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ABSTRACT With the widespread application of GNSS systems in various fields, the problem of spoofing
detection has drawn much attention from the satellite navigation community. The GNSS spoofing inter-
ference generally uses fake or replayed satellite signals to make the targeted receivers receive false GNSS
signals and reduce the accuracy of calculated position and time information. In order to ensure and improve
the security of GNSS services, in recent years, academia and industry have studied the spoofing detection
technology from multiple aspects, and many theoretical results have been obtained. This paper starts the
analysis from the acquisition phase of a receiver and analyzes the characteristics of the small-delay spoofing
signal. Aiming at solving the problem that it is difficult to detect small-delay (0–2 chips) spoofed signals
during the acquisition phase, the CNN (Convolutional Neural Network) based method is used to detect the
small-delay spoofed signals effectively. According to the experimental simulation results, when the code
phase difference between the spoofing signal and the authentic satellite signal is larger than 0.5 code chip,
the CNN-based method achieves high detection accuracy. In addition, the algorithm can quickly detect
the data without using any additional equipment. Therefore, low complexity is achieved. This makes the
algorithm has a good engineering application prospect.

INDEX TERMS Acquisition phase, convolutional neural network (CNN), GNSS spoofing detection, small
delay.

I. INTRODUCTION
With the development of the Global Navigation Satellite
System (GNSS), the satellite navigation technology has been
widely used in the military and civil fields, including mil-
itary, aviation, communications, business, and many other
fields [1], [2]. Nowadays, the rapid development and popu-
larization of mobile communication, automobile, and other
industries have made the GNSS be more deeply integrated
into people’s daily lives. People enjoy the great convenience
brought by the GNSS. The importance of GNSS to the mil-
itary field is self-evident, and it is an important support for
electronic warfare, information warfare, and long-range war-
fare. Besides, it is one of the most basic and important techni-
cal means for the precision strike of missiles and other types
of weapons. The GNSS can not only provide positioning
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and navigation but also many services, such as accurate time
synchronization [1], [3]. In summary, the GNSS has strong
application value in many fields, from financial transaction
records to military and aerospace applications [4]–[6].

However, with the rapid development of technology, the
vulnerability of GNSS signals to interference and spoofing
has been gradually exposed. On the one hand, since the
signals of navigation satellites are transmitted over a long dis-
tance, these signals are extremely weak when they reach the
ground, and they are easily affected by interference signals
in their frequency bands [7], [8]. On the other hand, because
civil signals are publicly used in the international scope,
they are not confidential since they are easy to decipher,
thus making receivers extremely vulnerable to interference
attacks [9].

The GNSS interference technologies generally include
suppressing interference, spoofing interference, and oth-
ers [10], [11]. The suppressing interference is less difficult
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to implement. The principle is to suppress the reception of
the front-end satellite signals by sending a high-power inter-
ference signal in the coverage area of a jammer to make it
non-working. However, the power required for implement the
suppressing interference is too large to be found, and it is easy
to find, so its interference source also has the risk of being
attacked [12].

The GNSS spoofing can be divided into generative spoof-
ing interference and transponder spoofing interference in
terms of the generation mode of spoofing signals. The
transponder spoofing interference is realized by recording the
authentic satellite signals and transmitting them to the target
receiver through aGNSS signal simulator or transponder with
a certain delay, thus making the attacked target calculate the
wrong position and time information. The realization of the
generative spoofing interference is more complex; namely,
attackers extract location, time, satellite ephemeris, and other
related information from the authentic satellite signals and
align false GPS signal carriers with the authentic GPS signals.
Then, a GPS spoofing signal, including specific position and
misleading time, is generated by a program and transmitted
to the target GPS receiver via antenna, thus making the GPS
receiver calculate the wrong position and time information.
In contrast to the suppressive interference, the spoof inter-
ference does not require strong signal transmission power,
and can even perform spoofing (such as generative spoofing
interference) without relying on the GNSS systems, which is
more threatening to the receiver [13]; also, since it can make
the user terminal output wrong position and time information
without being found, it is most concealing and destructive.

