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ABSTRACT The number of older adults with Alzheimer’s disease is increasing every year. The associated
memory problems cause many difficulties for Alzheimer’s patients and their caretakers; patients may even
become lost in familiar surroundings. In this article, a proposed localization system based on a wireless
sensor network (WSN) and backpropagation based artificial neural network (BP-ANN) was practically
implemented to detect and determine the position of an Alzheimer’s patient in an indoor environment. The
proposed system consisted of four ZigBee-based XBee S2C anchor nodes and one mobile node carried by
the Alzheimer’s patient. The received signal strength indicator (RSSI) of the anchor nodes was collected
by the mobile node using a laptop supported by X-CTU software. The obtained RSSI values were used as
input for training, testing, and validation processes of the BP-ANN, while two-dimension (2D) locations
(x and y) were used as the output of the ANN. The results showed that the obtained mean localization errors
were 0.964 and 0.921m for validation and testing phases, respectively, after applying the ANN. Based on
a comparison with state-of-the-art technology, we deduced that the proposed ANN method outperformed
other techniques in previous studies in terms of mean localization error.

INDEX TERMS Alzheimer’s patient, indoor localization, mean localization error, neural network, RSSI,

WSN, ZigBee.

I. INTRODUCTION

Today, the number of people living with Alzheimer’s disease
worldwide is estimated at 44 million; the number of indi-
viduals with the disease is predicted to double by 2030 and
more than triple by 2050 [1]. Alzheimer’s disease reduces
brain function and memory, leading to forgetting recent
events [2]. The number of patients is increasing with the aging
of the population. In the Americas and Europe, the greatest
number of patients occurs among people aged 80 to 89;
in Africa, among those who are 70 to 79 years old and in
Asia, from age 75 to 84 [3]. Deterioration of cognitive func-
tions and the brain may be caused by Alzheimer’s disease.
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Accordingly, patients diagnosed with these diseases face
problems in daily living activities; for example, they lose their
sense of location, which may lead to death in some environ-
ments. Consequently, these patients need constant assistance
and special care [4]. In support of these patients, a wearable
wireless sensor network (WSN) can locate their position by
way of indoor localization by a system that can be used to
track or determine the location of devices or objects in indoor
environments. A WSN for localization, in particular, can use
different range-free and range-based localization systems.
Range-free localization methods rely on a communication
link between beacon nodes and mobile nodes in a network
to estimate node locations but do not provide information
about angle and distance. Moreover, this method offers lower
accuracy than a range-based method because it depends on
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the received signal strength indicator (RSSI) quality, which
fluctuates with time according to environmental factors such
as channel fading, reflection, scattering, refraction, multipath,
etc. Conversely, range-based systems are highly accurate
and more effective than range-free localization methods.
The range-based methods determine the angles and dis-
tances between nodes in WSN. The most common techniques
adopted in these localization methods include the following:
time difference of arrival (TDoA) [5], angle of arrival (AoA),
time of arrival (ToA) [6], acoustic energy [7], RSSI [8] and
global positioning system (GPS) [9]. The TDoA and ToA
methods require synchronization for all receiving nodes that
are detecting the location of the target signal. Though TDoA
offers minimal localization error, it consumes high amounts
of power and requires extra hardware [10].

The AoA method relies on the accuracy of the antenna
direction; needing to use an additional antenna array leads
to greater cost and more hardware. Meanwhile, although
GPS is the simplest method and is often used in outdoor
localization, reliable positioning based on GPS is not possible
in an indoor environment due to the barrier between the
GPS device and the satellite. Moreover, GPS consumes more
power than other methods [11]. Acoustic energy presents
some challenges (e.g. bandwidth that restricts the transmitted
data in the network and limited processing capability of the
nodes) that prevent it from performing complex and sophis-
ticated processes; furthermore, the audio in the network is
not synchronized because each node works separately [12].
The RSSI method is cost-effective and reduces power con-
sumption as it requires neither additional hardware, time syn-
chronization nor antenna array [13] and involves less system
complexity. That said, while RSSI can be used to determine a
patient’s location in the indoor environment, this technology
has poor localization errors due to the aforementioned rea-
sons. Therefore, adopting a specific error optimization algo-
rithm in conjunction with RSSI can minimize the localization
error.

