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ABSTRACT A variation of the One-to-one Pickup and Delivery Problem (OPDP) in connected graphs,
the Split Demand One-to-one Pickup and Delivery Problem with the Shortest-path Transport along Real-life
Paths (SDOPDPSTRP) is abstracted from passenger train operation plans based on networks. Unlike the
classical OPDP, in the SDOPDPSTRP: the demands can be split and must be transported along the shortest
path according to passengers requirements and vehicles should travel along a real-life path. A new kind
of integer programming model is formulated for the SDOPDPSTRP based on the connection relationship
between pickup-delivery demands (pd-pairs). Two different categories of splitting strategies are proposed
to solve the SDOPDPSTRP: split the demands before the calculation and split the demands during the
calculation. Two Multi-Start Variable Neighborhood Descent (a MS_VND originating from the other
literature and a newMS_VND’ IN developed in this article) and seven neighborhood operators are proposed
for these two splitting strategies to solve the SDOPDPSTRP. The results show that Approach III outperforms
Approach I and Approach II in terms of average solutions with the same algorithm termination conditions
and in terms of time efficiency, which has great practical significance for real-life transport organizations.

INDEX TERMS One-to-one pickup and delivery problem, split demand, shortest-path transport, real-life
connected graph, integer programming, multi-start, variable neighborhood descent, Gurobi solver.

I. INTRODUCTION
Travelling along the shortest path, an important requirement
of passengers has no always been fully satisfied. As travel
modes diversify, it is increasingly important to meet the needs
of the passengers to increase the competitiveness of transport
enterprises when formulating transportation schemes. Take
Passenger Train Operation Plans (PTOP), which are based
on lines, for instance, trains travel through real-life paths,
and passengers’ demands between every two stations are
transported along the shortest path by one or more trains.

Currently, a Chinese high-speed rail network has been
formed, it has become an urgent problem to design the
PTOP based on networks, which is different from the general
PTOP based on lines. Therefore, a new One-to-one Pickup

The associate editor coordinating the review of this manuscript and

approving it for publication was Keli Xiao .

and Delivery Problem (OPDP) is abstracted to solve this new
PTOP, which can be formed as follows: There are several
pickup-delivery demands (pd-pairs) and trains in a real-life
connected graph. The pd-pairs that are chosen must be
transported along the shortest path according to passengers’
requirements. Each pd-pair can be split into different trains.
Trains cannot visit (stop at or pass through) any station more
than once, namely, each train should travel along a real-life
path. Constraints, such as train capacity, train travel distances,
and train stops, need to be considered.

This new problem can be addressed by introducing a set
of maximum-income routes to be traversed by a fleet of
vehicles to serve a group of known pd-pairs, which is referred
to as the Split Demand One-to-one Pickup and Delivery
Problems with the Shortest-path Transport along Real-life
Paths (SDOPDPSTRP) in this article. Since each pd-pair
must be transported along the shortest path and vehicle stops
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need to be considered, the SDOPDPSTRP will be studied
based on connected graphs, which should not be abstracted
into complete graphs.

The SDOPDPSTRP, which has rarely been studied in the
literature, is studied in this article. The key contributions of
this work are as follows:

(i) A new OPDP, the SDOPDPSTRP, is refined from the
Passenger Train Operation Plans based on real-life connected
graph, and a new model for the SDOPDPSTRP is studied.

(ii) A new Multi-Start Variable Neighborhood Descent
(MS_VND’ in this article) with seven neighborhood oper-
ators are developed to solve the SDOPDPSTRP based on
the second splitting methods in this article: splitting demands
during the calculation.

(iii) New instances for the SDOPDPSTRP.
The remainder of this article is organized as follows.

Section 2 presents related studies. Section 3 presents the
model for the SDOPDPSTRP. Section 4 presents the solution
approach. Section 5 presents the computation results. Finally,
conclusions and future work are presented in Section 6.

II. RELATED LITERATURES
A. GPDP, OPDP, AND OPDPSTRP
Many scholars have carried out research on the PDP over
the past few years. References [1], [2] reviewed current
GPDP research and divided studies into two categories. The
first category comprises the transportation of goods from a
depot to line-haul customers and from back-haul customers
to the depot, and this is denoted as the Vehicle Routing
Problem with Back-hauls (VRPB). Research on the VRPB
was reviewed by [3]. The second category considers all
problems that occur when goods are transported between
pickup and delivery locations, which is denoted as the Gen-
eral Vehicle Routing Problem with Pickups and Deliver-
ies (GVRPPD). References [4], [5] divided the GPDP into
three categories: the One-to-Many-to-One PDP (OMOPDP;
[6], [7]), theMany-to-many PDP (MMPDP; [8]–[13]) and the
One-to-one PDP (OPDP; [14]–[16]).

Most classical OPDPs are studied using complete graphs,
and pickup points must be visited prior to delivery points
(e.g. [17]–[23]). The classical OPDP can be easily formulated
as a Mixed-Integer Program (MIP), such as those reported
in [14]–[16]. Reference [24] classified the solution methods
for the Dial-A-Ride Problem (DARP, an important category
of the OPDP). Reference [25] proposed a combination of
cutting planes to find feasible solutions for the OPDP with
incompatibility constraints. Reference [26] studied a new
kind of OPDP, the One-to-one Pickup and Delivery Prob-
lem with the Shortest-path Transport along Real-life Paths
(OPDPSTRP), in which each pd-pair must be transported
along the shortest path and each vehicle should travel along
real-life paths in connected graphs. A new kind of modeling
method was proposed for the OPDPSTRP according to its
new route constructions.