Recent international GNSS spoofing attack incidents have
proven the threat of spoofing interference attacks. In 2011,
Iranian engineers used the GPS spoofing interference tech-
nology to capture the RQ-170 unmanned surveillance air-
craft produced by the US military [14]. In 2012 and 2013,
the Humphreys team successfully tricked the unmanned
helicopter system and positioning navigation device of the
‘‘White Rose’’ yacht [15], [16]. In 2017, GPS spoofing inter-
ference attacks in the Black Sea caused the GPS position-
ing system of dozens of ships were out of work. In 2018,
the Russian air defense system in Syria foundmultiple drones
approaching Russian military facilities. The Russian military
successfully controlled six UAVs approaching Russian mil-
itary facilities using the ‘‘vehicle yard’’ active interference
system. These spoofing incidents have further increased our
awareness of the potential harm of spoofing attacks.

The high-developing software radio technology has made
spoofing interference easier to implement, more flexible and
diversified, and less costly. Thus, anti-spoofing is no longer
a concern of only military users because civilians can also be
highly affected by decreased safety and reliability of GNSS
applications caused by spoofing [17]. Therefore, it is crucial
to study the GNSS spoofing interference detection technol-
ogy to ensure the satellite navigation system can provide
end-users with normal and safe navigation, positioning, and
timing services.

The research of the anti-spoofing interference has been
increasing both in the industry and the academia, and the
detection technology of spoofing interference has become a
research hotspot in the field of satellite navigation. During
recent research on GNSS spoofing interference detection,
academia has proposed many detection methods from differ-
ent levels of the receiver.

In [18], it was proposed to use the correlation feature
between two receivers to detect spoofing signals. How-
ever, this method requires using two receivers. In addi-
tion, in the spoofing environment, it is impossible to know
the information from which of the receivers is reliable,
so the detection performance cannot be guaranteed. Signal
power detection technology is also an effective detection
method. In this method, the receiver continuously monitors
the power-related parameters, which may be abnormal when
spoofing attacks are present. The power-related parameters
include C/N0 (carrier-to-ratio) [19], Signal Quality Mon-
itoring (SQM) [20], absolute power [21], and distribution
verification of correlator output [22]. These technologies
require the receiver to have high precision in measuring
the received signal’s parameters and complex hardware.
In addition, the absolute power detection is easily affected by
antenna type, antenna attitude, and multipath, and it requires
additional energy detection devices on the receiver side to
achieve it. It should be pointed out when the spoofed signal
is transmitted together with the noise, the C/N0 detection
method easily leads to misjudgment.

In [23], [24], a GPS spoofing detection scheme based on
the direction of arrival was proposed. This scheme judges the
arrival angle of signals by resolving the changes of signals of
different antennas, to distinguish whether the current target is
subjected to GPS spoofing. However, when the target receiver
can receive only one or two GPS signals or the GPS spoofing
system is deployed in the direction of the satellite-to-target
connection, the GPS spoofing cannot be effectively detected
by analyzing the direction of arrival of the received signals.
Thus, this detection method requires receivers to use multiple
antennas, which significantly increases the hardware cost.

In [25], [26], a method for automatic gain control (AGC)
detection was introduced. Namely, by delaying and ampli-
fying the spoofing, the mixed noise signal is also amplified,
so the AGC gain is quickly reduced. Therefore, the main idea
of the AGC detection method is to detect spoofing signal by
monitoring this abnormal change. However, the AGCmodule
is expensive, which leads to a decrease in the algorithm value.

A detection method based on the signal arrival time was
proposed in [27]. In this method, by detecting the time dif-
ference between the times when the signal arrives at the
receiver, it is determined whether there is a spoofing sig-
nal. The application of this method is limited mainly to
forwarding spoofing, which has little effect on generative
spoofing signals and can even eliminate authentic signals and
retain spoofing signals. In [28], the Doppler frequency shift-
based detection method was proposed. The principle of this
method is that when a receiver moves randomly, the Doppler

151778 VOLUME 8, 2020



J. Li et al.: Research on Multi-Peak Detection of Small Delay Spoofing Signal

frequency difference between the authentic satellite signals is
non-linear in the time domain, while that between spoofing
signals is linear. However, this method is only suitable for
detecting the spoofing signals transmitted by a single antenna.