The most intensely researched areas in indoor localization
have involved the application of indoor localization such as
the detection of people indoors, detection of patients in a
hospital setting, and tracking blind individuals inside a build-
ing [14]. Several technologies such as ZigBee, Bluetooth,
LoRa [15], and Wi-Fi [16] have proved useful in indoor
localization. Among them, ZigBee appears to be the best way
of implementing a localization system to monitor patients
compared with other technologies [17] due to low power
consumption [18], ease of use, cost-effectiveness, no require-
ment for external hardware and suitable communication
distance.

This article aimed to design and implement a small wear-
able device to determine the 2D location of an Alzheimer’s
patient while improving localization error based on a
backpropagation-based artificial neural network (BP-ANN).

The contributions of this article can be highlighted as
follows:
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1) A wearable prototype device was designed and imple-
mented for the localization of Alzheimer’s patients
based on the RSSI of the ZigBee wireless protocol.

2) The localization error for Alzheimer’s patients was
improved by using BP-ANN in an indoor environment.

3) The localization error for Alzheimer’s patients was
compared to that reported in related works to verify the
performance of the prototype.

Il. RELATED WORKS

Several traditional approaches and artificial intelligence-
based approaches to indoor localization systems have been
presented in the literature. One study [19] combined particle
swarm optimization (PSO) and ANN to minimize localization
error in indoor conditions based on Wi-Fi technology. The
PSO was able to reduce the time involved and provided closer
convergence. The authors compared the proposed method
to common approaches such as a backpropagation neural
network (BPNN) and k-nearest neighbor (KNN). The results
disclosed that combining PSO and ANN overcame the local-
ization error of BPNN and KNN by 8% and 24%, respec-
tively, achieving an error of 1.89m. In comparison, in [20]
the authors proposed a fall-detection system for older adults
in indoor environments based on ZigBee technology. The
targets of this study included providing an accurate location
of the happening and to detect falling in an elderly individual.
The researchers adopted the ANN algorithm to detect the
location of an older adult. The system consisted of ZigBee,
a microcontroller, an accelerometer sensor, and a battery.
The results demonstrated that this system minimized elderly
indoor localization error to 0.0454 m of mean absolute error.

The investigation in [21] described an approach for indoor
localization using Bluetooth beacons and a modern smart-
phone. The authors developed a localization algorithm based
on particle swarm optimization and fuzzy path loss mod-
els implemented in the MATLAB environment. The results
obtained showed that 95% of the position estimated errors
were less than 1m. In [22], the authors suggested a novel
indoor localization approach based on the fingerprints of
RSSI measurements. They used Wi-Fi and machine learning
techniques based on long short-term memory neural networks
to estimate location. In their results, mean absolute error
decreased when the number of hidden neurons increased.
In comparison, a convolutional neural network was imple-
mented in [23] to determine the target location using Wi-Fi
technology in indoor circumstances. The Wi-Fi information
was collected from the access point to train the neural network
in the first phase, while the target information was gathered
and applied to the neural network in the second phase, allow-
ing the target location to be determined. The proposed method
yielded a localization error of 1.365m.

In [24], a neural network-based multilayer perceptron
was proposed, employing an extended Kalman filter for
indoor positioning using the collected RSSI of Bluetooth Low
Energy (BLE) technology. This research achieved an error
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of 2.21 m. A genetic algorithm (GA) and ANN were used
in [25] to improve localization error in indoor environments.
The authors concluded that the GA algorithm performed
less well than ANN in terms of error accuracy. Moreover,
the ANN provided higher accuracy, less run-time, and more
stability than the GA, achieving a localization error of 1.05 m.
The researchers in [26] adopted a fuzzy logic (FL) algorithm
and the weighted centroid localization method to locate a
node with an unknown location. Fuzzy logic based on the
Sugeno inference system and fuzzy Mamdani were used to
measure the distance between the sensor and anchor nodes.
Then, the authors employed a centroid algorithm to estimate
the unknown position of the node. The results disclosed a
localization error in the range of 1.2-0.15 and 0.8-0.05 based
on the Mamdani-type and Sugeno-type FL, respectively.

