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ABSTRACT Neural network-based approaches have become the driven forces for Natural Language
Processing (NLP) tasks. Conventionally, there are two mainstream neural architectures for NLP tasks:
the recurrent neural network (RNN) and the convolution neural network (ConvNet). RNNs are good at
modeling long-term dependencies over input texts, but preclude parallel computation. ConvNets do not
have memory capability and it has to model sequential data as un-ordered features. Therefore, ConvNets
fail to learn sequential dependencies over the input texts, but it is able to carry out high-efficient parallel
computation. As each neural architecture, such as RNN and ConvNets, has its own pro and con, integration
of different architectures is assumed to be able to enrich the semantic representation of texts, thus enhance
the performance of NLP tasks. However, few investigation explores the reconciliation of these seemingly
incompatible architectures. To address this issue, we propose a hybrid architecture based on a novel
hierarchical multi-granularity attentionmechanism, namedMulti-granularity Attention-basedHybrid Neural
Network (MahNN). The attention mechanism is to assign different weights to different parts of the input
sequence to increase the computation efficiency and performance of neural models. In MahNN, two types of
attentions are introduced: the syntactical attention and the semantical attention. The syntactical attention
computes the importance of the syntactic elements (such as words or sentence) at the lower symbolic
level and the semantical attention is used to compute the importance of the embedded space dimension
corresponding to the upper latent semantics. We adopt the text classification as an exemplifying way
to illustrate the ability of MahNN to understand texts. The experimental results on a variety of datasets
demonstrate that MahNN outperforms most of the state-of-the-arts for text classification.

INDEX TERMS Attention mechanism, multichannel, convolutional neural network, text classification.

I. INTRODUCTION
Nature language understanding plays an critical role in
machine intelligence and it includes many challenging NLP
tasks such as reading comprehension [1], machine transla-
tion [2], question answering [3] and etc.. Amongst a wide
spectrum of NLP tasks, text classification [4] is considered
as the foundation for its measuring the semantic similar-
ities between texts. Traditional machine learning methods
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employ hand-crafted features to model the statistical prop-
erties of syntactical elements (usually words), which are fur-
ther fed into the classification algorithms such as k-Nearest
Neighbor (k-NN), RandomForests, Support VectorMachines
(SVM), or its probabilistic versions [5]–[7]. However, such
hand-crafted features often suffered from the loss of seman-
tic information and scalability. To solve the drawbacks of
the hand-crafted features, automatic learning of represen-
tation using the neural networks was introduced into NLP
fields. Word embedding is a foretype of automatic repre-
sentation learning [8], [9], which outperforms the traditional
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methods for alleviating the sparsity problem and enhancing
the semantic representation.

In recent years, the NLP community has conducted exten-
sive investigations on the neural-based approaches [10], [11].
There exist a diversity of deep neural network architec-
tures with different modeling capabilities. The RNN is a
widely-used neural network architecture for NLP tasks owing
to its capability to model sequences with long-term depen-
dencies [12]. When modeling texts, a RNN sequentially pro-
cesses word by word and generates a hidden state at each
time step to represent all previous words. However, although
the purpose of RNNs is to capture the long-term dependen-
cies, theoretical and empirical studies have revealed that it
is difficult for RNNs to learn very long-term information.
To address this problem, the long short-termmemory network
(LSTM) [13] and other variants such as gated recurrent unit
(GRU) [14], simple recurrent unit (SRU) [15] were proposed
for better remembering and memory accesses. Another road-
block for RNNs is that when they are used to process a
long sequence, the latest information is more dominant than
the earlier one, however, which might be the real significant
part of the sequence. In fact, the most important information
can appear anywhere in a sequence rather than at the end.
Consequently, some researchers proposed to assign the same
weight to all hidden states and average the hidden states of all
time steps to equally spread the focus to all the sequence.