In [29], an anti-spoofing algorithm based on a single
receiver pseudo-range difference was proposed. This algo-
rithm can be used to detect simple and intermediate spoofing
attacks and meaconing attacks. Further, an adaptive spoof-
ing suppression algorithm based on a multi-antenna array
was proposed in [30]. This algorithm can adaptively gener-
ate zeros using the cross-correlation gain of multi-antenna
arrays and suppressmultiple spoofing signals simultaneously.
In [31], [32], a low-cost inertial measurement unit (IMU)
spoofing detectionmethodwas proposed. Thismethod judges
whether there is a spoofing attack by comparing the consis-
tency of equivalent acceleration and angular velocity. In [33],
an innovative INS-assisted spoof monitoring method was
presented. The principle of this method is to detect spoofing
signals by detecting abnormal measurements of the angular
state of aircraft. However, devices such as IMU and INS
are expensive and thus are not widely used in civil applica-
tions. A spoofing interference detection method based on the
S-curve-bias (SCB), which gradually adjusts the dynamic
characteristics of the signal, was proposed in [34]. The
experimental results have shown that SCB has the poten-
tial of detecting spoofing interference. In [35], a detection
method based on double-antenna power measurements was
proposed. This method can be used in the unsynchronized
case.

The multi-peak detection method [36] is applied during the
acquisition phase. The principle is to determine the spoofing
signals by detecting whether there are two or more corre-
lation peaks in a two-dimensional matrix of the Doppler
frequency and code phase. This method is generally applica-
ble to situations where the code phase of the spoofing and
authentic satellite signals has a large offset, but when the
code phase shift of spoofing signals is small (for instance,
less than one chip), the number of peaks cannot be detected
effectively.

This paper starts from the multi-peak detection direc-
tion, and studies the spoofing detection in the case that the
code phase of the spoofed signal differs from that of the
authentic satellite signal by 0–2 chips. Based on the idea
of deep learning, a convolutional neural network (CNN) is
used to detect spoofing signals during the acquisition phase.
The experimental simulation results, at the code phase dif-
ference between the spoofed and authentic satellite signals
of 0.5 chips or more, show that the spoofing signals can be
effectively identified.

The rest of the paper is organized as follows. In Section II,
the signal model is presented and analyzed. In Section III,
a CNN-based GNSS spoofing interference detection algo-
rithm is introduced. The simulation results and performance
of the proposed algorithm in detecting spoofing signals
are presented in Section IV. The conclusions are given in
Section V.

II. SIGNAL MODEL AND ANALYSIS
A. SIGNAL MODEL
A general internal structure of a universal GNSS receiver is
shown in Fig. 1. In most GNSS receivers, the received RF
signal is converted into an intermediate frequency (IF) signal,
which is then processed.

FIGURE 1. The internal structure of universal GNSS receiver.

In the presence of spoofing interference, the received IF
signal of a single antenna receiver can be expressed as:

SR(t) = ST (t)+ SS (t)+ n0(t) (1)

In (1), SR(t) denotes the received IF signal, t denotes time
in seconds, ST (t) and SS (t) denote the authentic satellite
signal and spoofing signal, respectively; n0(t) denotes the
additive white Gaussian noise (AWGN) with zero mean and
variance σ 2.

The authentic satellite signal can be expressed as:

ST (t) =
M∑
i=1

√
PTi Ci

(
t − τTi

)
DTi

(
t − τTi

)
× cos

[
2π
(
fIF + f TD,i

)
t + ϕTi

)]
(2)

where M represents the number of authentic satellite signals
in the received signal, PTi denotes the received power of the
i-th signal; Ci(t) denotes the spreading code of the i-th satel-
lite, DTi (t) denotes the data bit of the i-th navigation mes-
sage; fIF represents the IF signal, f TD,i denotes the Doppler
frequency of the i-th authentic satellite signal; τTi represents
the code phase of the i-th signal; and lastly, ϕTi denotes the
initial carrier phase of the authentic satellite signal.