Unlike the classical OPDP in a complete graph, the
OPDPSTRP studied in this article is described based on

connected graphs since the number of vehicle stops needs
to be considered. Some research conducted on the route
structure of the classical OPDP can provide references for the
OPDPSTRP. Reference [27] listed four kinds of ride-sharing
patterns for the Ride-sharing Problem. Reference [21] noted
out that the cheapest path is not always the quickest path, and
a comparison of multiple paths between every two points was
necessary. Reference [28] proposed a method for relocating
a pd-pair by considering four cases, and the shortest path
was chosen as the optimal routing scheme in each local
search move. References [29], [30] studied the Ride-sharing
Problem (a kind of OPDP) in real-life networks.

Additionally, as in the OPDPSTRP, each vehicle starts at its
location (regarded as a depot) and ends at the final delivery
point of the contents transported by the vehicle; therefore,
it can be considered to be a multi-depot (vehicles) problem.
Most OPDP research is based on a single depot, such as that
reviewed by [8], [9], [21], [22], [28], [29], [31]–[34]. Some
OPDP research is based on multiple depots (vehicles), which
is mainly concerned with the Taxi-sharing Problem and Ride-
sharing Problem. For example, there is a starting point and
an ending point for each vehicle in [35]–[38] while only the
starting point is considered for each vehicle in [39].

B. SDVRP AND SDPDP
Since [40] introduced the split delivery vehicle routing prob-
lem (SDVRP), which is well known in the literature, a grow-
ing number of academics have worked in the field of split
demand. Reference [41] provided a survey on the SDVRP that
overviews its variants and, in general, all routing problems
that consider split deliveries.

Splitting demands into different vehicles may result in
better schedules, so another feature of the SDOPDPSTRP
is studied in this article, one kind of Split Demand Pickup
and Delivery Problem (SDPDP). There are many categories
of the SDPDPs, which can provide some reference for the
SDOPDPSTRP. References [42], [43] first proposed the
vehicle routing problem with split deliveries and pickups
(VRPSPDP). The one-commodity SDPDTSP is discussed
by [44], and the OMOPDP with split demands has been
discussed by [45]–[47], and [48]. The many-to-many SDPDP
is studied by [15], [49], [50]. References [51], [52] proposed
a kind of multi-vehicle One-to-one SDPDP.

C. NEIGHBORHOOD AND ALGORITHM
Reference [50] note that when demands are from 51% to
60% of the capacity of the vehicle, up to 30% of the trans-
portation costs can be saved. They find that the PDP with
split demand can perform better when the vehicle capacity is
approximately twice that of the average demand. Therefore,
the keys to solving the SDOPDPSTRP are ‘‘splitting or not?’’
and ‘‘how to split?’’. Some studies can provide reference to
solve this problem.

As for splitting strategies, demands are split when routes
are overloaded in [53]. Reference [48] split the demands for
a Vehicle Routing Problem into discrete Split Deliveries and
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TABLE 1. Differences between the OPDPSTRP in [26] and the SDOPDPSTRP in this article.

Pickups (VRPSPDP) according to the ratios of 25/10/5/1/x
and 20/10/5/1/x before the calculation, which are adjusted
from [54].

As for neighborhoods, [55] presented eight kinds of
local search moves for the OPDP: couple-exchange, block-
exchange, relocate-couple, relocate-block, multi-relocate,
2-opt-L, double-bridge and shake. References [56], [57]mod-
ified three large neighborhood removal heuristics and two
large neighborhood insertion heuristics from [58]–[60] for the
OPDP. Additionally, the studies of [24], [61] show that the
solution feasibility of the OPDP is an important issue to
the neighborhood efficiency of the algorithm. Reference [53]
used four operators (relocation, exchange, 2-opt and split-
point reposition) for a Simultaneous Delivery and Pick up
Vehicle Routing Problem with Split Loads (SDPVRPSL).
Reference [48] proposed five operators for the VRPSPDP:
intra-swap, intra-reverse, inter-reassignment, inter-swap and
tail swap. Reference [52] propose 6 intra-route neighbor-
hoods and 4 inter-route neighborhoods in randomized vari-
able neighborhood descent for a SDOPDP.

As for the algorithms, [62] solved the OPDPTSP via the
GRASP and the VND. Reference [15] proposed an effi-
cient heuristic that combines the strengths of tabu search
and simulated annealing for the OPDPSD. An Iterated Local
Search (ILS) was proposed by [63]. Reference [52] classified
the solution methods for the DARP. Reference [25] proposed
a combination of cutting planes to find the feasible solu-
tions for a Pickup and Delivery Problem with Incompatibility
constraints (OPDPI). Additionally, some Local Search (LS)
meta-heuristics studied for the PDP can also be used as ref-
erences. The Adaptive Large Neighborhood Search (ALNS)
was proposed for the PDP by [57], [64]–[66]. References [4],
[5] reviewed the algorithms for the static and the dynamic
PDP. Some exact methods have also been proposed for the
OPDP. For example, [14] solve two mixed integer linear
programming models of the OPDPTSP using the Cplex
solver. Reference [16] proposed a mixed integer program-
ming model for the green OPDP, and solved it using the
Cplex solver. As for the SDOPDP, [15] proposed an efficient

heuristic that combines the strengths of tabu search and aim-
ulated annealing. Tabu search is used in [48], [53]. A VNS
is used by [51]. A branch-and-cut algorithm is used by [44],
[45]. A branch-and-price approach is proposed by [46], [47].
Reference [52] introduced a hybrid meta-heuristic based on
the Iterated Local Search (ILS) and split loads with a new
larger dynamic programming-based neighborhoods.