Inspired by the biological ability to focus on the
most important information and ignore the irrelevant ones,
the attention mechanism was introduced to assign different
weights to the elements at different positions in a sequence
and select the informative ones for the downstream tasks
[16]. Nowadays, the attention mechanism has become an
integral part of sequence modeling, especially with RNNs
[1]. The attention mechanism enables RNNs to maintain
a variable-length memory and compute the outputs based
on the importance weights of different parts in a sequence.
The attention mechanism has been empirically proven to be
effective in NLP tasks such as neural machine translation
[14]. However, the attention mechanism cannot capture the
relationships between words and the word ordering infor-
mation, which contains important semantic information for
downstream tasks. Taking the sentences ‘‘Tina likes Bob.’’
and ‘‘Bob likes Tina.’’ as examples, the weighted sum of
their hidden states encoded by RNN are almost the same.
Nevertheless, the two sentences have different meanings.

The ConvNet is another widely-adopted neural architec-
ture for NLP tasks. The modeling power of ConvNets relies
on four key factors: local connections, shared weight, pooling
and multi-layers. The fundamental assumption behind the
ConvNet approaches is that locally grouped data in natural
signals are often high correlated and the compositional hier-
archies in natural signals can be exploited by the stacked con-
volutional layers. As a result, ConvNets have been believed
to be good at extracting informative semantic representations
from the salient N-gram features of input word sequences by
utilizing convolutional filters in a parallel way. For the above

example, 2-gram features of ‘‘ Tina likes’’ and ‘‘likes Bob’’
that contain the word ordering information can be captured
by ConvNets. These features are more representative for
the original sentence than the weighted sum of the hidden
states. Therefore, ConvNets have been employed for a variety
of NLP tasks and achieved impressive results in sentence
modeling [17], semantic parsing [18], and text classification
[19]. Moreover, ConvNets can operate on different levels
of lexical structures such as characters, words, sentences,
or even the whole document. For instance, some research has
shown that the character-level text classification using Con-
vNets can achieve competitive results in comparison with the
state-of-the-arts [20], [21]. However, basic ConvNets apply a
fixed-width window to slide over the input sequences, which
limits the created representations to local semantic pattern,
failing to capture long-term dependencies.

To take full advantage of both the ConvNet and the RNN,
and complement the superiorities of different neural architec-
tures, researchers explored to introduce the hybrid structure
of the ConvNets and the RNNs. For instance, the recur-
rent convolutional neural network [22] proposed a recurrent
structure of convolutional filters to enhance the contextual
modeling ability to avoid the problem of fixed-width sliding
windows. This work also claimed to apply a max-pooling
layer to automatically determine the key components for
text classification. However, even though this approach man-
aged to reduce noise by replacing the fixed-width sliding
window of ConvNets with a recurrent mechanism, it still
depend on the max-pooling to determine the discriminative
features and lacks the mechanism to selectively choose the
dominant component as the attention mechanism can do.
Similarly, Wang et al. proposed the convolutional recurrent
neural network [23] that stacked four types of neural lay-
ers: word embedding, Bidirectional RNN layer, convolutional
layer, and max-pooling layer. This approach functions very
similarly to the one in [22], but with disparate applications
in sentence classification and answer selection. Also, this
work bypassed the attention mechanism when integrating the
ConvNet and the RNN structures.

As discussed above, any neural architecture has its own
pros and cons, it is reasonable to conjecture that consis-
tently combing different architectures can benefit extract-
ing of different aspects of linguistic information from texts.
However, to the best of our knowledge, there are still no
efforts in integrating entirely the ConvNet, RNN and attention
architectures. Inspired by proposition by Lecun et al. [24],
we hypothesize that the attention mechanism can function as
an adhesive that seamlessly integrate the ConvNet and the
RNN architecture, where the RNN layer is used to represent
the input word sequences and the ConvNet layer is used for
classification. Furthermore, we assume that, besides attend-
ing to elements (words as a typical example) at syntactical
or symbolic level, coarser-grained attentions at the hidden
state vectorial space can improve the local N-gram coherence
for ConvNets, as the attentions on hidden state vectors can
select the salient dimensions that represent most informative
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latent semantics, hence reducing the noise perturbation to the
ConvNet layer and enhancing the classification performance.

