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ABSTRACT A variation of the One-to-one Pickup and Delivery Problem (OPDP) in connected graphs,
the Split Demand One-to-one Pickup and Delivery Problem with the Shortest-path Transport along Real-life
Paths (SDOPDPSTRP) is abstracted from passenger train operation plans based on networks. Unlike the
classical OPDP, in the SDOPDPSTRP: the demands can be split and must be transported along the shortest
path according to passengers requirements and vehicles should travel along a real-life path. A new kind
of integer programming model is formulated for the SDOPDPSTRP based on the connection relationship
between pickup-delivery demands (pd-pairs). Two different categories of splitting strategies are proposed
to solve the SDOPDPSTRP: split the demands before the calculation and split the demands during the
calculation. Two Multi-Start Variable Neighborhood Descent (a MS_VND originating from the other
literature and a new MS_VND’ IN developed in this article) and seven neighborhood operators are proposed
for these two splitting strategies to solve the SDOPDPSTRP. The results show that Approach III outperforms
Approach I and Approach II in terms of average solutions with the same algorithm termination conditions
and in terms of time efficiency, which has great practical significance for real-life transport organizations.

INDEX TERMS One-to-one pickup and delivery problem, split demand, shortest-path transport, real-life

connected graph, integer programming, multi-start, variable neighborhood descent, Gurobi solver.

I. INTRODUCTION
Travelling along the shortest path, an important requirement
of passengers has no always been fully satisfied. As travel
modes diversify, it is increasingly important to meet the needs
of the passengers to increase the competitiveness of transport
enterprises when formulating transportation schemes. Take
Passenger Train Operation Plans (PTOP), which are based
on lines, for instance, trains travel through real-life paths,
and passengers’ demands between every two stations are
transported along the shortest path by one or more trains.
Currently, a Chinese high-speed rail network has been
formed, it has become an urgent problem to design the
PTOP based on networks, which is different from the general
PTOP based on lines. Therefore, a new One-to-one Pickup
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and Delivery Problem (OPDP) is abstracted to solve this new
PTOP, which can be formed as follows: There are several
pickup-delivery demands (pd-pairs) and trains in a real-life
connected graph. The pd-pairs that are chosen must be
transported along the shortest path according to passengers’
requirements. Each pd-pair can be split into different trains.
Trains cannot visit (stop at or pass through) any station more
than once, namely, each train should travel along a real-life
path. Constraints, such as train capacity, train travel distances,
and train stops, need to be considered.

This new problem can be addressed by introducing a set
of maximum-income routes to be traversed by a fleet of
vehicles to serve a group of known pd-pairs, which is referred
to as the Split Demand One-to-one Pickup and Delivery
Problems with the Shortest-path Transport along Real-life
Paths (SDOPDPSTRP) in this article. Since each pd-pair
must be transported along the shortest path and vehicle stops
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need to be considered, the SDOPDPSTRP will be studied
based on connected graphs, which should not be abstracted
into complete graphs.

The SDOPDPSTRP, which has rarely been studied in the
literature, is studied in this article. The key contributions of
this work are as follows:

(i) A new OPDP, the SDOPDPSTRP, is refined from the
Passenger Train Operation Plans based on real-life connected
graph, and a new model for the SDOPDPSTRP is studied.

(i) A new Multi-Start Variable Neighborhood Descent
(MS_VND’ in this article) with seven neighborhood oper-
ators are developed to solve the SDOPDPSTRP based on
the second splitting methods in this article: splitting demands
during the calculation.

(iii) New instances for the SDOPDPSTRP.

The remainder of this article is organized as follows.
Section 2 presents related studies. Section 3 presents the
model for the SDOPDPSTRP. Section 4 presents the solution
approach. Section 5 presents the computation results. Finally,
conclusions and future work are presented in Section 6.

Il. RELATED LITERATURES

A. GPDP, OPDP, AND OPDPSTRP

Many scholars have carried out research on the PDP over
the past few years. References [1], [2] reviewed current
GPDP research and divided studies into two categories. The
first category comprises the transportation of goods from a
depot to line-haul customers and from back-haul customers
to the depot, and this is denoted as the Vehicle Routing
Problem with Back-hauls (VRPB). Research on the VRPB
was reviewed by [3]. The second category considers all
problems that occur when goods are transported between
pickup and delivery locations, which is denoted as the Gen-
eral Vehicle Routing Problem with Pickups and Deliver-
ies (GVRPPD). References [4], [5] divided the GPDP into
three categories: the One-to-Many-to-One PDP (OMOPDP;
[6], [7]), the Many-to-many PDP (MMPDP; [8]-[13]) and the
One-to-one PDP (OPDP; [14]-[16]).

Most classical OPDPs are studied using complete graphs,
and pickup points must be visited prior to delivery points
(e.g. [17]-[23]). The classical OPDP can be easily formulated
as a Mixed-Integer Program (MIP), such as those reported
in [14]-[16]. Reference [24] classified the solution methods
for the Dial-A-Ride Problem (DARP, an important category
of the OPDP). Reference [25] proposed a combination of
cutting planes to find feasible solutions for the OPDP with
incompatibility constraints. Reference [26] studied a new
kind of OPDP, the One-to-one Pickup and Delivery Prob-
lem with the Shortest-path Transport along Real-life Paths
(OPDPSTRP), in which each pd-pair must be transported
along the shortest path and each vehicle should travel along
real-life paths in connected graphs. A new kind of modeling
method was proposed for the OPDPSTRP according to its
new route constructions.

Unlike the classical OPDP in a complete graph, the
OPDPSTRP studied in this article is described based on
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connected graphs since the number of vehicle stops needs
to be considered. Some research conducted on the route
structure of the classical OPDP can provide references for the
OPDPSTRP. Reference [27] listed four kinds of ride-sharing
patterns for the Ride-sharing Problem. Reference [21] noted
out that the cheapest path is not always the quickest path, and
a comparison of multiple paths between every two points was
necessary. Reference [28] proposed a method for relocating
a pd-pair by considering four cases, and the shortest path
was chosen as the optimal routing scheme in each local
search move. References [29], [30] studied the Ride-sharing
Problem (a kind of OPDP) in real-life networks.

Additionally, as in the OPDPSTRP, each vehicle starts at its
location (regarded as a depot) and ends at the final delivery
point of the contents transported by the vehicle; therefore,
it can be considered to be a multi-depot (vehicles) problem.
Most OPDP research is based on a single depot, such as that
reviewed by [8], [9], [21], [22], [28], [29], [31]-[34]. Some
OPDP research is based on multiple depots (vehicles), which
is mainly concerned with the Taxi-sharing Problem and Ride-
sharing Problem. For example, there is a starting point and
an ending point for each vehicle in [35]-[38] while only the
starting point is considered for each vehicle in [39].

B. SDVRP AND SDPDP

Since [40] introduced the split delivery vehicle routing prob-
lem (SDVRP), which is well known in the literature, a grow-
ing number of academics have worked in the field of split
demand. Reference [41] provided a survey on the SDVRP that
overviews its variants and, in general, all routing problems
that consider split deliveries.

Splitting demands into different vehicles may result in
better schedules, so another feature of the SDOPDPSTRP
is studied in this article, one kind of Split Demand Pickup
and Delivery Problem (SDPDP). There are many categories
of the SDPDPs, which can provide some reference for the
SDOPDPSTRP. References [42], [43] first proposed the
vehicle routing problem with split deliveries and pickups
(VRPSPDP). The one-commodity SDPDTSP is discussed
by [44], and the OMOPDP with split demands has been
discussed by [45]-[47], and [48]. The many-to-many SDPDP
is studied by [15], [49], [50]. References [51], [52] proposed
a kind of multi-vehicle One-to-one SDPDP.

C. NEIGHBORHOOD AND ALGORITHM
Reference [50] note that when demands are from 51% to
60% of the capacity of the vehicle, up to 30% of the trans-
portation costs can be saved. They find that the PDP with
split demand can perform better when the vehicle capacity is
approximately twice that of the average demand. Therefore,
the keys to solving the SDOPDPSTRP are “splitting or not?”’
and “how to split?”’. Some studies can provide reference to
solve this problem.