In summation, there is far more research on the classical
OPDP and SDPDP than on the SDOPDPSTRP, but there is
no research focusing directly on the SDOPDPSTRP proposed
in this article. A new kind of OPDP studied by [26], the
OPDPSTRP, can provide a reference. This study extends
the work of [26] by introducing ‘‘split demand’’ to the
OPDPSTRP. The main differences between these two works
are listed in TABLE 1.

III. PROBLEM DEFINITION AND MATHEMATICAL MODEL
A. PROBLEM DEFINITION
To define the proposed SDOPDPSTRP in mathematical
terms, we specify a connected graph, G=(N, E, P, K ),
where N ={1,. . . , n0} for vertexes, E ={1,. . . , e0} for
edges, P ={1,. . . , P} for pd-pairs, and K ={1,. . . , m}
for vehicles. Each pd-pair i with demand qi yields income
πi×qi. Each vehicle KεK has a maximum capacity Qk
and a fixed cost vck . The transportation cost per unit
length of vehicle k is tck . Each vehicle k has a stop
cost sckn at node n.

The system also obeys the following assumptions.
(i) Each pd-pair can be split (different from OPDPSTRP

in [1]), and must be transported through the shortest path
according to passengers’ requirements, with the pickup point
being visited prior to the delivery point.

(ii) Each vehicle must travel along a real-life path begin-
ning with the first pickup point and ending at the last delivery
point, namely each point cannot be accessed multiple times
by one vehicle, a common practice in the Passenger Train
Operation Plans and other similar plans.

(iii) For each vehicle, the travel distance limit (from the
first pickup point to the last delivery point) is D, and the
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maximum number of stops is M0. No vehicle can be
overloaded.

(iv) The total cost of each vehicle consists of the constant
cost, travel cost, and stop cost. To maximize income, not all
pd-pairs need to be transported.

(v) There is only one shortest path between any two nodes
in the graph.

By defining the aforementioned problem, we hope to iden-
tify a suitable scheme to help optimize the benefits.

B. PARAMETERS AND VARIABLES
(i) Parameters
qi: Demand of pd-pair i.
πi: Revenue of pd-pair i.
Qk : Capacity of vehicle k .
vck : Fixed cost of vehicle k .
tck : Transportation cost per unit length of vehicle k .
sckn : Stop cost of vehicle k at node n.
lee: Length of edge e.
ldi,e: Judgment parameter for whether pd-pair i moves via

edge e or not.
lci,j: Length of the connecting section for pd-pair j to

connect to vehicle/pd-pair i, where i ∈ P for pd-pairs and
i = {p+ 1} for vehicles.
cti,j: Judgment parameter for whether pd-pair j can

(or cannot) connect to vehicle/pd-pair i, where i ∈ P for
pd-pairs and i = {p+ 1} for vehicles.
cai,j: Judgment parameter for whether pd-pair j can

(or cannot) connect after vehicle/pd-pair i, where i ∈ P for
pd-pairs and i = {p+ 1} for vehicles.
sodi,n: Judgment parameter for whether pd-pair i can

(or cannot) be picked up/delivered at node n.
All the above parameters can be set as in [26].
(ii) Variables
xki,j : pd-pair j connects to vehicle or pd-pair i in vehicle k

or not, where i ∈ P for pd-pairs and i = {p+ 1} for vehicles.
yke :Vehicle k travels by way of edge ewith pd-pairs or not.
qski : Load of each pd-pair i transported by vehicle k .
uki : Sequence number of pd-pair i transported by vehicle k ,

namely uki < ukj when x
k
i,j = 1.

snkn : Vehicle k stops at node n or not.

C. MATHEMATICAL MODEL
The route structure of the SDOPDPSTRP is actually sim-
ilar to that of the OPDPSTRP described in [26]. The
SDOPDPSTRP can be formulated as an integer program-
ming (IP) model. It should be noted that in this IP model,
the decision variables are set based on the relationships
between pd-pairs, which is totally different from the classical
OPDP. In the OPDP mathematical model, the values of the
decision variables are based on the relationships between
nodes. Take the variable xki,j for instance, it means that node j
come after node i in the classic OPDP, while it means
that PD-pair j come after PD-pair i in the OPDPSTRP and

the SDOPDPSTRP. For details of the newmodel methods and
the new route construction rules, referring to [26].

1) OBJECTIVE FUNCTIONS
The objective function of the proposed IP model mainly
consists of four components, i.e., the total income, the total
fixed cost of using vehicle, the total transportation cost and
the total stop cost.