Based on the above motivations, we propose a hybrid
architecture based on a novel hierarchical multi-granularity
attention mechanism, named Multi-granularity Attention-
based Hybrid Neural Network (MahNN). In MahNN, two
types of attentions are introduced: the syntactical attention
and the semantical attention. The syntactical attention com-
putes the importance of the syntactic elements (such as words
or sentence) at the lower symbolic level and the semantical
attention is used to compute the importance of the embedded
space dimension corresponding to the upper latent semantics.
We adopt the text classification as an exemplifying way
to illustrate the ability of MahNN to understand texts. The
experimental results on a variety of datasets demonstrate that
MahNN outperforms most of the state-of-the-arts for text
classification.

The main contributions of our work are listed as follows:
1) We propose a hybrid neural architecture MahNN that,

for the first time, seamlessly integrate the RNN archi-
tecture and the ConvNet with an attention mechanism.
In this architecture, the different neural structure each
learns a different aspect of semantic information from
the linguistic structures and collectively strengthen the
power of semantical understanding of texts.

2) we introduce a novel hierarchical multi-granularity
attention mechanism, which includes the syntactical
attention and the semantical attention. The syntac-
tical attention and the semantical attention compute
the importance weights at the lower symbolic level
and the upper latent semantics level, respectively. This
coarser-grained attention mechanism helps to learn
semantic representations more precisely.

This article is organized as follows. Section II introduces
the related work about ConvNet and attention mechanisms.
Section III introduces the proposed MahNN in detail. And
Section IV introduces datasets, baselines, experiments, and
analysis. Finally, Section V concludes this article.

II. RELATED WORK
Most of the previous work has exploited deep learning to
deal with NLP tasks, including learning distributed represen-
tations of words, sentences or documents [11], [17], [23], [25]
and text classification [20], [22], [26], [27], etc.

A ConvNet architecture [19] was proposed with multiple
filters to capture local correlations followed by max-pooling
operation to extract dominant features. This architecture per-
forms well on text classification with a few parameters.
The case of using character-level ConvNet was explored
for text classification without word embedding [20] and in
this work language was regarded as a kind of signal. Based
on character-level representations, very deep convolutional
networks (VDConvNet) [28] were applied to text classifi-
cation which is up to 29 convolutional layers much larger
than 1 layer used by [19]. To capture word correlations of
different sizes, a dynamic k-max-pooling method, a global

pooling operation over linear sequences, was proposed to
keep features better [17]. Tree-structured sentences were also
explored convolutional models [29]. Multichannel variable-
size convolution neural network (MVConvNet) [30] com-
bined diverse versions of pre-trained word embedding and
used varied-size convolution filters to extract features.

A RNN is often employed to process temporal sequences.
In addition to RNN, there are several approaches for
sequences learning, such as echo state network and learning
in the model space [31]–[33]. In the learning in the model
space, it transforms the original temporal series to an echo
state network (ESN), and calculates the ‘distance’ between
ESNs [34], [35]. Therefore, the distance based learning algo-
rithms could be employed in the ESN space [36]. Chen et al.
[37] investigated the trade-off between the representation
and discrimination abilities. Gong et al. proposed the
multi-objective version for learning in the model space [38].

The other popular RNN architecture is able to deal with
input sequences of varied length and capture long-term
dependencies. Gated recurrent neural network (GRU) [39]
was proposed to model sequences. As a similar work, GRU
was applied to model documents [12]. Their works show that
GRU has the ability to encode relations between sentences in
a document. To improve the performance of GRU on large
scale text, hierarchical attention networks (HAN) [26] was
proposed. HAN has a hierarchical structure including word
encoder and sentence encoder with two levels of attention
mechanisms.

As an auxiliary way to select inputs, attention mechanism
is widely adopted in deep learning recently due to its
flexibility in modeling dependencies and parallelized calcu-
lation. The attention mechanism was introduced to improve
encoder-decoder based neural machine translation [16].
It allows amodel to automatically search for parts of elements
that are related to the target word. As an extension, global
attention and local attention [1] were proposed to deal with
machine translation and their alignment visualizations proved
the ability to learn dependencies. In HAN [26], hierarchical
attention was used to generate document-level representa-
tions from word-level representations and sentence-level rep-
resentations. This architecture simply sets a trainable context
vector as a high-level representation of a fixed query. This
way may be unsuitable because the same words may count
differently in varied contexts. In a recent work [40], the calcu-
lation of attention mechanism was generalized into Q-K-V1

form.