As for splitting strategies, demands are split when routes
are overloaded in [53]. Reference [48] split the demands for
a Vehicle Routing Problem into discrete Split Deliveries and
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TABLE 1. Differences between the OPDPSTRP in [26] and the SDOPDPSTRP in this article.

Studies Reference [26] This paper
Problems OPDPSTRP SDOPDPSTRP: Split Demand OPDPSTRP
Models Integer Linear Programming (ILP) Integer Program (IP), linearized by the methods mentioned in reference [67]
. k k k k k k k k k
Variables xm. N ye s ui and Snn xw. s qsi s ye s ui and Snn
Algorithms Gurobi, VND, VNS, MS_VND and MS_VNS Gurobi, MS_VND and MS_VND’
(1) MS_VND
Neiehborhoods VND, VNS, MS_VND and MS_VNS Insert, Spread, Point-delete, Rout-delete and Perturbation
g Insert, Spread, Point-delete, Rout-delete, and Perturbation (2) MS_VND’

Splitting methods

Instances 84 benchmark instances of the OPDPSTRP

Split, Insert, Swap, Spread, Point-delete, Rout-delete, and Perturbation
(1) Split demands before the calculation

20/10/5/1/x+MS_VND (Approach I)

25/10/5/1/x+MS_VND (Approach II)
(2) Split demands during the calculation

MS_VND' (Approach I1I)

63 benchmark instances of the SDOPDPSTRP

Pickups (VRPSPDP) according to the ratios of 25/10/5/1/x
and 20/10/5/1/x before the calculation, which are adjusted
from [54].

As for neighborhoods, [55] presented eight kinds of
local search moves for the OPDP: couple-exchange, block-
exchange, relocate-couple, relocate-block, multi-relocate,
2-opt-L, double-bridge and shake. References [56], [57] mod-
ified three large neighborhood removal heuristics and two
large neighborhood insertion heuristics from [58]-[60] for the
OPDP. Additionally, the studies of [24], [61] show that the
solution feasibility of the OPDP is an important issue to
the neighborhood efficiency of the algorithm. Reference [53]
used four operators (relocation, exchange, 2-opt and split-
point reposition) for a Simultaneous Delivery and Pick up
Vehicle Routing Problem with Split Loads (SDPVRPSL).
Reference [48] proposed five operators for the VRPSPDP:
intra-swap, intra-reverse, inter-reassignment, inter-swap and
tail swap. Reference [52] propose 6 intra-route neighbor-
hoods and 4 inter-route neighborhoods in randomized vari-
able neighborhood descent for a SDOPDP.

As for the algorithms, [62] solved the OPDPTSP via the
GRASP and the VND. Reference [15] proposed an effi-
cient heuristic that combines the strengths of tabu search
and simulated annealing for the OPDPSD. An Iterated Local
Search (ILS) was proposed by [63]. Reference [52] classified
the solution methods for the DARP. Reference [25] proposed
a combination of cutting planes to find the feasible solu-
tions for a Pickup and Delivery Problem with Incompatibility
constraints (OPDPI). Additionally, some Local Search (LS)
meta-heuristics studied for the PDP can also be used as ref-
erences. The Adaptive Large Neighborhood Search (ALNS)
was proposed for the PDP by [57], [64]-[66]. References [4],
[5] reviewed the algorithms for the static and the dynamic
PDP. Some exact methods have also been proposed for the
OPDP. For example, [14] solve two mixed integer linear
programming models of the OPDPTSP using the Cplex
solver. Reference [16] proposed a mixed integer program-
ming model for the green OPDP, and solved it using the
Cplex solver. As for the SDOPDP, [15] proposed an efficient
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heuristic that combines the strengths of tabu search and aim-
ulated annealing. Tabu search is used in [48], [53]. A VNS
is used by [51]. A branch-and-cut algorithm is used by [44],
[45]. A branch-and-price approach is proposed by [46], [47].
Reference [52] introduced a hybrid meta-heuristic based on
the Iterated Local Search (ILS) and split loads with a new
larger dynamic programming-based neighborhoods.

In summation, there is far more research on the classical
OPDP and SDPDP than on the SDOPDPSTRP, but there is
no research focusing directly on the SDOPDPSTRP proposed
in this article. A new kind of OPDP studied by [26], the
OPDPSTRP, can provide a reference. This study extends
the work of [26] by introducing ‘“‘split demand” to the
OPDPSTRP. The main differences between these two works
are listed in TABLE 1.

Ill. PROBLEM DEFINITION AND MATHEMATICAL MODEL
A. PROBLEM DEFINITION

To define the proposed SDOPDPSTRP in mathematical
terms, we specify a connected graph, G=(N, E, P, K),
where N ={1,..., ng} for vertexes, E ={1,..., ¢y} for
edges, P ={l,..., P} for pd-pairs, and K ={1,..., m}
for vehicles. Each pd-pair i with demand ¢; yields income
mixq;. Bach vehicle KeK has a maximum capacity QO
and a fixed cost vek. The transportation cost per unit
length of vehicle k is rck. Each vehicle k has a stop
cost sck at node n.

The system also obeys the following assumptions.

(1) Each pd-pair can be split (different from OPDPSTRP
in [1]), and must be transported through the shortest path
according to passengers’ requirements, with the pickup point
being visited prior to the delivery point.

(i1) Each vehicle must travel along a real-life path begin-
ning with the first pickup point and ending at the last delivery
point, namely each point cannot be accessed multiple times
by one vehicle, a common practice in the Passenger Train
Operation Plans and other similar plans.

(iii) For each vehicle, the travel distance limit (from the
first pickup point to the last delivery point) is D, and the
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maximum number of stops is Mp. No vehicle can be
overloaded.

(iv) The total cost of each vehicle consists of the constant
cost, travel cost, and stop cost. To maximize income, not all
pd-pairs need to be transported.

(v) There is only one shortest path between any two nodes
in the graph.

By defining the aforementioned problem, we hope to iden-
tify a suitable scheme to help optimize the benefits.

B. PARAMETERS AND VARIABLES

(i) Parameters

gi: Demand of pd-pair i.

7;: Revenue of pd-pair i.

QF: Capacity of vehicle k.

vek: Fixed cost of vehicle k.

tck: Transportation cost per unit length of vehicle k.

sck : Stop cost of vehicle k at node n.

le.: Length of edge e.

ld; .: Judgment parameter for whether pd-pair i moves via
edge e or not.

lcj j: Length of the connecting section for pd-pair j to
connect to vehicle/pd-pair i, where i € P for pd-pairs and
i = {p + 1} for vehicles.

ctij: Judgment parameter for whether pd-pair j can
(or cannot) connect to vehicle/pd-pair i, where i € P for
pd-pairs and i = {p + 1} for vehicles.

ca;j: Judgment parameter for whether pd-pair j can
(or cannot) connect after vehicle/pd-pair i, where i € P for
pd-pairs and i = {p + 1} for vehicles.

sod; ,: Judgment parameter for whether pd-pair i can
(or cannot) be picked up/delivered at node n.

All the above parameters can be set as in [26].

(i1) Variables

x{fj : pd-pair j connects to vehicle or pd-pair i in vehicle k
or not, where i € P for pd-pairs and i = {p + 1} for vehicles.

yle‘ : Vehicle k travels by way of edge e with pd-pairs or not.

qsé‘ : Load of each pd-pair i transported by vehicle k.
ui‘ : Sequence number of pd-pair i transported by vehicle k,
namely uf‘ < ujk when x{fj =1.

sn;’i : Vehicle k stops at node # or not.

C. MATHEMATICAL MODEL

The route structure of the SDOPDPSTRP is actually sim-
ilar to that of the OPDPSTRP described in [26]. The
SDOPDPSTRP can be formulated as an integer program-
ming (IP) model. It should be noted that in this IP model,
the decision variables are set based on the relationships
between pd-pairs, which is totally different from the classical
OPDP. In the OPDP mathematical model, the values of the
decision variables are based on the relationships between
nodes. Take the variable xlk for instance, it means that node j
come after node i in the classic OPDP, while it means
that PD-pair j come after PD-pair i in the OPDPSTRP and
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the SDOPDPSTRP. For details of the new model methods and
the new route construction rules, referring to [26].