(i) Total income ∑
k∈K

∑
i∈P

πi · qski (1)

(ii) Total fixed cost of using a vehicle∑
k∈K

∑
j∈P

vck · xkp+1,j (2)

(iii) Total transportation cost∑
k∈K

tck · (
∑
e∈E

lee · yke +
∑

i∈P∪{p+1}

∑
j∈P

lci,j · xki,j) (3)

(iv) Total stop cost∑
k∈K

∑
n∈N

sckn · sn
k
n (4)

It is hoped that we can identify a suitable vehicle routing
scheme to maximize the benefits:∑

k∈K

∑
i∈P

πi · qski − [
∑
k∈K

∑
j∈P

vck · xkp+1,j

+

∑
k∈K

tck · (
∑
e∈E

lee · yke +
∑

i∈P∪{p+1}

∑
j∈P

lci,j · xki,j)

+

∑
k∈K

∑
n∈N

sckn · sn
k
n].

2) CONSTRAINTS
(i) The constraints of determining the order between pd-
pairs/vehicle are

xki,j ≤ cti,j ∀k ∈K , i∈P ∪ {p+ 1}, j∈P (5)

xki,j ≤
∑

i0∈P∪{p+1}

cai0,i · x
k
i0,i ∀k ∈K , i∈P, j∈P

(6)∑
j∈P

cai,j · xki,j ≤ 1 ∀k ∈K , i∈P ∪ {p+ 1} (7)

xki,i = 0 ∀k ∈K , i∈P (8)

uki − u
k
j + p · x

k
i,j ≤ p− 1 ∀k ∈K , i, j∈P (9)∑

i∈P∪{p+1}

xki,j ≤ 1 ∀k ∈K , i, j∈P (10)

(ii) The constraints of the splitting demands are∑
k∈K

qski ≤ qi ∀i ∈ P (11)∑
j∈P∪{p+1}

xkj,i ≤ qski ∀k ∈ K , i ∈ P (12)
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(iii) The capacity constraints are∑
i∈P

(ldi,e · qski ·
∑

j∈P∪{p+1}

xkj,i) ≤ Q
k
∀k ∈ K , e ∈ E (13)

(iv) The stop constraints are

snkn ≥ sodi,n ·
∑

j∈P∪{p+1}

xkj,i ∀k ∈ K , i ∈ P, n ∈ N

(14)∑
n∈N

snkn ≤ M0 ∀k ∈ K (15)

(v) The constraints of whether a vehicle is traveling along
edge e or not are

ldi,e ·
∑

j∈P∪{p+1}

xkj,i ≤ y
k
e ∀k ∈ K , i ∈ P, e ∈ E (16)

(vi) The constraints of whether a vehicle is assigned vehicle
or not are

yke ≤
∑
j∈P

xkp+1,j ∀k ∈ K , e ∈ E (17)

(vii) The route length constraints are∑
e∈E

lee · yke +
∑
i∈P

∑
j∈P

lci,j · xki,j ≤ D ∀k ∈ K (18)

(viii) The domains of the variables are

xki,j ∈ {0, 1} ∀k ∈ K , i ∈ P ∪ {p+ 1}, j ∈ P (19)

qski ∈ {0, 1, 2, ...} ∀k ∈ K , i ∈ P (20)
yke ∈ {0, 1} ∀k ∈ K , e ∈ E (21)
uki ∈ {1, 2, 3, ...} ∀k ∈ K , i ∈ P (22)
snkn ∈ {0, 1} ∀k ∈ K , n ∈ N (23)

3) LINEARIZATION OF THE IP MODEL
The above model is an IP model because the constraint (13) is
nonlinear. Reference [67] proposed methods to convert non-
linear formulas into linear formulas. For example, the nonlin-
ear formula r =zy can be replaced by the linear formulas (24)
and (25); where z is an 0-1 variable and M is a positive
constant with a sufficiently large value.

y− (1− z) ·M ≤ r ≤ y+ (1− z) ·M (24)
−z ·M ≤ r ≤ z ·M (25)

Formula (13) is nonlinear, and
∑

j∈P∪{p+1}
xkj,i is 0/1 variables

obviously.
Let:

qsxki = qski ·
∑

j∈P∪{p+1}

xkj,i ∀k ∈ K , i ∈ P (26)

After replacing the nonlinear constrain (13) by for-
mula (27), (28) and (29) according to the methods men-
tioned in [67], the integer programming (IP) model for
the SDOPDPSTRP is converted into a new integer linear

programming (ILP) model that can be solved by the Gurobi
solver. M is a constant with a sufficiently large value.

qski − (1−
∑

j∈P∪{p+1}

xkj,i) ·M

≤ qsxki ≤ qs
k
i + (1−

∑
j∈P∪{p+1}

xkj,i) ·M ∀k ∈ K , i ∈ P

(27)

− (1−
∑

j∈P∪{p+1}

xkj,i) ·M ≤ qsx
k
i

≤ (1−
∑

j∈P∪{p+1}

xkj,i) ·M k ∈ K , i ∈ P (28)

∑
i∈P

(ldi,e · qsxki )

≤ Qk ∀k ∈ K , e ∈ E (29)

qsxki ∈ {0, 1, 2, ...} ∀k ∈ K , i ∈ P (30)

D. A FEASIBLE SOLUTION FOR A SMALL INSTANCE
For a better introduction to the SDOPDPSTRPmodel, a small
instance is given as follows. FIGURE 1 is a connected graph,
and the edge lengths are shown in the figure. In a feasible
schedule, 5 pd-pairs (demands: 2, 2, 6, 2 and 2) are trans-
ported by two vehicles (capacity: 5, maximum distance: 30,
and maximum stops: 6) along two routes (paths). Points 1 and
14 are the vehicles locations, and points 2, 3, 4, 15, 14, 12, 6,
8 and 10 are the stop nodes.