The spoofing signal has the same signal structure as
the authentic satellite signal, so the spoofing signal can be
expressed as:

SS(t) =
N∑
i=1

√
PSi Ci

(
t − τTi

)
DSi
(
t − τ Si

)
× cos

[
2π
(
fIF + f SD,i

)
t + ϕSi

)]
(3)

where N denotes the number of satellites included in the
spoofing, Psi denotes the received signal’s power of the ith
satellite, and Dsi (t) denotes the ith signal’s data bit stream; τ si
denotes the ith signal’s code phase, f sD,i denotes the Doppler
frequency shift of the ith authentic satellite signal, and ϕsi
represents the initial carrier phase.

Based on (1) and (3), in a spoofing interference environ-
ment, the signal received by a receiver represents a mixture
of spoofing and authentic signals. In general, spoofing will
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include most or all the satellites in the authentic satellite.
Therefore, in the receiver acquisition and channel tracking,
the processed signal actually represents the superposition of
authentic and spoofing signals.

B. MODEL ANALYSIS
The transponder spoofing interference principle is to forward
the authentic satellite navigation signal to the target receiver
with a certain delay and amplification to cause a positioning
error. Generally, a large-delay spoofing signal denotes an
interfering signal with a delay of more than two chips. This
characteristic is used in the multi-peak detection algorithms
to detect spoofing signals. When the forwarding delay of a
spoofing signal is large, the detection of the forwarding-type
spoofing interference is realized by detecting the number of
relevant peaks that exceed the capture threshold during the
signal acquisition process.

In the capture phase, the multi-peak detection algorithm
determines the number of peaks that exceed the preset cor-
relation peak threshold to detect the spoofing. Generally,
if there is only an authentic satellite signal in the received
satellite signal, there will be only one correlation peak that
exceeds the preset correlation peak threshold, as shown
in Figs. 2 and 3. In contrast, when a spoofing signal exists, two
or more correlation peaks will exceed the preset threshold,
as shown in Fig. 4.

FIGURE 2. The authentic satellite signal in the acquisition phase.

Accordingly, in the acquisition stage, by detecting the
peaks larger than the correlation peak threshold, the presence
of a spoofing interference signal can be detected. However,
this holds for situations where the phase values of the spoof-
ing interference signal and authentic satellite signal are quite
different, i.e., when an offset is two or more chips, as shown
in Fig. 5.

When the phase difference between the spoofing and
authentic satellite signal is less than two chips, the per-
formance of the traditional multi-peak detection method in
identifying the spoofing signal is reduced, especially when
the spoofing signal delay is less than one chip. As presented
in Fig. 6, when the phase of the spoofing signal differs from
that of the authentic satellite signal by one chip, there is only

FIGURE 3. The amplitude peak of the authentic signal peak.

FIGURE 4. Spoofing and authentic signals in the acquisition phase.

FIGURE 5. Spoofing signal code phase with a three-chip delay.

one peak, so it is more difficult to distinguish whether there
is a spoofing signal.

To improve the performance of the multi-modal detection
method in the acquisition stage, the CNN-based method is
used to detect small-delay spoofing signals.

III. SMALL-DELAY SPOOFING DETECTION METHOD
BASED ON CNN
The CNNs have made great success in the fields of image
recognition, video recognition, and speech recognition.
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FIGURE 6. Spoofing signal with a one-chip delay.

However, the application of deep learning in the field of
navigation signal processing has been relatively rare. In this
paper, a CNN-based method that represents a combination of
deep learning and satellite communication technology is used
to detect the GNSS spoofing signal.

A. ALGORITHM
The GNSS receiver estimates the Doppler shift and
pseudo-code phase of satellite navigation signals by search-
ing for correlation peaks in the two-dimensionalmatrix. In the
capture phase, it is more effective to determine whether there
is a spoofing signal based on the number of found correlation
peaks. However, when the forwarding delay of a spoofed
signal is less than two chips, the correlation peaks of the
authentic navigation signal and spoofing signal overlap, and
generally, only one correlation peak appears, which makes
the spoofing detection difficult. Hence, the spoofing signal
detection base on the number of correlation peaks is not
reliable in all cases. To overcome this problem, a CNN-
based method is developed to extract the characteristics of
the small-delay spoofing signal from the image field. The
flowchart of the proposed algorithm is shown in Fig. 7.