1) OBJECTIVE FUNCTIONS
The objective function of the proposed IP model mainly
consists of four components, i.e., the total income, the total
fixed cost of using vehicle, the total transportation cost and
the total stop cost.

(i) Total income

> 3w as 0
keK ieP
(ii) Total fixed cost of using a vehicle
ko k
22 vy @)
kekK jeP
(iii) Total transportation cost
Yt Qe et Y D daijny) G
keK ecE iePU{p+1} jeP
(iv) Total stop cost
Z Z scﬁ . snﬁ 4)
keK neN

It is hoped that we can identify a suitable vehicle routing
scheme to maximize the benefits:

2D minasi = 1)) vehxp

kekK ieP keK jeP
k k k
+ Dt Q lee v+ YL ) ey
kekK ecE iePU{p+1} jeP
+ Z Zscﬁ -sn],‘L].
keK neN

2) CONSTRAINTS
(i) The constraints of determining the order between pd-
pairs/vehicle are

k

xij < ctij VkeK,iePU{p+1}, jeP (5)
x{; < Y caii-xy,; VkeK, ieP, jeP
i0ePU{p+1)
(6)
Y caij-xf; <1 VkeK, iePU{p+1) )
JeP
xf;=0 VkekK, ieP (3)
uf_uj’$+p.xt(fj§p—1 VkeK,i, jeP )
Y xf <1 VkeK.i jeP (10)
EPU{p+1}
(ii) The constraints of the splitting demands are
Y ask <q VieP an
keK
Z x]k,i §qs§( VkeK,ieP (12)
jePU{p+1}
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(iii) The capacity constraints are
> die-qsi- Y xfy<0f Vkek. eeE (13)
ieP JePU{p+1}

(iv) The stop constraints are

k k
sn, > sod; - Z X i
jePU{p+1}

VkeK,ieP,neN

(14)

> snf <My Vkek (15)
neN

(v) The constraints of whether a vehicle is traveling along
edge e or not are

ldie- Y xf; <)t VkeK.ieP ecE (16)

i =
s

jePU(p+1)

(vi) The constraints of whether a vehicle is assigned vehicle
or not are

V<D xk, VkeK.ecE (17)
jeP
(vii) The route length constraints are
D lee-yE+> Y leijoxf; <D VkeK (18
eckE ieP jeP

(viii) The domains of the variables are

x{;€{0,1} VkeK,iePU{p+1},jeP (19

gsk €{0,1,2,..} VkeK,ieP (20)
Y e{0,1}) VkeK,ecE (21)
ub €{1,2,3,..) VkeK,ieP (22)
snk € {0,1}) VkeK,neN (23)

3) LINEARIZATION OF THE IP MODEL

The above model is an IP model because the constraint (13) is
nonlinear. Reference [67] proposed methods to convert non-
linear formulas into linear formulas. For example, the nonlin-
ear formula r =zy can be replaced by the linear formulas (24)
and (25); where z is an 0-1 variable and M is a positive
constant with a sufficiently large value.

y=(—M<r<y+(1-2-M  (24)
-z-M<r=<z-M (25)
Formula (13) is nonlinear, and ) x}‘i is 0/1 variables
jePUlp+1} 7
obviously.
Let:
gsxf =qsi- Y x; VkeK,ieP  (26)

JjePU{p+1}

After replacing the nonlinear constrain (13) by for-
mula (27), (28) and (29) according to the methods men-
tioned in [67], the integer programming (IP) model for
the SDOPDPSTRP is converted into a new integer linear
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programming (ILP) model that can be solved by the Gurobi
solver. M is a constant with a sufficiently large value.

qsf-‘ —- Z xﬁi) M
jePU{p+1}
<gxf <gsf+(1— Y xf)M VkeK. ieP
jePU{p+1}
27
—(1 - Z x/{fi)~M < qsx{‘
JjEPU{p+1)}
<(1- Z )M keK, ieP (28)
jePU{p+1}
> (ld; . - gsx¥)
ieP
<0' VkeK,ecE (29)
gsxk €{0,1,2,..}) VkeK,ieP (30)

D. A FEASIBLE SOLUTION FOR A SMALL INSTANCE

For a better introduction to the SDOPDPSTRP model, a small
instance is given as follows. FIGURE 1 is a connected graph,
and the edge lengths are shown in the figure. In a feasible
schedule, 5 pd-pairs (demands: 2, 2, 6, 2 and 2) are trans-
ported by two vehicles (capacity: 5, maximum distance: 30,
and maximum stops: 6) along two routes (paths). Points 1 and
14 are the vehicles locations, and points 2, 3, 4, 15, 14, 12, 6,
8 and 10 are the stop nodes.

Vehicle k1 < T~

m ler=3 2 le=3 3 les=3 4 \
; H \ — — b — ,4 le/=2 \
] i i / \
P ’=1 les=4 le=2 / @ |

o 1 les=3
i « ; ler=2 |
{ 8 |
6 =2 deirs leir=2, leis=4 10 I
S | A '
~_—-."'-—___i4(2)_-:"’____;"- —————— lers=2 |
ler=3 lei=4 |
eI leis=3 i lei=3 J
i e vl ! 154
L T 73(5) TN leaed

@ o 12 len=3 @ le2i=3 14 i

1
1
]
1
1
12 lex=3 @ le2=3 14  wenicle k2
1
1
1
1

Pd-pair — — — —)p

Other points Q

Route 1 Route 2

Vehicle locations

FIGURE 1. A connected graph with two routes.

Stop points

ctij, ca;j and Ic; j are given in TABLE 2.

Let r; =15, vek =1, tck =1, and scﬁ =1. pd-pair g3 =6 is
split into qs1§1 =5 and qslg2 =1 because the vehicle capacity
is 5. The values of the decision variables for the schedule are
listed in TABLE 3 (only non-zero variable are listed).

Therefore, 3 Y 7 gsk = 15x Q+2+5+2+2+
keK ieP

D =210, vk oxh = 1x2=2 Y )
keK jeP b kek ecE
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TABLE 2. Values of ct; ; and cq; j.

ctijcailcij =1 =2 =3 =4 =5
=1 - 1/0/0 1/1/lez 0/0/ 00 1 lextlez+lextleotlers
=2 0/0/ 00 - 11/ les+leotlerstle 0/0/ 00 VV/les+leotle stlerrtlezi+lezotleiotlers
=3 1/1/lerg+lers+les+ler 1/1/leig+lers+les+les+les - V1/lerot+lers 1V1/lerotlers
=4 0/0/ 00 0/0/ 00 1/1/lesstles: - 1/0/0
=5 0/0/ 00 0/0/ 00 1/1/lei+less+lestler: 1/1/0 -
ki 1/1/le; 1/1/les+le> 1/ Vles+lers+lerotlesptles 1/1/les 1/1/les
k> 1/1/le21+lezo+lejotles+les+le; 1/1/ex1+ex+eote stest+e+er 1/1/0 1/1/ez21+extersters 1/1/lezi+lex+le otlers
TABLE 3. Decision variables for the schedule.
Variables Route 1 Route 2
k ko ko ko ky ky ky ky ky ky
xi,j xkl’[l =1, xl.]!l. =1, )C[IJ3 =1 szJ-3 =1, xi3,i4 71,x[4’l.5 =1 or xkz’l.s =1, xi3,15 71,xi5“.4 =1
k ki _ ki _ ki _ i _ ki _ ki ko_ K _ K _ Ky _ k _ k _ k _
Ye yezil’y%il’y‘%i]’y"«)il’yelsil’yeztil’y‘fzuil y92171’yezoil’yeloil’yenil’yelzil’yelsil
S S R R N S N SR SR
Sl’l'/: sn)' =1, Sng =1, sn,' =1, Sn5=1, S ,=1, sn;,=1 S, =1 Sn; =1, SN =1, SKg" =1, S1=1
ki _ ki _ 513‘1 _ fr _ 2 Sl}‘z _
asf qs' -2 )= 8= qsy =2 482, gs =
ulk u‘k' < u[kl , u_kl < uk‘ uffz < uffz . M.kz <u{fz or u_kz < u.kz, u.kz < u{fz
| 2 Ll i i iy iy Is i is is iy

leeyt = 1X(3+342+4242+434+3+3+3+2+3+2+4) =

35, a3 Ylejxf;=1xB+44+3+3) =
kek iePU{p+1} jeP ’
13, and 3 Y sck-snk = 1 x 11 = 11. Total profit is

keK neN
210 — (2+35+ 13+ 11) = 149.