FIGURE 1. A connected graph with two routes.

cti,j, cai,j and lci,j are given in TABLE 2.
Let πi =15, vck =1, tck =1, and sckn =1. pd-pair q3 =6 is

split into qsk13 =5 and qsk23 =1 because the vehicle capacity
is 5. The values of the decision variables for the schedule are
listed in TABLE 3 (only non-zero variable are listed).

Therefore,
∑
k∈K

∑
i∈P
πi · qski = 15 × (2 + 2 + 5 + 2 + 2 +

1) = 210,
∑
k∈K

∑
j∈P

vck · xkp+1,j = 1 × 2 = 2,
∑
k∈K

tck ·
∑
e∈E
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TABLE 2. Values of cti,j and cai,j .

TABLE 3. Decision variables for the schedule.

lee·yke = 1×(3+3+2+2+2+3+3+3+3+2+3+2+4) =
35,

∑
k∈K

tck ·
∑

i∈P∪{p+1}

∑
j∈P

lci,j · xki,j = 1 × (3 + 4 + 3 + 3) =

13, and
∑
k∈K

∑
n∈N

sckn · sn
k
n = 1 × 11 = 11. Total profit is

210− (2+ 35+ 13+ 11) = 149.

IV. SOLUTION APPROACH
Two Multi-Start Variable Neighborhood Descent (MS_VND
and MS_VND’) and seven neighborhood operators are pro-
posed to solve the SDOPDPSTRP based on two categories
of strategies: splitting demands before the calculation and
splitting demands during the calculation.

A. NEIGHBORHOODS
Reference [53] used four operators (relocation, exchange,
2-opt and split-point re-positioning) for a Simultaneous
Delivery and Pick up Vehicle Routing Problem with Split
Loads (SDPVRPSL). Reference [48] proposed five oper-
ators for the VRPSPDP: intra-swap, intra-reverse, inter-
reassignment, inter-swap and tail swap for the VRPSPDP.
Reference [52] proposed 6 intra-route neighborhoods and
4 inter-route neighborhoods in randomized variable neighbor-
hood descent for a SDOPDP.

The solution for a small instance was provided in the last
part of Section III, FIGURE 1 shows the route structure of
the solution, TABLE 3 shows the variables. Since the route
structure of the SDOPDPSTRP is quite different from that of
the classical OPDP, there are not as many pd-pairs that can
be reinserted into a new route in the SDOPDPSTRP as in the
classical OPDP. Therefore seven neighborhoods, which are
modified from [26], are presented for the SDOPDPSTRP.

1) SPLIT
As in FIGURE 2, pd-pair i is selected randomly and inserted
into a new route j2 chosen according to the route structure

FIGURE 2. Construction methods for Split.

feasibility strategy studied in [26]. If route j2 is overloaded
after being inserted, split pd-pair i and leave the overload part
in route j1.

2) INSERT
As in FIGURE 3, pd-pair i is selected randomly and inserted
into a new route j2 chosen according to the route structure
feasibility strategy.

FIGURE 3. Construction methods for Insert.
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3) SWAP
In the Swap, route i is chosen randomly and pd-pairs are
inserted into the other routes from route i until the number
of ‘‘insert’’ are more than the number of iterations K or the
solution is improved or there is no pd-pair on route i. Then,
we choose pd-pairs according to the route structure feasibility
strategy, and insert them into route i until the number of
‘‘insert’’ are more than the numbers of iterations K or the
solution is improved.

4) SPREAD
As in FIGURE 4, a pd-pair is selected and inserted into a new
route j2 as an Insert operation. If the vehicle is overloaded,
the success rate can be improved by choosing a new pd-pair i
from the route j2 and transferring i into a new route j3 selected
according to the route structure feasibility strategy. This cycle
will continue until the vehicle is no longer overloaded, or if
the number cyclic k exceeds the preset number of iterationsK.
The task of the preset valueK is to control the computing time
of this operation.

FIGURE 4. Construction methods for Spread.

5) POINT-DELETE
As in FIGURE 5, Point-delete starts by choosing a route at
random. Then, the point with the minimal number of picking
stops and delivery stops on the route is isolated, and these
pd-pairs i ∈ P are subsequently inserted into different routes
selected according to the route structure feasibility strategy,
thus making it possible to delete the point from the first route.

6) ROUTE-DELETE
In Route-delete, the net income nei of each route i is com-
puted. Route k with the max negative income is selected. All
pd-pairs transported by route k are changed to the state of
being non-carried.

7) PERTURBATION
The key of the Perturbation is Reassign-vehicle, which is an
Assignment Problem (AP). In Reassign-vehicle, vehicles are

FIGURE 5. Construction methods for Point-delete.

reassigned to routes to achieve the best scheme by the Gurobi
solver in Matlab.

Since Reassign-vehicle may make the most significant
change to the solution but cannot always improve the solu-
tion and requires more CPU time, it is better to choose to
perturb the local best solution according to a low probability.
Therefore, a kind of Perturbation is proposed to shock the
local best solution instead of conducting Reassign-vehicle.
In Perturbation, Split, Insert, Swap, Spread, Point-delete,
Rout-delete and Reassign-vehicle are chosen according to the
operator choosing probabilities p1, p2, p3, p4, p5 and p6
respectively.