B. DATA PROCESSING
A GNSS receiver that uses the FFT algorithm to capture the
IF signal estimates the Doppler shift and code phase of the
satellite navigation signal by searching the correlation peaks
in the two-dimensional matrix. In this work, the Doppler
frequency shift search range is set to [−5 kHz, 5 kHz], and the
spoofing signal delay relative to the authentic satellite signal
is from zero to two chips. The steps of obtaining the dataset
are as follows:

• Step 1: Search a two-dimensional matrix A to find peak
Apeak that is greater than the capture threshold V.

• Step 2: In the two-dimensional matrix A, intercept the
data in the range of [−2 kHz, 2 kHz] on the Doppler
frequency shift axis and the chip range of [−2, 2] on
the code phase axis around the location of the highest

FIGURE 7. The flowchart of the CNN-based spoofing detection algorithm.

FIGURE 8. Example of interception matrix.

peakApeak to obtain the detectionmatrixAm×n, as shown
in Fig. 8. Among them,m = 4/1fD+1, n = 4/1TCA+
1, where 1fD and 1TCA represent the Doppler fre-
quency shift search step and code phase search step,
respectively.

• Step 3: Set all data in matrix Am×n that are below
the threshold V to zero to obtain a new matrix Qm×n,
as shown in Fig. 9.

• Step 4: Normalize the non-zero data of the newly-
obtained matrix Qm×n to obtain the target matrix Bm×n
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FIGURE 9. Schematic diagram of the three-dimensional peak values after matrix truncation. (a) Three-dimensional peak value of the
authentic signal; (b) Three-dimensional peak value of the authentic signal containing a 0.5-chips-delay spoofing signal;
(c) Three-dimensional peak value of the authentic signal containing a 1.5-chips-delay spoofing signal.

FIGURE 10. Schematic diagram of the three-dimensional peak values after matrix truncation. (a) The gray image converted from
the authentic signal interception matrix; (b) The gray image converted from the interception matrix when there is a 0.5-chips-delay
spoofing signal; (c) The gray image converted from the interception matrix when there is a 1.5-chips-delay spoofing signal.

FIGURE 11. Schematic diagram of the CNN network structure.

and transform it into a gray-scale image, as shown
in Fig. 10.

• Step 5: Use the obtained data for CNN training and
classification.

C. CNN DETECTION ALGORITHM SETTING
The advantages of convolutional neural networks havewidely
been studied in the field of deep learning. Their main advan-
tages become even more obvious when the network input is
a multi-dimensional image so that the image can be directly

used as a network input, thus avoiding complex feature
extraction and data reconstruction processes necessary in
the traditional recognition algorithms. Therefore, the CNN
method can be used to classify data with small differences,
which cannot be achieved by using traditional multi-peak
detection algorithms.

CNNs are mainly trained using gradient descent and back
propagation algorithms. The general CNN network structure
includes the input layer, convolutional layer, excitation layer,
pooling layer, and fully-connected layer, as shown in Fig. 11.
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In [37], [38], the operation principles and formulas of CNNs
were introduced in detail, so they are not provided in this
article in detail. The function of each CNN layer is explained
in the following.

1) INPUT LAYER
The input layer is the same as that in the traditional neural net-
work/machine learning. The neural network model requires
input data preprocessing for further operations. Common
input-layer preprocessing includes averaging, normalization,
and PCA/SVD dimensionality reduction. The data has been
processed before, and it is normalized here.

2) CONVOLUTIONAL LAYER
The convolutional layer does not recognize the entire picture
data simultaneously, but it is the first local perception of each
feature in the picture. For a black and white image with only
one layer, the convolution process can be expressed as:

xi =
∑

X ∗ Ki + bi (4)

where xi represents the ith feature map of the convolution
layer, Ki represents the ith convolution kernel, and bi rep-
resents the ith offset parameter. The convolutional layer can
effectively extract the features of normal and spoofing signals
in the image.