IV. SOLUTION APPROACH

Two Multi-Start Variable Neighborhood Descent (MS_VND
and MS_VND’) and seven neighborhood operators are pro-
posed to solve the SDOPDPSTRP based on two categories
of strategies: splitting demands before the calculation and
splitting demands during the calculation.

A. NEIGHBORHOODS

Reference [53] used four operators (relocation, exchange,
2-opt and split-point re-positioning) for a Simultaneous
Delivery and Pick up Vehicle Routing Problem with Split
Loads (SDPVRPSL). Reference [48] proposed five oper-
ators for the VRPSPDP: intra-swap, intra-reverse, inter-
reassignment, inter-swap and tail swap for the VRPSPDP.
Reference [52] proposed 6 intra-route neighborhoods and
4 inter-route neighborhoods in randomized variable neighbor-
hood descent for a SDOPDP.

The solution for a small instance was provided in the last
part of Section III, FIGURE 1 shows the route structure of
the solution, TABLE 3 shows the variables. Since the route
structure of the SDOPDPSTRP is quite different from that of
the classical OPDP, there are not as many pd-pairs that can
be reinserted into a new route in the SDOPDPSTRP as in the
classical OPDP. Therefore seven neighborhoods, which are
modified from [26], are presented for the SDOPDPSTRP.

1) SPLIT

As in FIGURE 2, pd-pair i is selected randomly and inserted
into a new route j» chosen according to the route structure

150544
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FIGURE 2. Construction methods for Split.

feasibility strategy studied in [26]. If route j, is overloaded
after being inserted, split pd-pair i and leave the overload part
in route ji.

2) INSERT

As in FIGURE 3, pd-pair i is selected randomly and inserted
into a new route j» chosen according to the route structure
feasibility strategy.

FIGURE 3. Construction methods for Insert.
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3) SWAP

In the Swap, route i is chosen randomly and pd-pairs are
inserted into the other routes from route i until the number
of “insert” are more than the number of iterations K or the
solution is improved or there is no pd-pair on route i. Then,
we choose pd-pairs according to the route structure feasibility
strategy, and insert them into route i until the number of
“insert” are more than the numbers of iterations K or the
solution is improved.

4) SPREAD

As in FIGURE 4, a pd-pair is selected and inserted into a new
route j as an Insert operation. If the vehicle is overloaded,
the success rate can be improved by choosing a new pd-pair i
from the route j, and transferring i into a new route j3 selected
according to the route structure feasibility strategy. This cycle
will continue until the vehicle is no longer overloaded, or if
the number cyclic k exceeds the preset number of iterations K.
The task of the preset value K is to control the computing time
of this operation.

route j: @ 7 : ;
route ;2 » @

route j3 77777777777777777 o i "
rl 2 3 r4 r5
(a) )
route j1' ” b i ; >
route j2 -@ 3'@5\erload‘s-@ @
route /s e
rl 2 13 r4 5
r (b) T

route j1’

route j2 @ ;
route j3 '@

rl 2 r3
(©)

FIGURE 4. Construction methods for Spread.

5) POINT-DELETE

As in FIGURE 5, Point-delete starts by choosing a route at
random. Then, the point with the minimal number of picking
stops and delivery stops on the route is isolated, and these
pd-pairs i € P are subsequently inserted into different routes
selected according to the route structure feasibility strategy,
thus making it possible to delete the point from the first route.

6) ROUTE-DELETE
In Route-delete, the net income ne; of each route i is com-
puted. Route £ with the max negative income is selected. All
pd-pairs transported by route k are changed to the state of
being non-carried.

7) PERTURBATION
The key of the Perturbation is Reassign-vehicle, which is an
Assignment Problem (AP). In Reassign-vehicle, vehicles are
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FIGURE 5. Construction methods for Point-delete.

reassigned to routes to achieve the best scheme by the Gurobi
solver in Matlab.

Since Reassign-vehicle may make the most significant
change to the solution but cannot always improve the solu-
tion and requires more CPU time, it is better to choose to
perturb the local best solution according to a low probability.
Therefore, a kind of Perturbation is proposed to shock the
local best solution instead of conducting Reassign-vehicle.
In Perturbation, Split, Insert, Swap, Spread, Point-delete,
Rout-delete and Reassign-vehicle are chosen according to the
operator choosing probabilities p\, p>, p3, p4, ps and pg
respectively.

B. APPROACHES WITH DIFFERENT DEMAND SPLITTING
STRATEGIES

As in Table 4, 3 kinds of approaches with two different
categories of splitting strategies are proposed to solve the
SDOPDPSTRP in this article: (i) demands are split before
the calculation, and then, the new problems is solved as the
OPDPSTRP; (ii) demands are split during the calculation.

TABLE 4. Approaches with different demand splitting strategies.

Appraoches Splitting strategies Pre-splitting methods Algorithms
Appraoch I 20/10:5/1/x

Split demands before the calculation MS_VND in [26]
Appraoch 1T 25/10/5/1/x
Appraoch 11T Split demands during the calculation MS VND' in this paper

1) SPLIT DEMANDS BEFORE THE CALCULATION
(i) Pre-treatment of the demands
In the strategy that splits demands before the calculation,
the demands are split according to the ratios of 20/10/5/1/x
and 25/10/5/1/x before the calculation as in [48], [54].
20/10/5/1/x Splitting Strategy: Each demand is split into to
5 separate groups, each of which has a different quantity. The
first four demands are set as 0.2Q, 0.1Q, 0.05Q and 0.010.
The fifth demand is set as the load of the quantity less than
0.01Q. For example, if 0 = 300 and g = 205, then we split
g into g1 =60, g2 =60, g3 =60, g4 =15, g5 =3, q6 =3,
q7 =3 and qs =1.
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Gaps of Average Solution for Every Instance
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FIGURE 6. Gaps of the Average Solution for Every Instance.

Gaps of Best Solution for Every Instance
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FIGURE 7. Gaps of the Best Solution for Every Instance.
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FIGURE 8. Average Time Efficiency.

25/10/5/1/x Splitting Strategy: Each demand is split into to
5 separate groups, each of which has a different quantity. The
first four demands are set as 0.25Q, 0.1Q, 0.05Q and 0.01Q.
The fifth demand is set as the load of the quantity less than
0.01Q. For example, if 0 = 300 and g = 205, then we split
q into q1 =75, q2 =75, q3 =30, q4 =15, g5 =3, g¢ =3,
g7 =3 and gg =1.

Then, the SDOPDPSTRP is converted to the OPDPSTRP
and can be solved by a Multi-Start Variable Neighborhood
Descent (MS_VND), which was proposed in [26] and shown
as in Algorithm 2.
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FIGURE 9. Splitting Pd-pairs and Time.

(i1) Generation steps of the initial solution

Generation steps of the initial solution are presented in
Algorithm 1.

(iii) Algorithm

The steps of the MS_VND are presented in Algorithm 2,
which were mentioned in [26].