B. APPROACHES WITH DIFFERENT DEMAND SPLITTING
STRATEGIES
As in Table 4, 3 kinds of approaches with two different
categories of splitting strategies are proposed to solve the
SDOPDPSTRP in this article: (i) demands are split before
the calculation, and then, the new problems is solved as the
OPDPSTRP; (ii) demands are split during the calculation.

TABLE 4. Approaches with different demand splitting strategies.

1) SPLIT DEMANDS BEFORE THE CALCULATION
(i) Pre-treatment of the demands

In the strategy that splits demands before the calculation,
the demands are split according to the ratios of 20/10/5/1/x
and 25/10/5/1/x before the calculation as in [48], [54].
20/10/5/1/x Splitting Strategy: Each demand is split into to

5 separate groups, each of which has a different quantity. The
first four demands are set as 0.2Q, 0.1Q, 0.05Q and 0.01Q.
The fifth demand is set as the load of the quantity less than
0.01Q. For example, if Q = 300 and q = 205, then we split
q into q1 =60, q2 =60, q3 =60, q4 =15, q5 =3, q6 =3,
q7 =3 and q8 =1.
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FIGURE 6. Gaps of the Average Solution for Every Instance.

FIGURE 7. Gaps of the Best Solution for Every Instance.

FIGURE 8. Average Time Efficiency.

25/10/5/1/x Splitting Strategy: Each demand is split into to
5 separate groups, each of which has a different quantity. The
first four demands are set as 0.25Q, 0.1Q, 0.05Q and 0.01Q.
The fifth demand is set as the load of the quantity less than
0.01Q. For example, if Q = 300 and q = 205, then we split
q into q1 =75, q2 =75, q3 =30, q4 =15, q5 =3, q6 =3,
q7 =3 and q8 =1.
Then, the SDOPDPSTRP is converted to the OPDPSTRP

and can be solved by a Multi-Start Variable Neighborhood
Descent (MS_VND), which was proposed in [26] and shown
as in Algorithm 2.

FIGURE 9. Splitting Pd-pairs and Time.

(ii) Generation steps of the initial solution
Generation steps of the initial solution are presented in

Algorithm 1.
(iii) Algorithm
The steps of the MS_VND are presented in Algorithm 2,

which were mentioned in [26].
To improve the search, the evaluation value of the algo-

rithm is set as:

s = (z− z1 ×M )× (M/1000)+ (z0 − z1 ×M ) (31)
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Algorithm 1 Pseudo-Code of Generation Steps of Initial Solution

1. Input: let P = {1, . . . , p} is set of pd-pairs set; let routes set R = {Ri|Ri = pd_pair i}(i ∈ P) without vehicles; Input
Multi-start candidate solution set size n; let i=0;

2. Reassign vehicles to routes by neighborhood Reassign-vehicle and solution s0 is obtained;
3. let S ={si = s0, i = 1, . . . , n} be Multi-Start candidate solution set;
4. for i = 1: n
5. select pd_pair j and route Rk randomly in solution s0; try to insert pd-pair j into route Rk ;
6. if succeed
7. si← s0; Update Multi-Start candidate solution set S;
8. end if
9. end for

FIGURE 10. Splitting Pd-pair and Avg Solution.

FIGURE 11. Average efficiency of the 6 operators for parameter pk .

where
s: evaluation value of the algorithm,
z: objection value of the model,
z1: The product of overloads and distances,
z0: Total benefit of the schedule without assigning vehicles

and
M : A large penalty.

2) SPLIT DEMANDS DURING THE CALCULATION
A new MS_VND, which is named MS_VND’, is also pro-
posed for the SDOPDPSTRP. In MS_VND’, the demands are
split during the calculation. To analyze the efficiency of these
two splittingmethodsmentioned in this article, the generation
steps of the initial solution are set as the same as Algorithm 1.
The steps of MS_VND’ for the SDOPDPSTRP are presented
in Algorithm 3, which are revised from MS_VND, and two
new operator Split and Swap are added in it. The evaluation
value in Algorithm 3 is set as the same as in Algorithm 2.

FIGURE 12. Average efficiency of the 7 operators for parameter pk .

V. INSTANCES AND COMPUTATIONAL RESULTS
A. GENERATION OF INSTANCES
Sixty three instances are provided to test the methods for the
SDOPDPSTRP, which are generated as follows.

Each instance name has the format m0×m1-m2-m3-m4-
m5-m6-m7, where m0×m1 is the size of a connected graph,
the distance between any two node is randomly set as [0.5,
1.5], 1/m2 is the probability that each edge in this graph is
deleted, 1/m3 is the pd-pair generation probability between
every two nodes, 1/m4 is the vehicle generation percentage
for each node, m5 is ratio of the income/cost, the capacity
is set as m6 times the average demands, and the vehicles are
randomly chosen as 1/m7 times the demands. Additionally,
[50] noted that when demands are from 51% to 60% of
the capacity of the vehicle, up to 30% of the transportation
costs can be saved. Therefore, m6 is set as 2∼3, namely,
the capacity is set as 2∼3 times of the average demands in
this article.