3) INCENTIVE LAYER
The excitation layer performs a non-linear mapping on the
output result of the convolution layer using the excitation
function after the convolution summation. Commonly used
excitation functions include Sigmoid function, Tanh func-
tion, ReLU, Leaky ReLU, ELU, and Maxout. In this paper,
the ReLU excitation function is used mainly due to its
fast iteration speed, simple gradient solution formula, and
absence of gradient disappearance and gradient explosion.
Since the picture size considered in this work is small, and
the data features are simple, the effect of using the ReLU
excitation function is better. The ReLU function is expressed
as follows:

f (xi) = max(0, xi) . (5)

4) POOLING LAYER
Pooling is also called subsampling or downsampling, and it
is mainly used for feature dimensionality reduction, reduction
of the number of data and parameters, overfitting reduction,
and model’s fault tolerance improvement. Polling mainly
includes Maximum Pooling and Average Pooling. In this
paper, Maximum Pooling is used.

5) FULLY-CONNECTED LAYER
After convolution, excitation, and pooling layers, the fully-
connected layer is used, which learns high-quality features of
an image. In this work, a dropout operation is added before
the fully-connected layer to randomly delete some neurons in
the neural network to prevent the overfitting. Then, the data

of the fully-connected layer are input to the classifier to obtain
the classification result. Also, the sigmoid function is used as
an activation function, and it is defined as:

f (x) =
1

1+ e−x
. (6)

It should be noted that the convolution number, excitation,
and pooling parameters are different for different Doppler
frequency shift search step and code phase search step in the
two-dimensional search, which will be explained in the next
section.

Aswell-know, the k-nearest neighbor (kNN) is a basic clas-
sification and regression method, and it has been commonly
used in the image classification field. The main principle of
the kNN is to determine the image to be recognized and to
find k closest images among all training images based on
a certain distance metric, and then, based on the k nearest
neighbors’ information, determine the most corresponding
category as an output result. In this work, the kNN algorithm
is used to detect spoofing signals to compare it with the
detection effect of the CNN-based method.

IV. SIMULATION SETUP AND RESULTS
A. SIMULATION SETUP
In the simulations, the sampling frequency of the GNSS IF
signal was set to 16.367667 MHz, the IF frequency was set
to 4.123968 MHz, and the navigation message data were ran-
domly generated. The signal-to-noise ratio of the simulated
satellite navigation signal was between -15 dB and -10 dB.
The simulated spoofing signal differed from the authentic sig-
nalmainly in theDoppler frequency shift, pseudo-code phase,
and power. Because it is difficult to keep the spoofed signal
accurately synchronized with the authentic satellite signal,
in the experiment, the Doppler shift difference changed ran-
domly within the range of ±1 kHz, and the code phase
difference varied from 0 to 2 chips. The spoofing signal power
was greater than the authentic signal power 1 dB–2 dB. The
simulation data in the experiment included 200,000 datasets,
which were divided into two categories:
• H0: 100,000 datasets, including only the authentic satel-
lite signal;

• H1: 100,000 datasets, including both the authentic signal
and the spoofing signal.

TheH1 data were further categorized based on the code phase
difference1T of the spoofing signal and the authentic signal.
The value of 1T changed from zero to two chips with a step
size of 0.1 chips. There were 20 categories in total, and each
category consisted of 10,000 datasets. Also, 7000 datasets of
various data types corresponding to H1 were combined with
7000 datasets of H0 data, so a total of 140,000 datasets were
used for CNN training, and the remaining 60,000 datasets
were used as test data.

In the simulation experiment, the Doppler frequency shift
search step was 500 Hz and 250 Hz, respectively, and the
code phase search step was 0.5 chip and 0.25 chip, respec-
tively. In the situation, the relevant parameters can be changed
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TABLE 1. Simulation settings.

according to the acquisition mode of a receiver, and in this
work, only the simulation comparative analysis of our settings
was conducted.

To evaluate the detection effect, different pseudo-code
search steps were used so that the size of the target matrix
Bm×n also changed. The simulation parameters are presented
in Table 1.

B. SIMULATION RESULTS
The accuracy of the spoofing signal detected by the kNN
classifier at different Doppler frequency shift search steps and
pseudo-code phase search step conditions, when the spoofing
signal deviated from the normal satellite signal by different
chip amounts, is presented in Fig. 12. As displayed in Fig. 12,
as the delay of the spoofing signal increased, the detection
accuracy rate also increased. When the delay of the spoofing
signal exceeded the value of one chip, the detection prob-
ability could reach 100% under different conditions. Thus,
the greater the delay of the spoofing signal was, the easier it
was to identify it. In addition, with the decrease in theDoppler
frequency shift search step and pseudo-code phase search
step, the detection probability increased, which conformed
with the principle of the receiver’s accuracy of signal acqui-
sition; namely, the smaller the search step is, the stronger
the signal acquisition capability will be. When the spoofing
signal delay was small (e.g., below 0.4 chips), the detection
probability of the signal was relatively low, but the overall
detection probability was higher than 90%.