III. MULTI-GRANULARITY ATTENTION-BASED HYBRID
NEURAL NETWORK
The MahNN architecture is demonstrated in Fig.1. It con-
sists of three parts: bi-directional long short-term memory
(Bi-LSTM), attention layer and convolutional neural net-
work (ConvNet). The following sections describe how we
utilize Bi-LSTM to generate the syntactical attention and the
semantical attention, and form multichannel for ConvNet.

1Q-K-V denotes query, key and value respectively.
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FIGURE 1. The structure of the attention-based multichannel convolutional neural network. S and V
denote the syntactical attention and the semantical attention, respectively. Blocks of the same color are
merged into one channel.

A. LONG SHORT-TERM MEMORY NETWORK
InmanyNLP tasks, RNNprocesses word embedding for texts
of variable length and generates a hidden state ht in t time step
by recursively transforming the previous hidden state ht−1
and the current input vector xt .

ht = f (W · [ht−1, xt ]+ b), (1)

where W ∈ Rlh×(lh+li), b ∈ Rlh , lh and li are dimensions of
hidden state and input vector respectively, and f (·) represents
activation function such as tanh (·). However, standard RNN
is not a preferable choice for researchers due to the prob-
lem of gradient exploding or vanishing [41]. To address this
problem, the long short-term memory network (LSTM) was
introduced and obtained remarkable performance.

As a variant of RNNs, the LSTMarchitecture has a range of
tandemmodules whose parameters are shared. At t time step,
the hidden state ht is controlled by the previous hidden state
ht−1, input xt , forget gate ft , input gate it and output gate ot .
These gates identify the way of updating the current memory
cell ct and the current hidden state ht . The LSTM transition
function can be summarized by the following equations:

ft = σ (Wf · [ht−1, xt ]+ bf ),

it = σ (Wi · [ht−1, xt ]+ bi),

ot = σ (Wo · [ht−1, xt ]+ bo),
∼

Ct = tanh(WC · [ht−1, xt ]+ bC ),

Ct = ft � Ct−1 + it �
∼

Ct ,

ht = ot � tanh(Ct ). (2)

Here, σ is the logistic sigmoid function that has the domain
of all real numbers, with return value ranging from 0 to 1.
tanh denotes the hyperbolic tangent function with return
value ranging from−1 to 1. Intuitively, the forget gate ft con-
trols the extent to which the previous cell state Ct−1 remains
in the cell. The input gate it controls the extent to which a
new input flows into the cell. The output gate ot controls
the extent to which the cell state Ct is used to compute the
current hidden state ht . The existence of those gates enables
LSTM to capture long-term dependencies when dealing with
time-series data.

Though unidirectional LSTM includes an unbounded
sentence history in theory, it is still constrained since the
hidden state of each time step fails to model future words of
a sentence. Therefore, Bi-LSTM provides a way to include
both previous and future context by applying one LSTM
to process sentence forward and another LSTM to process
sentence backward.

Given a sentence of n words {wi}ni=1, we first transfer the
one-hot vectorwi into a dense vector xi through an embedding
matrix We with the equation xi = Wewi. We use Bi-LSTM
to get the annotations of words by processing sentence from
both directions. Bi-LSTM contains the backward

←−−−
LSTM that

reads the sentence from xn to xi and a forward
−−−→
LSTM which

reads from x1 to xi:

xi = Wewi, i ∈ [1, n] ,
→

hi =
−−−→
LSTM (xi), i ∈ [1, n] ,

←

hi =
←−−−
LSTM (xi), i ∈ [1, n] . (3)
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At i time step, we obtain the forward hidden state
→

hi which

stores previous information and the backward hidden state
←

hi
which stores future information. hi = [

→

hi,
←

hi] is a summary
of the sentence centered around wi.

B. HIERARCHICAL MULTI-GRANULARITY ATTENTIONS
For the NLP tasks such as text classification and sentiment
analysis, different words contribute unequally to the repre-
sentation of a sentence. The attention mechanism can be used
to reflect the importance weight of the input element so that
the relevant element contributes significantly to the merged
output. Although the attention mechanism is able to model
dependencies flexibly, it is still a crude process because of
the loss of latent semantic information. We apply attention
mechanisms to the hidden states of Bi-LSTM and splice them
into a matrix.