In [27], a type-2 FL system was employed to determine the
location of visually impaired persons based on the RSSI of
the BLE wireless protocol in indoor circumstances. The mean
localization error obtained using type-2 FL was about 0.43 m,
with a navigation accuracy of 98.2%. The Random Forest
(RF)-based fingerprinting localization technique using Wi-Fi
channel information for indoor positioning was proposed
in [28] and compared with other localization techniques such
as KNN and weighted KNN (WKNN). The RF algorithm
outperformed the KNN and WKNN in terms of localization
accuracy, achieving 0.4033 m compared to KNN’s results of
1.7782 m and WKNN’s of 1.0517 m in a non-line-of-sight
circumstance.

In [29], the fingerprint localization method was proposed
to localize and track a patient with Alzheimer’s disease
in indoor surroundings. The experiment took place in an
area comprising three rooms having different environmental
characteristics. The patient was equipped with a Raspberry
Pi microcontroller while BLE was used as a beacon node
located in several positions in the hospital. The unknown node
(carried by the Alzheimer’s patient) was used to collect the
RSSI of the beacon nodes. The experimental results yielded
an average error of 1.6 m from all tracking locations.

This article seeks to overcome the limitations (i.e. localiza-
tion accuracy) in prior studies by introducing a localization
assistance system for Alzheimer’s patients in indoor loca-
tions with credible localization accuracy supported by a cost-
effective, low-complexity, easy-to-use system.

Ill. EXPERIMENTAL CONFIGURATION

The experiment involving proposed localization of an
Alzheimer’s patient in indoor surroundings was performed
in an area sized 28 x 28 m2 on the second floor of the
lab building of the Electrical Engineering Technical Col-
lege (EETC) as shown in Figure 1. The Alzheimer’s patient
localization system was based on ZigBee (XBee S2C) WSN.
The WSN consisted of five nodes: four anchor nodes (AN1,
AN2, AN3, and AN4) and one mobile node (MN) carried
by the Alzheimer’s patient. The anchor nodes were fixed
in each corner of the ceiling of the building and powered
by an electrical main source from the laboratory adjacent to
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FIGURE 1. Experimental layout for indoor localization of Alzheimer's
patient.

(b
FIGURE 2. The hardware for the Alzheimer’s patient indoor localization
system: (a) anchor node and (b) MN with the laptop.

the location of each node as shown in Figure 2a. The MN
(configured as a coordinator node) was designed to collect
the RSSI of the anchor nodes. In practice, the MN should be
mounted in or on the belt of the Alzheimer’s patient, but in
this study, it was fixed on a stand at a height of about 1.2 m
from the ground (approximating the height of an Alzheimer’s
patient’s waist) as shown in Figure 2b.

The MN was connected to a laptop via USB cable and pow-
ered from the laptop. However, an MN carried by a patient
in a real-life application should be powered by a battery.
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The laptop used X-CTU software to record the RSSI sam-
ples of the anchor nodes collected by the MN. In addition,
this software was used to configure the wireless connection
between the anchor nodes and the MN. In the experiment,
57 locations were pre-defined on the second floor for RSSI
measurements with 2 meters of distance between points.
Forty samples were collected from four anchor nodes in
each location (i.e. 10 samples per anchor node). A total of
2,280 samples (570 samples per anchor node) were collected
from the 57 locations. The RSSI samples were employed to
train, test, and validate the ANN to improve the localization
accuracy of the Alzheimer’s patient in an indoor environment.

In this article, the proposed indoor localization method
was tested in the line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions. Barriers or obstacles such as walls,
doors, or windows were situated in the path of the trans-
mitted signal from the anchor nodes to the MN. The results
presented in reference [20] show that the path loss of the
signals in NLOS is greater than those in LOS surroundings,
and the received power in NLOS is attenuated more than
in LOS. Therefore, the localization accuracy in NLOS is
reduced compared to LOS environments. Localization inside
the LABs was not highlighted in this study because we
conducted the experiments in an environment similar to the
NLOS condition (i.e. inside the LABs) where the barriers
(i.e. walls, doors, and windows) are available in the tested
area. When the Alzheimer’s patient moves in the paths from
(AN1 to AN2), (AN2 to AN3), (AN3 to AN4), and (AN4 to
AN1), the (AN3 and AN4), (AN1 and AN4), (AN1 and AN2),
and (AN2 and AN3) will be in the NLOS condition with the
patient, as shown in Figure 1. In addition, the localization in
NLOS conditions was extensively addressed in our published
article, which can be found in reference [20].