Consider the instance 3× 4.10-10-2-1-2-2 as an example.
The size of the incomplete digraph is 3 × 4 (12 nodes and
144 node-pairs), the distance between any two node is set
as [0.5 1.5], the deletion probability of each edge is 1/10,
the pd-pair generation probability between every two nodes is
1/10, the vehicle generation percentage for each node is 1/2,
the ratio of income/cost is set as 1, the capacity is set as twice
the average demands, and the number of vehicles is 1/2 the
demand. It has been checked that there is only one shortest
path between any two nodes in each graph. For each vehicle,
the maximum travel distance limit is set as D =(m0+1)×2,
and the maximum number of stops is M =(m0+1)×2.
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Algorithm 2 Pseudo-Code of theMS_VNDMeta-Heuristic

1. Input: let bestsofar_s=max{si}, let Insert, Spread, Point-delete, Rout-delete and Perturbation be operators opt(k),
(k = 1, 2, 3, 4 and 5); input K for Spread, Selection controlling value T0 and replacing proportion m, input p1, p2, p3,
p4 and p5 for Perturbation, Multi-start candidate solution set size n, algorithm termination iterations constant_T,
total_iteration; Input Multi-Start candidate solution set S, let constant=0, constant0=0, iteration=0.

2. while constant<constant_T or iteration<total_iteration
3. for every Si ∈ S
4. if constant0 < T0
5. k = 1;
6. else if T0 ≤ constant0 < T0 ∗ 2
7. k = 2;
8. else if T0 ∗ 2 ≤ constant0 < T0 ∗ 3
9. k = 3;
10. else if T0 ∗ 3 ≤ constant0 < T0 ∗ 4
11. k = 4;
12. else if T0 ∗ 4 ≤ constant0 < T0 ∗ 5
13. k = 5;
14. else
15. k = 6;(Perturbation)
16. if Reassign-vehicle is chosen in Perturbation
17. constant 0=0;
18. end if
19. end if
20. s′i←opt(k,si);
21. if s′i is not inferior than si
22. let si = s′i; update S;
23. else
24. if constant>constant_T/2 and f (s′i)-f (si) ≥-f (si)/2
25. let si = s′i according to the probability 50%; update S;
26. end if
27. end if
28. end for
29. find the local best solution localbest_s in S; iteration=iteration+1;
30. if localbest_s is better than bestsofar_s
31. let bestsofar_s=localbest_s; constant=0;
32. else
33. constant=constant+1;constant 0=constant 0+1;
34. end if
35. if constant≤constant_T/2
36. replace the worst m solutions in S with bestsofar_s;
37. end if
38. end while

The demand of each pd-pair is randomly set as [10, 20],
namely, the average demand q is set as 15.

All the data of the 63 instances can been found in
APPENDIX A.

B. COMPUTING ENVIRONMENT
All experiments were conducted on a desktop equipped
with an Intel(R) Core(TM) i7-4510U 2.00 GHz processor
and 8 GB of RAM. The operating system of this PC was
64-bitWindows 8. The new integer linear programming (ILP)
model was solved using the Gurobi solver 7.5.2, which was

embedded into Matlab R2015a by the Yalmip toolbox. All
the algorithms in this article were also programmed in
Matlab.

C. PARAMETER SETTING
The ILP model is solved by the Gurobi solver with
the termination conditions set for a computing time over
1000 seconds or the gap is less than 5%. The long preset
time aims to ensure that the Gurobi solver can obtain at least
one feasible solution served as a comparison indicator with
the proposed approaches, although in some cases it failed to
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Algorithm 3 Pseudo-Code of the MS_VND’ Meta-Heuristic

1. Input: let bestsofar_s=max{si}, let Split, Insert, Swap, Spread, Point-delete, Rout-delete and Perturbation be
operators opt(k), (k = 1, 2, 3, 4, 5, 6 and 7); input K for Spread, Selection controlling value T0 and replacing
proportion m, input p1, p2, p3, p4, p5, p7 and p8 for Perturbation, Multi-start candidate solution set size n, algorithm
termination iterations constant_T, total_iteration; Input Multi-Start candidate solution set S, let constant=0,
constant0=0, iteration=0.

2. while constant<constant_T or iteration<total_iteration
3. for every si ∈ S
4. if constant0 < T0
5. k = 1;
6. else if T0 ≤ constant0 < T0 ∗ 2
7. k = 2;
8. else if T0 ∗ 2 ≤ constant0 < T0 ∗ 3
9. k = 3;
10. else if T0 ∗ 3 ≤ constant0 < T0 ∗ 4
11. k = 4;
12. else if T0 ∗ 4 ≤ constant0 < T0 ∗ 5
13. k = 5;
14. else if T0 ∗ 5 ≤ constant0 < T0 ∗ 6
15. k = 6;
16. else
17. k = 7;(Perturbation)
18. if Reassign-vehicle is chosen in Perturbation
19. constant0=0;
20. end if
21. end if
22. s′i← opt(k,si);
23. if s′i is not inferior than si
24. let si = s′i; update S;
25. else
26. if constant>constant_T/2 and f (s′i)− f (si) ≥ −f (si)/2
27. let si = s′i according to the probability 50%; update S;
28. end if
29. end if
30. end for
31. find the local best solution localbest_s in S; iteration=iteration+1;
32. if localbest_s is better than bestsofar_s
33. let bestsofar_s=localbest_s; constant=0;
34. else
35. constant=constant+1;constant0=constant0+1;
36. end if
37. if constant≤constant_T/2
38. replace the worst m solutions in S with bestsofar_s;
39. end if
40. end while

achieve this goal. We provided the upper bounds found by the
Gurobi solver as well a more in-depth reference to evaluate
the performances of the proposed approaches: Approach I,
Approach II and Approach III.

