, USA: Addison-Wesley, 1989.

[17] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary
Programs, 3rd ed. Heidelberg, Germany: Springer-Verlag, 1996.

[18] S. Lee, H. Bahn, and S. H. Noh, ‘‘CLOCK-DWF: A write-history-aware
page replacement algorithm for hybrid PCM and DRAM memory archi-
tectures,’’ IEEE Trans. Comput., vol. 63, no. 9, pp. 2187–2200, Sep. 2014.

[19] A. Narayan, T. Zhang, S. Aga, S. Narayanasamy, and A. Coskun, ‘‘MOCA:
Memory object classification and allocation in heterogeneous memory
systems,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2018, pp. 326–335.

[20] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, ‘‘HeteroOS:
OS design for heterogeneous memory management in datacenter,’’ in
Proc. ACM/IEEE 44th Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 521–534.

[21] Y. Lin, N. Guan, and Q. Deng, ‘‘Allocation and scheduling of real-time
tasks with volatile/non-volatile hybrid memory systems,’’ in Proc. IEEE
Non-Volatile Memory Syst. Appl. Symp. (NVMSA), Aug. 2015, pp. 1–6.

[22] Z. Zhang, P. Liu, L. Ju, and Z. Jia, ‘‘Energy efficient real-time task
scheduling for embedded systems with hybrid main memory,’’ in Proc.
IEEE 20th Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2014,
pp. 1–10.

[23] K. Choi, W. Lee, R. Soma, and M. Pedram, ‘‘Dynamic voltage and fre-
quency scaling under a precise energymodel considering variable and fixed
components of the system power dissipation,’’ in Proc. IEEE/ACM Int.
Conf. Comput. Aided Design (ICCAD), Nov. 2005, pp. 29–34.

[24] H. E. Ghor and E. M. Aggoune, ‘‘Energy saving EDF scheduling for
wireless sensors on variable voltage processors,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 5, no. 2, pp. 158–167, 2014.

[25] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O.Mutlu, ‘‘Memory
power management via dynamic voltage/frequency scaling,’’ in Proc. 8th
ACM Int. Conf. Autonomic Comput. (ICAC), 2011, pp. 31–40.

[26] H. Chetto andM. Chetto, ‘‘Some results of the earliest deadline scheduling
algorithm,’’ IEEE Trans. Softw. Eng., vol. 15, no. 10, pp. 1261–1269,
Oct. 1989.

[27] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, ‘‘Mobile-edge comput-
ing: Partial computation offloading using dynamic voltage scaling,’’ IEEE
Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[28] P. Pillai and K. G. Shin, ‘‘Real-time dynamic voltage scaling for low-power
embedded operating systems,’’ in Proc. 18th ACM Symp. Oper. Syst. Princ.
(SOSP), 2001, pp. 89–102.

[29] S. Nam, K. Cho, and H. Bahn, ‘‘Tight evaluation of real-time task schedu-
lability for processor’s DVS and nonvolatile memory allocation,’’ Micro-
machines, vol. 10, no. 6, p. 371, Jun. 2019.

[30] M. Hamdaoui and P. Ramanathan, ‘‘A dynamic priority assignment tech-
nique for streams with (m, k)-firm deadlines,’’ IEEE Trans. Comput.,
vol. 44, no. 12, pp. 1443–1451, Dec. 1995.

152818 VOLUME 8, 2020



H. Bahn, K. Cho: Evolution-Based Real-Time Job Scheduling for Co-Optimizing Processor and Memory Power Savings

[31] S. K. Baruah, L. E. Rosier, and R. R. Howell, ‘‘Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,’’ Real-Time Syst., vol. 2, no. 4, pp. 301–324, 1990.

[32] S. Kato, N. Yamasaki, and Y. Ishikawa, ‘‘Semi-partitioned scheduling of
sporadic task systems on multiprocessors,’’ in Proc. 21st Euromicro Conf.
Real-Time Syst., Jul. 2009, pp. 249–258.

[33] A. Qadi, S. Goddard, and S. Farritor, ‘‘A dynamic voltage scaling algorithm
for sporadic tasks,’’ in Proc. 24th IEEE Real-Time Syst. Symp. (RTSS),
Dec. 2003, pp. 52–62.

[34] Z.Wang, Y. Liu, Y. Sun, Y. Li, D. Zhang, andH.Yang, ‘‘An energy-efficient
heterogeneous dual-core processor for Internet of Things,’’ in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), May 2015, pp. 2301–2304.

[35] D. Zhu, D.Mosse, and R.Melhem, ‘‘Power-aware scheduling for AND/OR
graphs in real-time systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 15,
no. 9, pp. 849–864, Sep. 2004.

[36] J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu, and Y. Ma, ‘‘Thermal-
aware task scheduling for energy minimization in heterogeneous real-time
MPSoC systems,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 35, no. 8, pp. 1269–1282, Aug. 2016.

[37] Transmeta Crusoe. Operating Modes for New Generation
Processors. Accessed: Jun. 20, 2020. [Online]. Available: https://en.
wikipedia.org/wiki/Transmeta_Crusoe

[38] C. Zhang, T. Meng, and G. Sun, ‘‘PM3: Power modeling and power
management for processing-in-memory,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2018, pp. 558–570.

[39] R. Salkhordeh and H. Asadi, ‘‘An operating system level data migration
scheme in hybrid DRAM-NVM memory architecture,’’ in Proc. Design,
Automat. Test Eur. Conf. Exhib. (DATE), 2016, pp. 936–941.

[40] H. A. Khouzani, F. S. Hosseini, and C. Yang, ‘‘Segment and conflict aware
page allocation and migration in DRAM-PCM hybrid main memory,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 9,
pp. 1458–1470, Sep. 2017.

[41] J. Zhan, Y. Zhang, W. Jiang, J. Yang, L. Li, and Y. Li, ‘‘Energy-aware page
replacement and consistency guarantee for hybrid NVM–DRAM memory
systems,’’ J. Syst. Archit., vol. 89, pp. 60–72, Sep. 2018.

[42] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J. Wu, ‘‘Towards energy-
efficient scheduling for real-time tasks under uncertain cloud computing
environment,’’ J. Syst. Softw., vol. 99, pp. 20–35, Jan. 2015.

[43] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, ‘‘Uncertainty-aware online
scheduling for real-time workflows in cloud service environment,’’
IEEE Trans. Services Comput., early access, Aug. 21, 2018, doi:
10.1109/TSC.2018.2866421.

HYOKYUNG BAHN (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
science and engineering from Seoul National Uni-
versity, in 1997, 1999, and 2002, respectively.

He is currently a Full Professor of computer
science and engineering with Ewha University,
Seoul, South Korea. His research interests include
operating systems, caching algorithms, storage
systems, embedded systems, system optimiza-
tions, and real-time systems. He has published

more than 70 articles in leading conferences and journals in these fields,
including USENIX FAST, the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, and the ACM Transac-
tions on Storage. He also received the Best Paper Awards at the USENIX
Conference on File and Storage Technologies, in 2013.

KYUNGWOON CHO received the B.S., M.S.,
and Ph.D. degrees in computer science and engi-
neering from Seoul National University, in 1995,
1997, and 2012, respectively. He was a Chief
Officer at the Clunix Research and Development
Center, Seoul, South Korea. He is currently a
Senior Researcher with the Embedded Software
Research Center, Ewha University, Seoul. His
research interests include multimedia systems,
cloud computing, real-time systems, embedded
systems, and operating systems.

VOLUME 8, 2020 152819

http://dx.doi.org/10.1109/TSC.2018.2866421