IV. ADOPTED ANN STRUCTURE

Neural networks are efficient computational methods that
are used for knowledge representation, machine learning,
and applying developed knowledge to forecast the out-
put response of composite systems [30]. Artificial neural
networks have recently been applied effectively, realizing
significant achievements [31]. A biological neural network
simulates the activity in the biological brain. The neurons are
organized by synapses that can be improved by the training
process and carry information. Various training processes
have been used to train an artificial neural network, among
them, the BP training method. BP involves calculation, back-
propagation of error, and a feed-forward input training pat-
tern [32]. BP-ANN consists of an input layer, output layer,
and one or more hidden layers. The layers are connected seri-
ally, initiating from the input layer through the hidden layer
and output layer. Each layer includes one or more neurons;
the connections between layers are called weights. Two stages
in the BP procedure were used: forward and backward [33].
In the design of the neural network, two important parameters
that affected the final prototypical performance in unforeseen
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ways were the learning rate and the number of neurons in the
hidden layer of the network [34].

In this work, the BP-ANN architecture consisted of four
inputs (called RSSI1, RSSI2, RSSI3, and RSSI4), two hid-
den layers each having 20 neurons and two output layers
x-location and y-location that considered the positional coor-
dinates for the Alzheimer’s patient as illustrated in Figure 3.
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FIGURE 3. RSSI collected by the MN.
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FIGURE 4. Training performance for different ANN architectures.

To perform a low localization error, the chosen number of
hidden layers and neurons was achieved by training 15 differ-
ent ANN architectures, as shown in Figure 4. Hence, the num-
ber of hidden layers and neurons was increased to obtain
the best ANN performance, since the Alzheimer’s patient
localization requires a lower error and higher correlation
coefficient (R) between estimated and actual locations. First,
one hidden layer was executed by changing the number of
neurons from 5 to 20 in increments of 5 (1-5, 1-10, 1-15, and
1-20), as shown in Figure 4. Based on the ANN performance
presented in Figure 4, we noticed that the mean square error
(MSE) value of ANN training was unsatisfactory. Therefore,
the number of hidden layers was increased to two and the
number of neurons was changed from 5 to 25 (2-5-5, 2-5-10,
2-5-15, 2-5-20, 2-10-10, 2-10-15, 2-10-20, 2-15-20, 2-15-15,
2-20-20, and 2-25-25). As a result, two hidden layers and
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20 neurons (2-20-20) and two hidden layers and 25 neurons
(2-25-25) constitute the minimum MSE relative to the other
ANN architectures. However, the 2-25-25 architecture pro-
duces a relatively similar performance to that of the 2-20-20,
as shown in Figure 4. Therefore, the 2-25-25 architecture was
excluded from the current work, and the 2-20-20 was con-
sidered to reduce the architecture complexity with a suitable
convergence time relative to the 2-25-25 architecture.

Input layer Hidden layerl

N

X >
55

Hidden layer2  Output layer

x-location

27

y-location

1%‘“ Lq‘ n
i
N ":“\\'

FIGURE 5. The architecture of adopted ANN.

Figure 5 shows the architecture of the ANN that was
adopted. The BP-ANN was selected to improve the local-
ization accuracy of the Alzheimer’s patient while moving
about in an indoor environment. From each anchor node,
570 samples were collected to train, test, and validate the
data. The samples were divided into 70%, 15%, and 15% for
training, testing, and validating data [20], [35], [36] corre-
sponding to 398, 86, and 86 RSSI samples.

The flow chart of the ANN is depicted in Figure 6. It was
important to identify the hidden layers, the neurons in each
hidden layer and the learning rate before the ANN started the
training, testing, and validation phases. Accordingly, the two
hidden layers and 20 neurons in each hidden layer were
selected as recommended in [13], while the learning rate was
chosen based on the ANN algorithm. One hundred loops
(0.01-1 with a step of 0.01) were fused with the ANN algo-
rithm to select the value for the learning rate that could give
a minimum MSE of ANN. Then, the ANN was run to find
the objective function (i.e. MSE). The ANN iteration was
configured to 1,000 to allow the ANN to obtain optimal MSE.
However, the ANN stopped running either when reaching the
best MSE or the goal was achieved (i.e. 1073).