Almost all of numbers of the pd-pairs of the above
63 instances are not more than 230 after being pre-
treated. Therefore, the parameters values (n, constant_T,
total_iteration, T0, K and m) of MS_VND can be set the

same as in [26], where the numbers of pd-pairs are not
more than 236. Then, the parameters values (n, constant_T,
total_iteration, T0, K and m) of MS_VND’ are set the same
as for MS_VND to better compare the efficiency of these two
splitting strategies. Furthermore, the operator sequence opt(k)
and the operator choosing probability pk in MS_VND’ are
reanalyzed in APPENDIXB because two new operators, Split
and Swap, are added to MS_VND’.
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TABLE 5. Parameter setting for MS_VND and MS_VND’.

TABLE 6. Abbreviation of the experiment indicators and definitions.

TABLE 7. Computational results for small size graphs.

The parameters values of MS_VND and MS_VND’ are
given in TABLE 5.

D. TEST RESULTS
The abbreviations of the experimental indicators and corre-
sponding definitions are listed in TABLE 6.

The results found by Gurobi solver, Approach I,
Approach II and Approach III are shown in TABLE 7

(small size graphs), TABLE 8 (medium size graphs) and
TABLE 9 (large size graphs). Each instance has been solved
10 times by each method.

According to the results, the following can be
found:

1) Approach III can always obtain better solutions than
Approach I and Approach II with the same algorithm
termination conditions. FIGURE 6 and FIGURE 7
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TABLE 8. Computational results for medium size graphs.

TABLE 9. Computational results for large size graphs.

TABLE 10. Parameters setting of OPT(K) and PK for the MS_VND’.

show the gaps between the LB and LB_Avg and
LB_Best solved by Approach I, Approach III and
Approach III. The Gap_Avg and Gap_Best of the
Approach III are the lowest.

2) Approach III outperforms Approach I and Approach II
in terms of time efficiency. As shown in FIGURE 8,
the average time efficiency (Average Solution/Time)
of Approach III is better than that of Approach I and
Approach II.

3) There is a strong link between the number of split-
ting pd-pairs and the time for solving the SDOPDP-
STRP. As in FIGURE 9, Approach I and Approach
II take more time than that of Approach III to
solve the SDOPDPSTRP with the same algorithm

termination conditions, because they split more
pd-pairs than Approach III.

(iv) In theory, the fewer the demands that are split,
the better the solutions that can be obtained. However, this
phenomenon is not immutable. As shown in FIGURE 10,
the average number of splitting pd-pairs is 45 in Approach III,
but Approach III outperforms Approach I and Approach II
in terms of solution quality with more than 500 on average.
Namely, ‘‘how to split’’ is worthy of further study in the
future.

VI. CONCLUSION
A new Pickup and Delivery Problem with a new route
structure and split demand, the Split Demand One-to-one
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Pickup and Delivery Problems with the Shortest-path Trans-
port along Real-life Paths (SDOPDPSTRP), which is pro-
posed using connected graphs, is introduced and formulated
in a new way. Three methods are proposed to solve the
SDOPDPSTRP: two methods (Approach I and Approach II)
split demands before the calculation, and the other method
(Approach III) splits demands during the calculation.

The results show that Approach III outperform Approach
I and Approach II in terms of the average solutions and time
efficiency under the same algorithm termination conditions,
which has great practical significance for real-life transport
organizations. It is also be found that ‘‘how to split’’ is the
key to solving the SDOPDPSTRP and that the time it takes to
solve the SDOPDPSTRP is closely related to the number of
split pd-pairs, especially for large instances. Therefore, the
splitting methods for large instances are worthy of further
study in the future.

APPENDIX
A. INSTANCES
The relative data for the instances can be found online at the
following link:

https://www.researchgate.net/publication/343415212_
Instances_of_the_SDOPDPSTRP.

B. PARAMETERS SETTING OF opt(K) AND pK FOR THE
MD_VND’
The parameter setting, such as the operator sequence opt(k)
and the operator choosing probability pk in Perturbation will
be revised in this section because two new operators, Split and
Swap, are proposed in the MD_VND’.

These two parameters have also been tested over
9 instances (including small size connected graphs, medium
size connected graphs and large size connected graphs, cho-
sen from the 64 instances in APPENDIX A), as in the
parameter setting is tuned by determining the trade off
between the solution quality and CPU time after numerous
experiments.

FIGURE 11 shows the performance of the six operators
(Split, Insert, Swap, Spread, Point-delete and Route-delete)
which are chosen separately in the MD_VND’ (the other
operators are removed).

According to FIGURE 11, the operator choosing ratios
between neighborhoods is set as 6:7:10:4:1:1 (according to
the average improvement efficiency) in the Perturbation for
MD_VND’.

FIGURE 12 shows the performance of the seven operators
in the MD_VND’ algorithm with the empirical values given
in TABLE 10. The results show that Reassign-vehicle will
take a large amount of CPU time. Therefore, the sequence of
choosing the operators is determined as Split, Insert, Swap,
Spread, Point-delete, Route-delete and Perturbation for the
MS_VND’.

For a better comparison, the final parameters are shown in
the TABLE 10.
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