To improve the search, the evaluation value of the algo-
rithm is set as:

s=(z—z1 xM)x (M/1000) + (zo —z1 x M) (31)
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Algorithm 1 Pseudo-Code of Generation Steps of Initial Solution

1. Input: let P = {1, ...
Multi-start candidate solution set size n; let i=0;

, p} 1s set of pd-pairs set; let routes set R = {R;|R; = pd_pair i}(i € P) without vehicles; Input

2. Reassign vehicles to routes by neighborhood Reassign-vehicle and solution s is obtained;
3. letS ={s5; = Oi=1,..., n} be Multi-Start candidate solution set;
4. fori=1:n
5. select pd_pair j and route Ry randomly in solution s°; try to insert pd-pair j into route Ry;
6. if succeed
7. S; < 0 Update Multi-Start candidate solution set S;
8. end if
9. end for
Splitting Pd-pair and Avg Solution Average Efficiency (2)
250 26759 26800 455.00 50.00% 55.00%
26700 395.00 g

S 200 o600 205 00 35.00%
& 150 / § 195.00 1249%
2 / 26500 § i 642%  586% - 15.00%
_éc i s 2os 26400 E: 95.00 20%  0.01% e
= / E 500 ! 5.00%
%) L/ 26300 Split Insert Swap Spread  Point-delete Route-delete Perturbation

50 26140 201804 — —&— Average Improvement/ Time Efficiency of all instances(times/second)

= —— 45 - —8— Average Improvement Efficiency
0 26100
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Sl s —hvorsgeeiafion FIGURE 12. Average efficiency of the 7 operators for parameter pj.

FIGURE 10. Splitting Pd-pair and Avg Solution.
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FIGURE 11. Average efficiency of the 6 operators for parameter p.

where

s: evaluation value of the algorithm,

Z: objection value of the model,

z1: The product of overloads and distances,

Z0: Total benefit of the schedule without assigning vehicles
and

M: A large penalty.

2) SPLIT DEMANDS DURING THE CALCULATION

A new MS_VND, which is named MS_VND’, is also pro-
posed for the SDOPDPSTRP. In MS_VND’, the demands are
split during the calculation. To analyze the efficiency of these
two splitting methods mentioned in this article, the generation
steps of the initial solution are set as the same as Algorithm 1.
The steps of MS_VND’ for the SDOPDPSTRP are presented
in Algorithm 3, which are revised from MS_VND, and two
new operator Split and Swap are added in it. The evaluation
value in Algorithm 3 is set as the same as in Algorithm 2.
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V. INSTANCES AND COMPUTATIONAL RESULTS

A. GENERATION OF INSTANCES

Sixty three instances are provided to test the methods for the
SDOPDPSTRP, which are generated as follows.

Each instance name has the format mOxmi-m2-m3-m4-
m5-m6-m7, where mOxml is the size of a connected graph,
the distance between any two node is randomly set as [0.5,
1.5], 1/m2 is the probability that each edge in this graph is
deleted, 1/m3 is the pd-pair generation probability between
every two nodes, //m4 is the vehicle generation percentage
for each node, m5 is ratio of the income/cost, the capacity
is set as m6 times the average demands, and the vehicles are
randomly chosen as 1/m7 times the demands. Additionally,
[50] noted that when demands are from 51% to 60% of
the capacity of the vehicle, up to 30% of the transportation
costs can be saved. Therefore, m6 is set as 2~3, namely,
the capacity is set as 2~3 times of the average demands in
this article.

Consider the instance 3 x 4.10-10-2-1-2-2 as an example.
The size of the incomplete digraph is 3 x 4 (12 nodes and
144 node-pairs), the distance between any two node is set
as [0.5 1.5], the deletion probability of each edge is 1/10,
the pd-pair generation probability between every two nodes is
1/10, the vehicle generation percentage for each node is 1/2,
the ratio of income/cost is set as 1, the capacity is set as twice
the average demands, and the number of vehicles is 1/2 the
demand. It has been checked that there is only one shortest
path between any two nodes in each graph. For each vehicle,
the maximum travel distance limit is set as D =(m0+1)x?2,
and the maximum number of stops is M =(m0+1)x2.
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Algorithm 2 Pseudo-Code of the MS_VND Meta-Heuristic

1. Input: let bestsofar_s=max({s;}, let Insert, Spread, Point-delete, Rout-delete and Perturbation be operators opt(k),
(k=1,2,3,4and5); input K for Spread, Selection controlling value Ty and replacing proportion m, input p1, p2, p3,
p4 and ps for Perturbation, Multi-start candidate solution set size n, algorithm termination iterations constant_T,
total_iteration; Input Multi-Start candidate solution set S, let constant=0, constant0=0, iteration=0.

2. while constant<constant_T or iteration<total_iteration

3 for every S; € S

4. if constant0 < Ty

5. | k=1

6 else if Ty < constant0 < Ty * 2

7 | k=2

8 elseif Ty *2 < constantQ < Ty * 3

9 | k=3;

10. elseif Ty * 3 < constantO < Ty x4

11. | k=4

12. else if Ty x4 < constantQ < Ty * 5

13. | k=5;

14. else

15. k = 6;(Perturbation)

16. if Reassign-vehicle is chosen in Perturbation

17. | constant 0=0;

18. end if

19. end if

20. s; <opt(k,s;);

21. if 5} is not inferior than s;

2. ‘ let s; = s7; update S;

23. else

24. if constant>constant_T/2 and f (s))-f (s;) =-f (s:)/2
25. ‘ let s; = s} according to the probability 50%; update S;
26. end if

27. end if

28. end for

29. find the local best solution localbest_s in S; iteration=iteration+1;
30. if localbest_s is better than bestsofar_s

31. ‘ let bestsofar_s=localbest_s; constant=0,

32. else

33. ‘ constant=constant+1;constant O=constant 0+1;
34. end if

3s. if constant<constant_T/2

36. ‘ replace the worst m solutions in S with bestsofar_s;
37. end if

38. end while

The demand of each pd-pair is randomly set as [10, 20],
namely, the average demand gq is set as 15.

All the data of the 63 instances can been found in
APPENDIX A.

B. COMPUTING ENVIRONMENT

All experiments were conducted on a desktop equipped
with an Intel(R) Core(TM) i7-4510U 2.00 GHz processor
and 8 GB of RAM. The operating system of this PC was
64-bit Windows 8. The new integer linear programming (ILP)
model was solved using the Gurobi solver 7.5.2, which was
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embedded into Matlab R2015a by the Yalmip toolbox. All
the algorithms in this article were also programmed in
Matlab.

C. PARAMETER SETTING

The ILP model is solved by the Gurobi solver with
the termination conditions set for a computing time over
1000 seconds or the gap is less than 5%. The long preset
time aims to ensure that the Gurobi solver can obtain at least
one feasible solution served as a comparison indicator with
the proposed approaches, although in some cases it failed to
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Algorithm 3 Pseudo-Code of the MS_VND’ Meta-Heuristic

1. Input: let bestsofar_s=max{s;}, let Split, Insert, Swap, Spread, Point-delete, Rout-delete and Perturbation be
operators opt(k), (k = 1,2,3,4,5,6 and 7); input K for Spread, Selection controlling value T and replacing
proportion m, input p1, p2, p3, p4, p5, p7 and pg for Perturbation, Multi-start candidate solution set size n, algorithm
termination iterations constant_T, total_iteration; Input Multi-Start candidate solution set S, let constant=0,

constant0=0, iteration=0.

2. while constant<constant_T or iteration<total_iteration

3. for every s; € S

4. if constant0 < Ty

5. | k=1

6. else if Ty < constant0 < Ty * 2

7. | k=2

8. elseif Ty *2 < constantQ < Ty * 3

9. | k=3;

10. else if T * 3 < constant0 < Ty x 4

1. | k=4

12. elseif Ty x4 < constantQ < Ty * 5

13. | k=5;

14. elseif Ty x5 < constant0 < Ty *x 6

15. | k=6;

16. else

17. k = T;(Perturbation)

18. if Reassign-vehicle is chosen in Perturbation

19. ‘ constant0=0;

20. end if

21. end if

22. s, < opt(k,s;);

23. if 5} is not inferior than s;

2. | lets; = s}; update S;

25. else

26. if constant>constant_T/2 and f (s7) — f(s;) = —f (5:)/2
27. ‘ let s; = s according to the probability 50%; update S;
28. end if

29. end if

30. end for

31. find the local best solution localbest_s in S; iteration=iteration+1;
32. if localbest_s is better than bestsofar_s

33. ‘ let bestsofar_s=localbest_s; constant=0,

34. else

3s. ‘ constant=constant+1;constantO=constant0+1;

36. end if

37. if constant<constant_T/2

38. ‘ replace the worst m solutions in S with bestsofar_s;
39. end if

40. end while

achieve this goal. We provided the upper bounds found by the
Gurobi solver as well a more in-depth reference to evaluate
the performances of the proposed approaches: Approach I,
Approach II and Approach III.