V. RESULTS AND DISCUSSION

A. BP-ANN RESULTS

This section introduces the feed-forward BP-ANN results.
The BP-ANN was adopted in the current work because it pro-
duces a superior performance than other types of neural net-
works, such as the cascade forward-artificial neural network
(CF-ANN), Elman-artificial neural network (ELM-ANN),
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feed-forward distributed time delay- artificial neural network
(FFDTD-ANN), radial basis function (RBF-ANN), and other
learning methods such as random forest (RF) in terms of
MSE and convergence, as shown in Figure 7. Accordingly,
the MSE for the BP-ANN was 0.027, which is significantly
lower than other varieties of neural networks. In addition,
the fundamental reason for using the BP-ANN algorithm in
this study was to minimize inclusive output errors during the
learning process such that the error could be backpropagated
to modify the weights and to decrease the error between the
estimated and actual values [37].

The MN collected 570 RSSI values for each anchor node
as shown in Figure 8. All of the 2,280 RSSI data collected
by the MN were used to train, test, and validate the ANN
performance and to locate the Alzheimer’s patient in the
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indoor environment. In the beginning, 70% (398 samples) of
the collected RSSI data were used to train the ANN. Next,
15% (86 samples) were used to test the ANN performance.
Then, 15% (86 samples) were used for validation. The per-
formance of the BP-ANN was extracted in terms of MSE and
correlation coefficient as shown in Figures 9 and 10, respec-
tively, for the training, testing, and validation processes.
Figure 9 demonstrates the development of the objective
function of the BP-ANN in terms of MSE during training,
validating, and testing performance. The number of epochs
to evaluate the performance for BP-ANN was set to 1,000.
Figure 9 reveals that the training, testing, and validation per-
formance did not reach the target set (i.e. 0.001 m). However,
the best performances in terms of MSE were 0.027, 0.069,
and 0.081 m for training, testing, and validation, respectively,
at 1,000 epochs. Figure 9a confirms that the MSE of the
training performance was better than the testing and vali-
dation at 1,000 epochs. Figure 9b illustrates that the testing
performance was better than that for validation. However,
Figure 9c provides convincing results in terms of localization
accuracy, especially when used in indoor environments.
Figure 10 depicts the correlation coefficient of the train-
ing, testing, and validation of the ANN. The correlation
coefficient is a good indicator for assessing the degree of
agreement between actual measurements and an estimate.
Therefore, it can be considered in this article to evalu-
ate the agreement between the actual (Target) 2D locations
(i-e. x and y-axis’s) of the Alzheimer’s patient while moving
and the indoor estimated (output) locations obtained from
the ANN. Figures 10a, 10b and 10c demonstrate R values
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of 0.9999 (training), 0.9997 (testing) and 0.9996 (valida-
tion), respectively. As a result, the correlation coefficients
of ANN provide strong evidence that the proposed BP-ANN
can be used to obtain high localization accuracy and improve
localization error between actual and estimated locations.
Consequently, the proposed localization method can produce
accurate Alzheimer’s patient localization.

B. LOCALIZATION ERROR RESULTS

After the training phase, the BP-ANN was used for validation
and testing to localize 57 unknown pre-defined locations in
the area of interest, having dimensions of 28 x 28 m? as
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shown in Figure 11. The figure illustrates the actual locations
represented by blue squares, while the estimated locations
are denoted by red circles. A slight difference between esti-
mated and real Alzheimer’s patient locations was noted for
training as shown in Figure 11la. In this context, the mean
error was found to be around 0.055 m, whereas a small
difference was observed for testing and validation as shown
in Figures 11b and 11c, respectively. The mean errors were
found to be 0.964 and 0.921 m for validation and testing,
respectively.