Taking the form of the matrix rather than a weighted
sum of vectors will keep the order information. Furthermore,
by applying the syntactical attention and the semantical atten-
tion, we could obtain several matrices and take them as
multichannel for inputs of ConvNet.

1) SYNTACTICAL ATTENTION MECHANISM
We introduce the syntactical attention to calculate the impor-
tance weights of all input elements. M is the association
matrix that represents the association among words in texts.
The element of the i-th row and the j-th column of M repre-
sents the degree of association between the i-th word and the
j-th word. We will set L channel mask matrices V if we need
L channels. In the l-th channel,Mli,j is calculated as follows:

Mli,j = tanh([hi,Wl · hj]+ bl), (4)

The i-th channel mask matrix is defined as follows:

Vli,j ∼ B(1, pl), i ∈ [1, n], j ∈ [1, n], (5)

That means each element of Vl obeys binomial distribution.
Given Mli,j and Vli,j , the i-th channel is computed as follows:

Al = Ml ⊗ Vl, (6)

slk =
∑

x
Alxk , (7)

pk =

{
−99999, if xk is from pad
0, otherwise

(8)

scorelk = pk + slk , (9)

alk =
exp(scorelk )∑n
i=1 exp(scoreli)

, (10)

cli = ali·hi, (11)

Cl = [cl1, cl2, cl3, · · · · ··, cln] . (12)

Here, cli denotes the new representation of hi in the l-th
channel and ⊗ denotes element-wise product operation. The
pad symbol still carries little information after it is encoded
by Bi-LSTM. So, if word xk is a pad symbol, its syntactical
attention slk will be subtracted from 99999 before softmax
operation and so that alk will be close to 0 after softmax.
By concatenating all Cli, we obtain the l-th channel Cl .

FIGURE 2. Syntactical attention mechanism.

The multichannel representations reflect the different contri-
butions of different words to the semantics of a text, which
is regarded as diversification of input information caused by
data perturbation.

The whole process of the syntactical attention is shown
in Fig. 2.

2) SEMANTICAL ATTENTION MECHANISM
Given that a syntactical element (a word or a sentence) is
encoded into an n-dimensional vector (v1, v2, v3, . . . . . . , vn)T ,
each dimension in the embedding vector space corresponds
to a specific latent semantic factor. Analyzing the different
impacts of these semantic factors and selecting the informa-
tive ones can improve the performance of the downstream
tasks.

Based on the above hypotheses, we propose the semantical
attention mechanism to compute the semantical importance
weight of each dimension in the input element:

−−−→scoreli = Wl1
Tσ (Wl2 · hi + bl) ,

→
ali =

exp
(
−−−→scoreli

)∑
i
exp

(
−−−→scoreli

) ,
cli =

→
ali�hi,

Cl = [cl1, cl2, cl3, · · · · ··, cln] . (13)

where cli denotes the final representation of hi in the l-th
channel. By concatenating all cli where i ∈ [1, n], we obtain
the l-th channel Cl .

By combining the syntactical attention and the semantical
attention, multichannel is generated as follows:

cli = ali·(
→
ali�hi),

Cl = [cl1, cl2, cl3, · · · · ··, cln] . (14)
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3) CONVOLUTIONAL NEURAL NETWORK
ConvNets utilize several sliding convolution filters to extract
local features. Assume we have one channel that is
represented as

C = [c1, c2, c3, . . . , cn] . (15)

Here, C ∈ Rn×k , n is the length of the input element, and
k is the embedded dimension of each input element. In a
convolution operation, a filterm ∈ Rlk is involved in applying
to consecutive l words to generate a new feature:

xi = f (m · ci:i+l−1 + b) , (16)

where ci:i+l−1 is the concatenation of ci, . . . , ci+l−1.
f is a non-liner activation function such as relu and
b ∈ R is a bias term. After the filter m slide across
{c1:l, c2:l+1, . . . , cn−l+1:n}, we obtain a feature map:

x = [x1, x2, . . . , xn−l+1] . (17)