Almost all of numbers of the pd-pairs of the above
63 instances are not more than 230 after being pre-
treated. Therefore, the parameters values (n, constant_T,
total_iteration, TO, K and m) of MS_VND can be set the
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same as in [26], where the numbers of pd-pairs are not
more than 236. Then, the parameters values (n, constant_T,
total_iteration, TO, K and m) of MS_VND’ are set the same
as for MS_VND to better compare the efficiency of these two
splitting strategies. Furthermore, the operator sequence opt(k)
and the operator choosing probability py in MS_VND’ are
reanalyzed in APPENDIX B because two new operators, Split
and Swap, are added to MS_VND’.
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TABLE 5. Parameter setting for MS_VND and MS_VND'.

Symbol Definition Value
n Size of the Multi-Start candidate solution set 90
constant T Algorithm termination condition 1: limit on the number of constant T=exp(-20/(2+num_pd-pairs))*700, where num_pd-pairs is the number of

iterations where the solution does not change
Algorithm termination condition 2: limit on the total

total _iteration . .
- number of iterations

pd-pairs

num_pd-pairs*100, where num_pd-pairs is the number of pd-pairs

To Selected controlling value 20

K Number of iterations for Spread 3

opt(l) Operators sequences MS_VND: Insert, Spread, Point-delete, Rout-delete, and Perturbation

P P q MS_VND’: Split, Insert, Swap, Spread, Point-delete, Rout-delete, and Perturbation
MS_VND: 9/24, 7/24, 1/24, 1/24, 6/24 for Insert, Spread, Point-delete, Rout-delete,
. e . and Reassign-vehicle, respectively

P Operator choosing probabilities in Perturbation MS_VND’: 6/35, 7/35, 10135, 4/35, 1/35, 1/35, 6/35 for Split, Insert, Swap, Spread,
Point-delete, Rout-delete, and Reassign-vehicle, respectively

m Replacement proportion for Multi-Start solution set 1/8

TABLE 6. Abbreviation of the experiment indicators and definitions.

Abbreviation Definition

UB The upper bound of the ILP model obtained by the Gurobi solver in a preset running time.

LB The best feasible objective value found by the Gurobi solver in a preset running time.

Gap The gap between UB and LB: (UB-LB)/UB.

LB Avg The average feasible objective value obtained by Approach I, Approach II and Approach III after a preset number of iterations.
LB _Best The best feasible objective value obtained by Approach I, Approach II and Approach III after a preset number of iterations.
Gap_Avg The gap between LB_Avg and LB: (LB_Avg-LB)/LB.

Gap_Best The gap between LB_Best and LB: (LB_Best-LB)/LB.

Time Average CPU time for solving the ILP model by Approach I, Approach II and Approach III (second).

Initial pd-pairs Number of initial pd-pairs of each instance

Splitting pd-pairs Number of pd-pairs of each instance in the solution

TABLE 7. Computational results for small size graphs.

. Gurobi Approach T Approach IT Approach IIT
s 1"’2“" . urobt (pre-split demands according to 20/10:5/1/x) (pre-split demands according to 25/105:1/x) (split demands during calculation)

nstances pa- Venicles " .. . ey . v .
pairs UB LB Gap (SETC’:}”’;) LB Avg LB Best Gap_Avg GapiBestiﬂz::::’f (seTéz’: -y LB_Avg LB_Best Gap_dvg GapiBestiﬂfZ::;f (seT(’-Z:ved) LB_Avg LB_Best Gap_Avg Gapresliﬂf:Z;f (ng:fd)
3-4-10-10-1-1-2-2 12 6 2147 2146 0.05% 12133 2133 -059% -0.59% 73 62 2109 2117 -1.70% -134% 72 59 2141 2141 -0.24% -024% 13 35
3-4-10-10-1-1-2-4 12 31464 1464 0.00% 11410 1457 -371% -0.48% 73 92 1413 1424 -3.46% -275% 72 87 1464 1464 0.03%  0.03% 13 46
3-4-10-10-1-1-34 12 31479 1479 0.00% 11479 1479 0.03%  0.03% 61 55 1458 1479 -1.42%  0.03% 55 52 1479 1479 0.03%  0.03% 12 32
3-4-10-10-1-4-2-2 13 7 13535 13535 0.00% 29 12947 12953 -434% -4.30% 63 45 12049 12953 -4.33%  -4.30% 60 40 12047 12953 -4.34%  -430% 15 25
3-4-10-10-1-4-2-4 13 3 7858 7858 0.00% 16961 6961 -1141% -11.41% 63 95 7081 7361 -9.88% -633% 60 96 7858 7858 0.00%  0.00% 15 36
3-4-10-10-1-4-3-4 13 38857 8857 0.00% 38033 8280 -9.30% -6.51% 59 69 8146 8322 -8.02% -6.04% 60 71 8604 8604 -2.86% -2.86% 16 40
3-4-10-5-1-1-2-2 25 13 5526 5445 1.49% 474 5415 5417 -0.54% -0.51% 115 136 5423 5424 -040% -0.38% 110 132 5442 5445 -0.05%  0.00% 27 130
3-4-10-5-1-1-2-4 25 8 5016 4864 3.13% 1184 4491 4686 -7.66% -3.65% 115 160 4531 4672 -6.84% -395% 110 155 4806 4854 -1.19% -0.20% 30 146
3-4-10-5-1-1-3-4 25 8 5205 5172 0.64% 246 5112 5122 -1.16% -0.96% 125 128 5099 5128 -1.40% -085% 130 128 5133 5142 -0.75% -0.57% 25 94
3-4-10-5-1-4-2-2 23 1222500 22418 0.37% 549 22268 22399 -0.67% -0.08% 125 118 22395 22408 -0.10% -0.04% 117 121 22407 22409 -0.05% -0.04% 25 92
3-4-10-5-1-4-2-4 23 6 16706 16706 0.00% 150 15995 16585 -426% -0.72% 125 243 15612 16403 -655% -181% 117 253 16702 16702 -0.03% -0.03% 27168
3-4-10-5-1-4-3-4 23 6 18062 18062 0.00% 10 17728 17812 -185% -1.38% 114 110 17803 17812 -143% -1.38% 110 121 18062 18062 0.00%  0.00% 24 151
3-4-10-3-1-1-2-2 42 21 9888 9613 2.86% 1628 9543 9559 -0.72% -0.56% 211 334 9559 9598 -0.56% -0.15% 211 321 9606 9608 -0.07% -0.05% 45 261
3-4-10-3-1-1-2-4 42 11 9742 8609 13.16% 1081 8132 8255 -5.54% -4.11% 211 516 8266 8372 -3.99% -275% 211 644 8244 8326 -4.24% -329% 46 152
3-4-10-3-1-1-3-4 42 11 9831 9493 3.56% 1263 8977 9104 -544% -410% 221 362 8925 8960 -5.99% -562% 219 338 9490 9493 -0.03%  0.00% 45 214
3-4-10-3-1-4-22 42 21 51138 50703 0.86% 1140 50672 50686 -0.06% -0.03% 220 327 50709 50730 0.01% 0.05% 220 373 50730 50736 0.05%  0.07% 49 163
3-4-10-3-1-4-2-4 42 1148026 38918 23.40% 1278 37601 38015 -3.39% -232% 220 1037 37866 39155 -2.70% 061% 220 1251 37638 38251 -329% -1.71% 51 301
3-4-10-3-1-4-3-4 42 11 49446 46541 6.24% 1658 44995 45498 -3.32% -224% 222 589 45356 45833 -2.55% -1.52% 223 653 46267 46406 -0.59% -0.29% 46 182
3-4-10-1-1-1-2-2 132 66 - - - - 31262 31262 - - 661 2098 31301 31301 - - 640 2102 31476 31501 - - 153 1523
3-4-10-1-1-1-2-4 132 33 - - - 25619 25719 - - 661 1580 25496 25785 - - 640 1552 26973 27145 179 1432
3-4-10-1-1-1-3-4 132 33 - - - 30784 31172 - - 633 1833 30922 31073 - - 639 1843 31764 31843 - S 152 1645
Avg 41 1415913 15105 3.10% 594 16741 16884 -355% -2.44% 208 476 16782 16967 -3.41% -2.14% 205 495 17106 17163 -0.98% -0.75% 48 327

Note: The indexes in this table are introduced in TABLE V1.