FIGURE 12. The false alarm probability of the kNN algorithm under
different conditions.

FIGURE 13. The false alarm probability of the kNN algorithm under
different conditions.

The false alarm probability of the kNN algorithm under
different conditions is shown in Fig. 13, where as the delay
of the spoofing signal increased, the false alarm probability of
the kNN algorithm gradually decreased. When the spoofing
signal delay was larger than one chip, the false alarm prob-
ability was close to zero. When the spoofing signal delay
was larger than 0.5 chips, the false alarm probability was
below 0.002. When the spoofing signal delay was smaller
than 0.5 chips, the false alarm probability was relatively poor.
In Fig. 13, the false alarm probability is basically below
0.006, but the green line has a higher false alarm probability.
Also, the larger the chip offset of the spoofing signal is,
the lower the false alarm probability is, and the easier it is
to detect spoofing interference.

The accuracy of the spoofing signal detected by the CNN
classifier under different Doppler frequency shift search steps
and code phase search step conditions, when the spoofing
signal deviated from the normal satellite signal by a dif-
ferent number of chips, is presented in Fig. 14. As shown
in Fig. 11, as the chip offset gradually increased, the detection
probability gradually increased. When the spoofed signal
was shifted from the normal satellite signal by less than
0.4 chips, the detection probability was relatively low. When
the time delay of the spoofing signal was larger than 0.4 chips,
the accuracy of CNN’s recognition of the spoofed signal was
higher than 96%, and as the Doppler frequency shift and
the code phase search step decreased, the detection prob-
ability gradually increased; the detection probability even
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FIGURE 14. The detection rate of the CNN algorithm under different
conditions.

reached 100% when the time delay of the spoofing signal
was 0.5 chips. This result shows that when the code phase
difference between the spoofing signal and the authentic
signal is small, the CNN achieves poor performance in the
spoofing signal recognition. This is mainly because when the
chip offset is too small, the peak values of the spoofing and
authentic signals almost overlap, so it is difficult to identify
them. On the other hand, when the delay of the spoofing
signal is small, the chip offset is directly missed due to the
large step size of the code phase search. The combination of
these two results in low detection probability.

The false alarm probability of the CNN algorithm under
different conditions is presented in Fig. 15. As shown
in Fig. 15, when the delay of the spoofing signal increased,
the false alarm probability of the CNN algorithm decreased.
When the spoofing signal delay was above 0.5 chips, the false
alarm probability was close to zero. The false alarm proba-
bility was relatively poor when the spoofing signal delay was
less than 0.5 chips, which indicated that the smaller the chip
delay of the spoofing signal was, the greater the probability of
false alarm was, and the larger the chip delay of the spoofing
signal was, the smaller the false alarm probability and the
higher the detection probability were, thus the spoofing signal

FIGURE 15. The false alarm probability of the CNN algorithm under
different conditions.

was easier to detect. This result is consistent with the results
in Fig. 14.

In addition, the results presented in Figs. 12 and 14 show
that the detection probability of the kNN was slightly higher
than that of the CNN, but the detection probabilities of the
two algorithms were very close, and their performances were
relatively similar. In order to evaluate the performance of
the proposed CNN-based detection methods further, the two
detectionmethodswere compared from another point of view.

The detection probabilities of the two methods at the same
Doppler frequencies of the spoofing and authentic signals are
given in Table 2. As presented in Table 2, at different search
step values, the CNN and kNN methods had the detection
probabilities of more than 96%, which demonstrated high
effectiveness of both methods in the spoofing signal identi-
fication.

TABLE 2. Detection probability of the k NN and CNN at the same doppler
frequency.