Figure 12 presents a 3D graph that clarifies the relationship
between actual x-location (x-axis), y-location (y-axis), and
obtained error from ANN (z-axis). Figure 10a represents
the Alzheimer’s patient localization error for the training
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FIGURE 11. Estimated and actual locations of Alzheimer’s patient in an
indoor environment for (a) training, (b) testing and (c) validation.

phase, which varies between 0.000145 (min) and 0.96 (max).
Based on the gradual alteration of the color in Figure 11a,
we can deduce that most of the error lies beyond the dark
blue and blue colors where the error is less than 0.2 m.
Figures 11b and 11c introduce the localization error for the
testing and validation phases, respectively. The error changes
between 0.0241 (min) and 5.646 (max) for the testing phase,
while it varies between 0.0036 (min) and 5.075 (max) for
the validation phase. Based on the piecemeal change of the
colors in Figure 11b and 11c, we can observe that most of
the localization errors venture beyond the dark blue and blue
colors where the error is less than 1.5 m.

In examining the overall cumulative localization error of
an Alzheimer’s patient in an indoor environment produced
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FIGURE 12. 3D graph of error concerning x- and y-locations for
(a) training, (b) testing and (c) validation.

by ANN, the cumulative distribution function (CDF) shown
in Figure 12 can be considered. The figure depicts the cumu-
lative errors for 57 different locations for the training, testing,
and validation phases. The CDF plot discloses that 73%, 70%,
and 65% of the error for training, testing, and validation is
less than 0.055, 0.921, and 0.964 m, respectively. However,
the error is less than 0.1346, 2.106, and 2.498 m for train-
ing, testing, and validation, respectively, when the CDF plot
reaches 90%.

The x-y plot (Figure 10), 3D graph (Figure 11), and CDF
plot (Figure 12) provide clear evidence that using ANN can
improve localization error for Alzheimer’s patients who are
moving about in an indoor environment. Consequently, the
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proposed Alzheimer’s patient localization based on the BP-
ANN technique can produce accurate localization.

VI. COMPARISON RESULTS

In this section, the mean localization error produced from
applying the BP-ANN is compared with other scholars’ find-
ings to confirm the proposed method for Alzheimer’s patient
localization as presented in Table 1. The table also introduces
the adopted wireless technology for each research paper.
Traditional and artificial intelligence-based localization tech-
niques have been considered for this purpose. The traditional
methods include coupled RSSI and inertial navigation sys-
tem localization (CRIL), Bayesian graphical model (BGM),
hierarchical voting based mixed filter (HVMF), inertial mea-
surement unit (IMU), weighted k-nearest neighbor (WKNN),
and minimum mean square error (MMSE). In comparison,
the intelligent localization techniques or algorithms include
ANN, PSO, FL, neural-fuzzy inference system (ANFIS),
radial basis function network (RBFN), Random Forest (RF),
Feedforward ANN (FFANN), non-linear regression neural
network (NL-NN), support vector regression (SVR), extreme
learning machine (ELM), Wi-Fi deep learning (WiDeep),
generalized regression neural network (GRNN), intelligent
water drops-continuous optimization IWD-CO), deep neu-
ral network (DNN), multilayer perceptron neural network
(MLPNN), recurrent neural networks (RNN), and discrete
Hopfield-type neural network (DHNN).

The majority of previous articles resemble our work in
that they use the RSSI metric to estimate the location of a
target or MN in indoor surroundings and that they adopt soft
computing techniques or intelligent algorithms. In addition,
for comparative purposes, we used the mean localization error
obtained directly from the calculations in previous studies and
presented in their results. However, some parameters of our
study differ from previous studies, such as the ANN architec-
tures, which include hidden layers and neurons within each
hidden layer, the numbers of iterations, the RSSI samples, the
anchor nodes, and the size of the tested area. Most of these
parameters presented in previous works (shown in Table 1)
had higher values than our work. Nevertheless, our current
work has surpassed the aforementioned studies in terms of
our localization error. The training, testing, and validation of
the dataset in the current work uses an approach that is similar
to previous work but is not identical because it is difficult to
find a matching dataset in earlier studies.

The mean absolute error of the localization estimation was
employed to assess the average 2D localization error between
estimated and actual location, in contrast to those obtained
from previous papers. Based on the comparison introduced
in Table 1, it is obvious that the adopted BP-ANN method —
with a mean localization error of the predictable locations
of 0.921 m (testing phase) and 0.964 m (validation phase)
for indoor environments — outperforms other algorithms and
techniques introduced in recent works.