We apply max-pooling operation over the feature map
x and take the maximum value x̂ = max{x} as the final
feature extracted by the filter m. This pooling scheme is to
capture the most dominating feature for each filter. ConvNet
obtains multiple features by utilizing multiple filters with
varied sizes. These features form a vector r = [x1, x2, . . . , xs]
(s is the number of filters) which will be passed to a fully
connected softmax layer to output the probability distribution
over labels

y = softmax (W · r + b) . (18)

Given a training sample (x i, yi) where yi ∈ {1, 2, · · · , c} is
the true label of x i and the estimated probability of our model
is ỹij ∈ [0, 1] for each label j ∈ {1, 2, · · · , c}, and the error is
defined as:

L(x i, yi) = −
c∑
j=1

if {yi = j} log(ỹij). (19)

Here, c denotes the number of possible labels of x i and
if {}̇ is an indicator function such that: if {yi = j} = 1 if
yi = j, if {yi = j} = 0 otherwise. We employ stochastic
gradient descent (SGD) to update the model parameters and
adopt Adam optimizer. Here, the ConvNet layer is intended
to enhance the local N-gram coherence instead of merely
averaging weighted sum, thus improving the discriminative
ability to text classification.

IV. EXPERIMENTAL STUDY
A. EXPERIMENTS DATASETS
We evaluate our model against other baseline models on a
variety of datasets. Summary statistics of the datasets are
shown in Table 1.
• MR: Short movie review dataset with one sentence
per review. Each review was labeled with their overall
sentiment polarity (positive or negative).

• Subj: Subjectivity dataset containing sentences labeled
with respect to their subjectivity status (subjective or
objective).

TABLE 1. Summary statistics of the datasets. c: Number of classes.
l : Average length of sentences. N : Size of datasets. V : Vocabulary size.
Vword : Number of words present in the set of pre-trained word vectors,
respectively. Test : Size of test sets. CV (cross validation): No standard
train/test split and thus 10-fold CV was used.

• SST-1: Stanford Sentiment Treebank—an extension
of MR but with train/dev/test splits provided and
fine-grained labels (very positive, positive, neutral,
negative, very negative).

• SST-2: Same as SST-1 but with neutral reviews removed
and binary labels

• MPQA: Opinion polarity detection subtask of the
MPQA dataset.

B. EXPERIMENTS SETTINGS
• Padding:Wefirst use len to denote the maximum length
of the sentence in the training set. As the convolution
layer requires input of fixed length, we pad each sen-
tence that has a length less than len with UNK symbol
which indicates the unknown word in front of the sen-
tence. Sentences in the test dataset that are shorter than
len are padded in the same way, but for sentences that
have a length longer that len, we just cut words at the end
of these sentences to ensure all sentences have a length
len.

• Initialization: We use publicly available word2vec
vectors to initialize the words in the dataset. word2vec
vectors are pre-trained on 100 billion words from
Google News through an unsupervised neural language
model. For words that are not present in the set of
pre-trained words or rarely appear in data sets, we ini-
tialize each dimension from U [−0.25, 0.25] to ensure
all word vectors have the same variance. Word vectors
are fine-tuning along with other parameters during the
training process.

• Hyper-parameters: The feature representation of
Bi-LSTM is controlled by the size of hidden states.
We investigate our model with various hidden sizes and
set the hidden size of unidirectional LSTM to be 100.
We also investigate the impact of the size of the channels
on ourmodel.When the size of the channels is set to be 1,
our model is a single channel network. When increasing
the size of the channels, our model obtains a more
semantic representation of the text. Convolutional filter
decides the n-gram feature which directly influences the
classification performance. We set the filter size based
on different datasets and simply set the filter map to
be 100. More details of hyper-parameters are shown on
Table 3.

• Other settings: We only use one Bi-LSTM layer and
one convolutional layer. Dropout is applied on the word
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TABLE 2. Accuracies of MahNN against other models. We use underline to highlight wins.

embedding layer, the ConvNet input layer, and the
penultimate layer. Weight vectors are constrained by L2
regularization and the model is trained to minimize the
cross-entropy loss of true labels and the predicted labels.