The parameters values of MS_VND and MS_VND’ are
given in TABLE 5.

D. TEST RESULTS
The abbreviations of the experimental indicators and corre-
sponding definitions are listed in TABLE 6.

The results found by Gurobi solver, Approach I,
Approach II and Approach III are shown in TABLE 7
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(small size graphs), TABLE 8 (medium size graphs) and
TABLE 9 (large size graphs). Each instance has been solved
10 times by each method.

According to the results,
found:

the following can be

1) Approach III can always obtain better solutions than
Approach I and Approach II with the same algorithm
termination conditions. FIGURE 6 and FIGURE 7

VOLUME 8, 2020
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TABLE 8. Computational results for medium size graphs.

» Gurobi Approach 1 Approach I1 Approach IIT
Initial . (pre-split demands according to 20/105/1/x) (pre-split demands according to 25/10:5/1/x, (split demands during calculation)
Instances pd- - Vehicles Time Splitting Time Splitting Time Splitting Time
pairs UB LB Gap (second) LB Avg LB Best Gap_Avg GapiBestp";_pair'g (second) LB Avg LB Best Gap_Avg G"p*BeS’pn’;-pairf (second) LB Avg LB Best Gap_Avg Gap_Best pﬁ-pairf (second)
6-8-10-200-1-1-2-2 14 7 5460 5460 0.00% 2 5460 5460  0.00%  0.00% 70 46 5460 5460  0.00%  0.00% 67 45 5460 5460  0.00%  0.00% 14 45
6-8-10-200-1-1-2-4 14 4 3561 3561 0.00% 1 3515 3561 -130%  0.00% 70 32 3538 3561 -0.65%  0.00% 67 30 3561 3561 0.00%  0.00% 14 25
6-8-10-200-1-1-3-4 14 4 3561 3561 0.00% 1 3515 3561 -130%  0.00% 77 30 3561 3561 0.00%  0.00% 70 31 3561 3561 0.00%  0.00% 14 23
6-8-10-200-1-4-2-2 15 8 30282 30282 0.00% 2 29407 30087 -2.89% -0.64% 76 41 28090 28933 -7.24%  -4.46% 69 48 29469 30282 -2.69%  0.00% 17 40
6-8-10-200-1-4-2-4 15 4 18283 18283 0.00% 117479 17479 -440%  -4.40% 76 36 16925 17570 -7.43% -3.90% 69 37 18141 18283 -0.78%  0.00% 17 37
6-8-10-200-1-4-3-4 15 4 18857 18857 0.00% 118857 18857  0.00%  0.00% 74 19 18857 18857  0.00%  0.00% 68 18 18857 18857  0.00%  0.00% 15 39
6-8-10-100-1-1-2-2 19 10 6672 6672 0.00% 2 6614 6614 -087% -0.87% 90 24 6614 6614 -0.87% -0.87% 85 24 6635 6672 -0.55%  0.00% 19 59
6-8-10-100-1-1-2-4 19 53965 3965 0.00% 13965 3965 0.00%  0.00% 90 31 3965 3965  0.00%  0.00% 85 333965 3965  0.00%  0.00% 19 47
6-8-10-100-1-1-3-4 19 5 3965 3965 0.00% 13965 3965 0.00%  0.00% 89 34 3965 3965 0.00%  0.00% 82 29 3965 3965 0.00%  0.00% 19 50
6-8-10-100-1-4-2-2 20 10 34875 34875 0.00% 2 34875 34875 0.00%  0.00% 102 28 34875 34875 0.00%  0.00% 101 29 34875 34875 0.00%  0.00% 21 51
6-8-10-100-1-4-2-4 20 5 20316 20316 0.00% 120237 20237 -0.39% -0.39% 102 29 20237 20237 -0.39% -0.39% 101 32 20316 20316 0.00%  0.00% 21 58
6-8-10-100-1 20 520367 20367 0.00% 120367 20367 0.00%  0.00% 99 31 20367 20367 0.00%  0.00% 93 3220367 20367 0.00%  0.00% 20 57
6-8-10-50-1-1-2-2 42 21 16264 16252 0.07% 530 16013 16221 -147% -0.19% 188 143 15841 15954 -2.53% -1.83% 188 114 16232 16235 -0.13% -0.11% 43 101
6-8-10-50-1-1-2-4 42 11 11316 10885 3.96% 641 10490 -2.96% 188 220 10479 10688 -3.73% -1.81% 188 230 10876 10910 -0.08%  0.23% 47 105
6-8-10-50-1-1-3-4 42 1111171 11171 0.00% 537 10913 -1.92% 214 225 10899 10946 -2.44% -2.01% 199 205 11171 11171 0.00%  0.00% 48 107
6-8-10-50-1-4-2-2 44 22 75888 73049 3.89% 1131 72886 -0.22% 213 134 72911 73189 -0.19%  0.19% 206 88 73200 73200 0.21% 0.21% 45 122
6-8-10-50-1-4-2-4 44 11 49186 46551 5.66% 1825 43791 -4.30% 213 235 45082 45503 -3.16% -2.25% 206 238 45261 45271 -2.77% -2.75% 45 80
6-8-10-50-1-4-3-4 44 11 49658 49658 0.00% 171 48363 -0.58% 222 127 48137 48476 -3.06% -2.38% 220 125 49652 49658 -0.01%  0.00% 46 97
6-8-10-25-1-1-2-2 94 47 49846 47906 4.05% 21600 45977 -3.21% 484 776 45742 46068 -4.52% -3.84% 459 781 46519 46636 -2.89% -2.65% 100 315
6-8-10-25-1-1-2-4 94 24 36694 29201 25.66% 19963 30220 4.10% 484 864 29842 30329 2.20%  3.86% 459 777 30014 30551  2.78%  4.62% 110 508
6-8-10-25-1-1-3-4 94 24 36704 35785 2.57% 19980 33893 -4.40% 471 793 34258 34628 -4.27% -3.23% 468 822 35513 35652 -0.76% -0.37% 96 213
Avg 35 1224138 23363 2.18% 3162 22895 23074 -1.58% -0.95% 176 186 22840 23035 -1.98% -1.21% 169 194 23220 23307 -0.40% -0.04% 38 104
Note: The indexes in this table are introduced in TABLE VI.
TABLE 9. Computational results for large size graphs.
Initial Gurobi Approach I , ) ) Approach (l . ) ) Apprﬂac{i ur )
Instances o Vehicles ' (pre-split demands according to -()/{ O{J/l,x) ' (pre-split demands according to 23/]' (1{5/1 X, ' (split demands durin, L'a/(‘u/an'urf '
pairs UB LB Gap (Sg'o": ")) LB_Avg LB_Best Gap_tvg Gap_Best iﬂﬂi (52'”": ")) LB_Avg LB_Best Gap_tvg Gap_Best iﬁf::i';‘;' e ")) LB_Avg LB_Best Gap_vg Gap_Best i%ﬂrf (SZ;"; 9
9 5 6095 6095 0.00% 3 5675 6035 -6.89% -0.98% 48 10 5585 5764 -837% -5.43% 46 9 5808 6095 -4.70%  0.00% 10 27
9 2 3648 3648 0.00% 13628 3648 -0.55%  0.00% 48 9 3648 3648 0.00%  0.00% 46 9 3648 3648  0.00%  0.00% 10 26
9 2 3768 3768 0.00% 1 3768 3768 0.00%  0.00% 50 9 3768 3768 0.00%  0.00% 50 8 3768 3768 0.00%  0.00% 9 17
10-10-10-1000-1 11 6 28290 28290 0.00% 2 27985 27985 -1.08% -1.08% 53 17 27985 27985 -1.08% -1.08% 55 18 28188 28290 -0.36%  0.00% 11 29
10-10-10-1000-1 11 3 16380 16380 0.00% 2 16125 16380 -1.56%  0.00% 53 23 16380 16380 0.00%  0.00% 55 20 16380 16380 0.00%  0.00% 11 31
10-10-10-1000-1 11 3 16380 16380 0.00% 2 16380 16380  0.00%  0.00% 53 24 15616 15616 -4.66%  -4.66% 48 18 16380 16380  0.00%  0.00% 11 34
10-10-10-500- 20 10 11204 11204 0.00% 20 11204 11204  0.00%  0.00% 108 42 11137 11137 -0.60% -0.60% 100 4211204 11204  0.00%  0.00% 21 61
10-10-10-500- 20 5 6678 6678 0.00% 3 6678 6678  0.00%  0.00% 108 59 6560 6610 -1.76% -1.02% 100 48 6678 6678 0.00%  0.00% 21 146
10-10-10-500- 20 5 6948 6948 0.00% 16948 6948  0.00%  0.00% 104 73 6948 6948  0.00%  0.00% 106 63 6948 6948  0.00%  0.00% 20 132
10-10-10-500- 13 7 34551 34551 0.00% 2 34708 34708 0.46%  0.46% 62 10 34708 34708 0.46%  0.46% 61 10 34551 34551  0.00%  0.00% 14 47
10-10-10-500- 13 3 18266 18266 0.00% 2 17256 17256 -5.53%  -5.53% 62 15 17256 17256 -5.53% -5.53% 61 15 17256 17256 -5.53% -5.53% 13 33
10-10-10-500- 13 3 18424 18424 0.00% 2 18424 18424 0.00%  0.00% 63 14 18424 18424  0.00%  0.00% 62 1318424 18424  0.00%  0.00% 13 38
10-10-10-200- 44 22 27930 27577 1.28% 1459 26940 27309 -2.31% -0.97% 235 207 27124 27301 -1.64% -1.00% 232 211 27331 27368 -0.89% -0.76% 46 185
10-10-10-200- 44 11 17615 17615 0.00% 936 17159 17443 -2.59% -0.97% 235 333 17140 17485 -2.70% -0.74% 232 356 17538 17585 -0.44% -0.17% 47 244
10-10-10-200- 44 1117782 17782 0.00% 577 17491 17782 -1.64%  0.00% 218 271 17658 17782 -0.70%  0.00% 216 249 17782 17782 0.00%  0.00% 44 165
10-10-10-200- 49 25 135576133053 1.90% 1051 128923 129329 -3.10% -2.80% 239 276 129052 131179 -3.01% -1.41% 236 281 129898 131508 -2.37% -1.16% 51 227
10-10-10-200- 49 12 84652 79640 6.29% 3206 76257 77384 -4.25% -2.83% 239 328 76419 76777 -4.04% -3.60% 236 330 78671 79401 -1.22% -0.30% 53 376
10-10-10-200- 49 12 85988 84092 2.25% 3559 80616 80702 -4.13% -4.03% 251 340 82205 82707 -224% -1.65% 250 383 84046 84092 -0.05%  0.00% 50 245
10-10-10-50-1- 188 94 - - - - 127327 127865 - - 939 2175 126702 128064 - - 908 2135 129291 129447 - - 191 1252
10-10-10-50-1 188 47 - - - - 81355 81455 - - 939 3351 82838 83892 - - 908 2670 87290 88099 - - 213 1856
10-10-10-50- 188 47 - - - - 90209 90443 - - 931 2902 90529 90958 - - 923 2720 97892 98486 - - 189 1076
Avg 48 16 30010 29466 0.65% 602 38812 39006 -1.84% -1.04% 240 499 38937 39257 -1.89% -1.41% 235 563 39951 40161 -0.86% -0.44% 50 297
Note: The indexes in this table are introduced in TABLE VI.
TABLE 10. Parameters setting of OPT(K) and Py for the MS_VND'.
Symbol Definition Value
opt(k) Operators sequences MS_VND’: Split, Insert, Swap, Spread, Point-delete, R delete, and Per
P Operator choosing probabilities in Perturbation MS_VND’: 6/35,7 35, 10/35, 4 35, 1/35, 1 35, 6/35 for Split, Insert, Swap, Spread, Point-delete, Rout-delete, and R chicle, respectively