The superiority of our proposed method, i.e. BP-ANN,
over traditional methods stems from the fact that ANN
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TABLE 1. Comparison of mean localization error of the current method with localization techniques of previous works.

Ref./year Wireless Method Structure No. of Tested area No. of Anchor Mean
protocol iterati sample node/ localization error
HL Neurons
on s reference (m)
point
[37]/2014 ZigBee RBFN 2 5 6,000 100 m N/M 3 3.35
[38]/2014 WSN RF e 494mx14.1m | 400 27 2
[39]/2015 WSN FFANN 1 20 5,000 100 m x 100 m 2,000 3 1.5053
[40]/2015 WIFI NL-NN N/M | N/'M N/M 4mx4m N/M N/M 1-3
[14]/2016 WIFI SVR --- 2,000 12mx4m 105 21 1.8
[41]/2016 WIFI CRIL --- e 40mx6m 3 <1
[19]/2016 WIFI PSO-ANN 2 15 50,000 | 45mx25m 9,400 9 1.893
[42]/2016 WSN ANN, ELM 1 N/M N/M 100mx100m | N/M 100 5.25
[25]/2016 WIFI ANN 2 15,18 10’ 10 m x 28 m 96 6 1.05
[35]/2016 ZigBee ANFIS 1 7 mf 1,000 | 36 mx34m 780 3 1.4269
[43]/2017 WIFI BGM --- 10,000 | 5lmx22m 30 15 2.9
[44]/2017 BLE ANN 1 40 N/M 6.66 mx536m | 85,000 6 1.908
[45]/2017 WIFI RF - 300 trees | ----—- 43.5mx22.5m | 19,937 520 6.46
[46]/2018 N/M HVMF --- e 100mx100m | ------ 8 1.568
[47]/2018 WIFI IMU - e 288m> | - 5 1.15
[48]/2018 RFID PSO --- 20 200 Sm X 4m x 3m 6 4 1
particles
[24]/2018 BLE ANN N/M | N/M N/M 4mx4m 320 4 2.21
[49]/2019 WSN PSO - 50 100 100mx=100m | ---—--- 4-20 2.101
particles
[50]/2019 Bluetoot | PSO --- 500 100 50m x50 m 1000 3 091
h particles
[51]/2019 WIFI WiDeep 2 300,400 | 20,000 | 145mx45m | 2000 59 1.21
[52]/2019 RFID GRNN NM | NM N/M 12mx 10m 156 42 1.32
[53]/2019 WIFI WKNN --- K=4 | - 100 m’ 48 1 1.91
MMSE --- e 100 m? 53 1 2.17
[54]/2019 WIFI IWD-CO P=2 N=100 2,000 20mx20m | ----- 1.602
[551/2019 N/M FL without | --- 9 fuzzy - 100m*> | - 4-10 1.88
PSO rules
FL with --- 40 20 100m*> | - 4-10 0.95
PSO particles
[56]/2019 WSN FL e B 1,000 100mx 100m | ----- 10 0.9-1
[57]/2019 WIFI DNN 2 256,128 | 210 20m x 20 m N/M 210 1.95
[58]/2020 WSN GRNN 1 N/M N/M 100mx100m | 30 12 5.932
[591/2020 WIFI DNN 3 400, 300, | N/M 19,800 m x195 21,048 520 1.72
200 m
[601/2020 BLE MLPNN 1 8 N/M 100 m? 223 3 2.64
[61]/2020 WIFI RNN 1 400 250 54mx32m N/M 67 1
[62]/2020 WIFI MLPNN 8 22 N/M 36m x26.8 m 5,400 4 1.53
[63]/2020 WIFI DHNN 1 Variable | N/M 10.01m x 6.90m | 1,400 1 1.6
[641/2020 WIFI KNN e e 69 m x 45m 343,458 | 5 <2
[65]/2020 WIFI DNN NM | NM N/M 92m x 36 m 55,350 N/M 223
This work ZigBee | BP-ANN 1 20 1,000 28mx28m 2,280 4 O‘gg"zgv(“t'e‘ggg)“)
NM: not mentioned; HL: hidden layer; mf: membership function; P: precision; N: number of components