C. BASELINES
We compare our model with several baseline methods which
can be divided into the following categories:

1) TRADITIONAL MACHINE LEARNING
A statistical parsing frameworkwas studied for sentence-level
sentiment classification [42]. Simple Naive Bayes (NB) and
Support Vector Machine (SVM) variants outperformed most
published results on sentiment analysis datasets [43]. It was
shown in [44] how to do fast dropout training by sampling
from or integrating a Gaussian approximation. These mea-
sures were justified by the central limit theorem and empirical
evidence, and they resulted in an order of magnitude speedup
and more stability.

2) DEEP LEARNING
Word2vec [11] was extended with a new method called
Paragraph-Vec, which is an unsupervised algorithm that
learns fixed-length feature representations from variable-length
pieces of texts, such as sentences, paragraphs, and documents.
Various recursive networks were extended [45]–[47]. Generic
and target domain embeddings were incorporated to ConvNet
[17]. A series of experiments with ConvNets was trained
on top of pre-trained word vectors for sentence-level clas-
sification tasks [19]. Desirable properties such as semantic
coherence, attention mechanism and kernel reusability in
ConvNet were empirically studied for learning sentence-level
tasks [49]. Both word embeddings created from generic and
target domain corpora were utilized when it’s difficult to find

TABLE 3. Hyper-parameters setting. Hidden size: The dimension of
unidirectional LSTM. L2: L2 regularization term. Channel : The number of
channels. Filter size: The size of convolutional filters. Filter map:
The number of convolutional filter maps.

a domain corpus [48]. A hybrid L-MConvNet model was
proposed to represent the semantics of sentences [50].

D. RESULTS AND ANALYSIS
Table 2 shows results of our model on five datasets
against other methods. We refer to our model as
MahNN-{1, 3, 5, 7, rv}, which stands forMahNNwith differ-
ent channel settings. Aswe can see from the Table 2,MahNNs
exceed other models in 3 out of 5 tasks. ForMR/Subj/MPQA,
MahNN-3 outperforms other baselines and we can get
a rough observation that MahNN-3 performs better than
MahNN-{5,7}, and they all perform better than MahNN-1,
which is a single channel model. This phenomenon indicates
that multichannel representation is effective, but continuing
to increase the size of the channels does not improve our
model all the time. We conjecture that it would be better to
choose x according to the number of informative words in the
sentence. Take the following sentences for example:

1) An undeniably gorgeous, terminally document of a
troubadour, his acolytes, and the triumph of his band .

2) Uplifting as only a document of the worst possibilities
of mankind can be, and among the best films of the
year .
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FIGURE 3. Visualization of the syntactical attention weights learned by different channels.

FIGURE 4. Effect of hyper-parameters: (a) hidden size, (b) channel, (c) filter size, and (d) the filter map.

Fig. 3 shows the visualization of syntactical attention
distribution of the above sentences.

The second sentence could not be labeled positive or neg-
ative without a doubt if we focus on a single informative
word (‘‘uplifting’’, ‘‘worst’’ or ‘‘best’’) alone. Only if these
informative words were all emphasized can this sentence be
truly understood. ‘‘Uplifting’’ received more attention weight
than other words in the first channel. ‘‘worst’’ received more
attention weight in the second than the third channel and
‘‘best’’ received more attention weight in the third than
the second channel. If the second channel is set to be an
independent model, this sentence might be classified incor-
rectly. But MahNN-3 will still label this sentence as positive.

Multichannel essentially provides a way to represent a
sentence from different views and provides diversification.

We also investigate the impact of the semantical attention
on MahNN and find out that it considerably improves per-
formance. MahNN-rv denotes MahNN-3 without applying
the semantical attention mechanism. We owe the validity of
the MahNN semantical attention mechanism to its selectiv-
ity of latent semantics that can better represent the texts in
the specific given tasks. Actually, the semantical attention
mechanism discriminates the perturbation of hidden states
and makes the whole model more robust. Another advantage
of the semantical attention mechanism is that it assigns dif-
ferent learning speeds to each dimension of the hidden state
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indirectly so that informative dimension could be tuned at a
bigger pace than dimension of less information.