show the gaps between the LB and LB_Avg and
LB_Best solved by Approach I, Approach III and
Approach III. The Gap_Avg and Gap_Best of the
Approach III are the lowest.

Approach III outperforms Approach I and Approach II
in terms of time efficiency. As shown in FIGURE 8§,
the average time efficiency (Average Solution/Time)
of Approach III is better than that of Approach I and
Approach II.

There is a strong link between the number of split-
ting pd-pairs and the time for solving the SDOPDP-
STRP. As in FIGURE 9, Approach I and Approach
II take more time than that of Approach III to
solve the SDOPDPSTRP with the same algorithm

2)

3)

VOLUME 8, 2020

termination conditions, because they split more
pd-pairs than Approach III.

(iv) In theory, the fewer the demands that are split,
the better the solutions that can be obtained. However, this
phenomenon is not immutable. As shown in FIGURE 10,
the average number of splitting pd-pairs is 45 in Approach I,
but Approach III outperforms Approach I and Approach II
in terms of solution quality with more than 500 on average.
Namely, “how to split” is worthy of further study in the
future.

VI. CONCLUSION
A new Pickup and Delivery Problem with a new route
structure and split demand, the Split Demand One-to-one
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Pickup and Delivery Problems with the Shortest-path Trans-
port along Real-life Paths (SDOPDPSTRP), which is pro-
posed using connected graphs, is introduced and formulated
in a new way. Three methods are proposed to solve the
SDOPDPSTRP: two methods (Approach I and Approach II)
split demands before the calculation, and the other method
(Approach III) splits demands during the calculation.

The results show that Approach III outperform Approach
I and Approach II in terms of the average solutions and time
efficiency under the same algorithm termination conditions,
which has great practical significance for real-life transport
organizations. It is also be found that “how to split” is the
key to solving the SDOPDPSTRP and that the time it takes to
solve the SDOPDPSTREP is closely related to the number of
split pd-pairs, especially for large instances. Therefore, the
splitting methods for large instances are worthy of further
study in the future.

APPENDIX

A. INSTANCES

The relative data for the instances can be found online at the

following link:
https://www.researchgate.net/publication/343415212_

Instances_of_the_ SDOPDPSTRP.

B. PARAMETERS SETTING OF opt(K) AND px FOR THE
MD_VND'

The parameter setting, such as the operator sequence opt(k)
and the operator choosing probability py in Perturbation will
be revised in this section because two new operators, Split and
Swap, are proposed in the MD_VND’.

These two parameters have also been tested over
9 instances (including small size connected graphs, medium
size connected graphs and large size connected graphs, cho-
sen from the 64 instances in APPENDIX A), as in the
parameter setting is tuned by determining the trade off
between the solution quality and CPU time after numerous
experiments.

FIGURE 11 shows the performance of the six operators
(Split, Insert, Swap, Spread, Point-delete and Route-delete)
which are chosen separately in the MD_VND’ (the other
operators are removed).

According to FIGURE 11, the operator choosing ratios
between neighborhoods is set as 6:7:10:4:1:1 (according to
the average improvement efficiency) in the Perturbation for
MD_VND’.

FIGURE 12 shows the performance of the seven operators
in the MD_VND’ algorithm with the empirical values given
in TABLE 10. The results show that Reassign-vehicle will
take a large amount of CPU time. Therefore, the sequence of
choosing the operators is determined as Split, Insert, Swap,
Spread, Point-delete, Route-delete and Perturbation for the
MS_VND’.

For a better comparison, the final parameters are shown in
the TABLE 10.
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