includes fast implementation, ease of use, learning capa-
bilities, flexible modeling, and lower predicted errors, and
it does not require knowledge of the propagation channel
surroundings or the channel features. As a key advantage,
ANN is not affected by the fluctuation of the RSSI measure-
ment caused by the multipath effect, environmental noise,
and node mobility. On the other hand, our proposed method
did have to cope with the other soft computing localization
techniques presented in Table 1, which we attributed to the
fact that we adopted two hidden layers with 20 neurons in
each hidden layer. In this case, when the number of hidden
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layers and neurons increases the localization error decreases
and the overall performance will be improved. In addition,
we adopted 4 anchor nodes, positioned on each corner of
the ceiling of the tested area, to reduce the fluctuation and
degradation of RSSI produced from the multipath effect and
noise during the RSSI collection.

VII. LIMITATION OF STUDY

In the current work, the Alzheimer’s patient localization
method largely relied on ANN to improve localization accu-
racy. Fifteen architecture combinations were trained to select
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FIGURE 13. CDF plot for training, testing, and validation.

the best ANN performance in terms of the MSE. However,
this strategy consumes a significant amount of time. There-
fore, in future work, an optimization technique such as
PSO, TWD-CO, Gravitational Search Algorithm (GSA),
Backtracking Search Algorithm (BSA), or Slime Mould
Algorithm (SMA), could be used to select the number of
hidden layers and neurons directly without testing several
ANN architectures. As a result, efficiency will be enhanced.
In addition, other intelligent techniques, algorithms, or a
combination of multiple soft computing techniques could
be used to minimize the localization error. Another disad-
vantage of this study is that participants’ movement during
experimentation was limited inside the tested area. However,
localization accuracy decreases when the number of people
inside the tested area increases since these additional people
act as obstacles between the Alzheimer’s patient and the
anchor nodes.

VIIl. CONCLUSION

In this article, ANN-based Alzheimer’s patient localization
for a WSN in an indoor environment was presented. The
backpropagation algorithm was used for training, testing,
and validation of ANN. Five-ZigBee wireless technology
was considered for the proposed localization technique using
four anchor nodes as beacons and one MN carried by an
Alzheimer’s patient. The anchor nodes were fixed on the
ceiling of the second floor of the EETC lab building to ensure
line-of-sight between the anchor nodes and MN. The MN
collected RSSI data for the anchor nodes to train, test, and
validate the ANN. The number of hidden layers, neurons in
each hidden layer, learning rate, and iteration of ANN were
selected to confirm an optimal localization error with low sys-
tem complexity and less run-time consumption. As a result,
the Alzheimer’s patient localization error was 0.055, 0.921,
and 0.964 m for the training, testing, and validation phases,
respectively. However, the localization error can be further
improved to some centimeters by increasing the number of
hidden layers or neurons at the expense of increasing the
ANN run-time. The results show that the proposed system
yields a satisfactory localization error and can be utilized
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for localization and tracking an Alzheimer’s patient moving
about in an indoor environment.

For the outdoor environment, some possible solutions can
be implemented in future work. The Geolocations of the
Alzheimer’s patient can be determined by GPS. The GPS
is effective in outdoor settings but cannot be used indoors
due to the absence of a line-of-sight between the GPS and
satellite. Real-time GPS Geolocations can be provided by a
smartphone over specific navigation software or by using a
GPS receiving module interface with a low-power microcon-
troller supported by specific code and functions compatible
with GPS readings. To send GPS messages containing each
Alzheimer’s patient’s location to the caregivers or family
members, GPS modules should be physically connected with
wireless technologies such as a GSM module. The outdoor
Alzheimer’s patient positioning system can also be incorpo-
rated with an accelerometer and tilt sensors to detect the daily
activity and, in case of a fall, the location of each Alzheimer’s
patient. However, the performance of the GPS is influenced
by various factors, including multipath delays, atmospheric
delays, and receiver thermal noise. Consequently, positioning
errors will result from time delays. These positioning errors
can be resolved by utilizing an advanced GPS such as the
NEO-MS8N module. The NEO-MS8N preserves helpful infor-
mation, such as an almanac, ephemeris, and approximate last
position and time, which improve acquisition sensitivity. The
NEO-MSN has high positioning accuracy, sensitivity, and a
short acquisition time while operating under a low-power
system with a maximum current of 70 mA.
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