E. PARAMETER SENSITIVITY
We further evaluate how the parameters of MahNN impact
its performance on the text classification task. In this exper-
iment, we evaluate the effect of change of Hidden size,
Channel, Filter size, and Filter map onMahNN performance
with other parameters remaining the same.
• Impact of Hidden size: Fig.4a shows the impact
of Hidden size on classification accuracy. It can be
observed that the classification accuracy of the model
increases with the increasing of hidden size. When the
hidden size is set to be 128, the accuracy curve of the
model tends to be flat or even begins to decline. So,
the hidden size of Bi-LSTM affects the encoding of the
document. If the Hidden size is too small, it will lead to
underfitting. If the Hidden size is too large, it will lead
to overfitting.

• Impact of Channel: Fig.4b shows the impact of
Channel on classification accuracy. We observe that
the performance first rises and then tends to decline.
When channel size is set to be 3, the model (MahNN-3)
performs best onMPQA/SST-2/MR datasets. Themodel
(MahNN-4) performs best on Subj dataset when channel
size is set to be 4. This result shows that multichan-
nel representations of texts help our model improve its
performance. However, as the increasing number of the
channels means the enlarged size of parameters, which
might lead to overfitting.

• Impact of Filter size: Fig.4c shows the impact of Filter
size on classification accuracy. It can be observed that
the optimal filter size settings of each dataset are differ-
ent, and the accuracy curve of theMR dataset is opposite
to the accuracy curve of other datasets. When Filter size
is between [10, 14], the model achieves high accuracy
on MPQA/Subj/SST-2 datasets. But this performance
improvement is not significant compared to the accuracy
when Filter size is 2. In order to reduce the size of the
parameters, Filter size of the model is set between [4, 8]
in the experiment.

• Impact ofFilter map: Fig.4d shows the impact of Filter
map on classification accuracy. We can observe that the
performance rises rapidly first and then tends to be flat.
The number of Filter map determines the number of
feature maps generated after the convolution operation.
Each feature map represents a certain feature of the
text. The more the number of feature maps, the more
features that the convolution operation can extract, and
the accuracy of the model can be higher. But the number
of features of the text is finite, and the increase in the
number of Filter map will also increase the size of
trainable parameters, which may lead to overfitting.

V. CONCLUSION AND FUTURE WORK
In this article, we attempt to develop a hybrid architecture that
can extract different aspects of semantic information from the

linguistic data with diverse types of neural structures. Intrigu-
ingly, we propose a novel hierarchicalmulti-granularity atten-
tion mechanism, consisting of the syntactical attention at the
symbolic level and the semantical attention at the embed-
ding level, respectively. The experimental results show that
the MahNN model achieves impressive performances on a
variety of benchmark datasets for the text classification task.
Moreover, visualization of attention distribution illustrates
that the hierarchical multi-granularity attention mechanism
is effective in capturing informative semantics from different
perspectives. We can draw the following conclusions from
our work:

1) Hybrid neural architectures integrating a diversity of
neural structures can improve the power of the repre-
sentation learning from linguistic data. Richer seman-
tic representations help to increase the capacity of
deep understanding of texts and thus benefit to the
downstream tasks in the NLP filed.

2) Hierarchical multi-granularity attention mechanism
plays a significant role in constructing the hybrid neural
architecture. The fine-grained attention at the symbolic
level can diversify the semantic representations of input
texts and the coarser-grained attention at the latent
semantical space enhance the local N-gram coherence
for the following ConvNet layers, thus increasing the
performance of the text classification tasks.

There are several future directions to extend this work.
First, we would investigate on applying a generative model
to obtain multichannel representations of texts. Data aug-
mentation in this way can represent much richer seman-
tics. Second, ConvNets require the fixed-length inputs and
perform some unnecessary convolution operations for NLP
tasks. It is worthwhile to explore the novel ConvNet archi-
tecture processing with variable length. Moreover, we use
simple calculating methods for the attention weights and
this might not be able to demonstrate the full potential
for the hierarchical multi-granularity attention mechanism.
It would be intriguing to compute the attention weights with
more advanced approaches such as transfer learning and
reinforcement learning to further improve the performance.
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