The time-consuming statistics of the CNN and kNNmeth-
ods for a single dataset detection under different conditions
are presented in Table 3. In Table 3, it can be seen that at
the constant Doppler frequency shift search step, when the
code phase search step decreased, the detection time of the
CNN and kNN also increased. In addition, at the constant
dimension, even when the delay time of the spoofing signal
changed, the detection times of the two algorithms were
similar. However, under the same conditions, the time taken
by the CNN to detect a single set of data was much shorter
than that of the kNN. This was mainly because the CNN
could directly recognize the new data by the trained model
without the need for additional training steps. In contrast,
the kNN needed to calculate the distance between unknown
samples and all known samples for each data classification.
Besides, the larger the data dimension and the larger the data
amount were, the lower the data processing efficiency of
the kNN, and the higher its computational complexity were.
Moreover, as the computing power of the chip increases, the
detection time will continue to decrease. Thus, when the kNN

TABLE 3. Detection probability of the k NN and CNN at the same doppler
frequency.
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method is used to detect and deceive signals, a compromise
must be considered in terms of detection accuracy, detec-
tion time, and computational complexity. Compared with the
kNN, the application of CNN algorithm is more feasible in
engineering practice.

V. DISCUSSION
Since the spoofing signal is transmitted by the deceptive
equipment after a series of processing, it is different from the
authentic satellite signal in the path and delay, so it is difficult
to achieve accurate synchronization with the authentic satel-
lite signal, which makes it impossible for the spoofing signal
to have a 0 chip delay. In addition, if there is such a special
delay of 0 chip, the identification with CNN algorithm will
not get good results, which requires the additional detection
method of signal power to achieve.

In order to achieve the effect of deception, the power of
the spoofing signal must be higher than that of the authentic
satellite signal, so whether there is deception interference can
be judged by the value of the peak value A2. If A2 is less than
the threshold ρ1, the signal has not been searched; if A2 is
greater than the threshold ρ1 and greater than the threshold
ρ2 meanwhile, the signal in search cell is the authentic signal;
if A2 is greater than the threshold ρ2, it is determined that the
signal in search cell is a spoofing signal. Among them, ρ1
is the capture threshold and ρ2 is the maximum acquisition
credible threshold.With the help of CNNdetection algorithm,
the detection of 0-chip delay spoofing signal can be realized.

In the future, our research will be implemented in a
real software receiver system in the following ways: Firstly,
in normal environment and environment with deception,
a large number of two-dimensional search matrix data includ-
ing authentic signals and spoofing signals are collected
respectively in the receiver. Secondly, the target data set is
obtained by processing the obtained data, which is trained
to obtain the training model. Finally, the trained model is
embedded into the receiver software system to detect decep-
tion signals. According to this method, our subsequent work
will be implemented in a real software receiver system to
verify its detection performance.

VI. CONCLUSION
This paper studies the detection of a small-delay spoofing sig-
nal in the acquisition phase based on deep learning. Through
the analysis of the signal model and principles of the GNSS
system in the acquisition stage and the two-dimensional
search matrix processing in the acquisition stage, the spoof-
ing signal recognition in the GNSS system is respectively
realized by the kNN and CNN methods. The experimental
results show that both methods achieve better detection effect
when the code phase shift between the spoofing and authentic
signals is equal to or larger than 0.5 chips. The validity of
the proposed CNN-based detection method is verified by
the experiment and simulation. In the case of a small-delay
spoofing signal, the accuracy of the kNN is slightly higher
than that of the CNN, but on thewhole, the detection results of

the two algorithms are relatively similar. However, the kNN
has higher complexity, so the CNNmethod can be considered
as more suitable for engineering applications.

The experimental results show that when the spoofing sig-
nal delay is small, the detection probabilities of the kNN and
CNN are low, while the probabilities of false alarm are high.
This is mainly because the correlation peak of a small-delay
spoofing signal is relatively close to the correlation peak of
the authentic signal, and the correlation peak of the real signal
is even superimposed on all of them. When either CNN or
kNNmethod is used for spoofing signal detection, the charac-
teristic of the peak number in the image is not obvious, so an
effective spoofing signal identification is impossible.

It should be noted that the proposed CNN-based spoofing
signal detection method is in the phase of theoretical analysis
and research, and the actual testing and verification in the
software receiver system will be part of our future work.
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