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ABSTRACT With the development of smart cities, lots of mobile cooperative sensing based nodes have
emerged. However, due to the open nature of wireless transmission, attackers in the networks can use some
intelligent radio devices to deteriorate the secure transmission, which imposes a severe issue of information
leakage. In this paper, we consider the transmitter has some computational tasks to be computed, under
the environments of intelligent attacker. Due to the limited computational capability, the sender needs to
offload some tasks to the receiver. To address this problem, we propose a power allocation algorithm based
on combining the technology of reinforcement learning and game theory, in order to achieve an optimal
secure data rate and meanwhile reduce the whole task latency of the transmission and computation with
Q learning and Nash equilibrium. Then, the Nash equilibrium and its existence conditions are derived and
proven mathematically. Finally, we perform some simulations under Matlab platform, and the results show
that the proposed algorithm can effectively improve the secrecy data rate and reduce the whole system
latency.

INDEX TERMS Mobile cooperative sensing, secure communication, smart environments.

I. INTRODUCTION
In recent years, there has been a great progress in the devel-
opment of smart cities, and many wireless techniques have
been proposed to support the system development. Among
these techniques, the mobile cooperative sensing is one of the
most promising techniques, which can support the deploy-
ment and application of smart cities very efficiently [1]–[3].
In particular, compressive cooperative sensing and coopera-
tive and active sensing have been proposed to apply in the
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mobile sensor network to enhance the system perfor-
mance [4]–[7]. On the other hand, with the rapid develop-
ment of wireless technology, the traffic of mobile devices
increases sharply [8]. However, due to the limited com-
putational resources and performance, how to make rea-
sonable use of the limited computational resources on the
edge nodes becomes an important issue, which needs to be
solved urgently [9], [10]. In order to deal with the problems
mentioned above, such as insufficient processing capability
and limited resources, many researchers have introduced the
concept of computational offloading into mobile edge com-
puting (MEC) networks [11]–[13]. In the MEC networks,
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user terminal (UE) offloads some computational tasks to
edge nodes, in order to solve the shortcomings of equipment
in resource storage, computational performance and energy
efficiency [14]–[16].

The process of computational offloading generally refers
to the reasonable allocation of computationally-heavy tasks
to the edge nodes with sufficiently computational resources
for processing, and then the feedback of the calculated results
from the edge server [17], [18]. This process is often affected
by a number of practical factors, such as radio communication
channels, the performance of the mobile devices, and so
on [19]–[21]. Therefore, the key to realize computational
offloading lies in specifying an appropriate offloading deci-
sion [22]–[25]. The offloading strategy affects the latency
and energy consumption of both communication and com-
putation, and it is basically an important method to utilize
the computational resources of edge nodes, at the cost of
wireless transmission. Hence, the offloading strategy can
be viewed as a trade-off between the communication and
computation. Generally speaking, the decision about compu-
tational offloading can be classified into the following three
categories:

• Local computation: The entire computational task is
completed locally.

• Full offloading: The entire computational task is allo-
cated to the edge nodes for processing.

• Partial offloading: A part of the computational task is left
for the local processing, while the other part is offloaded
to the edge nodes for processing.

There are some existing works on the study of offloading
strategy for the MEC networks [26]. In [27], [28], the authors
proposed a deep Q-network which is based on the Q-learning
algorithm to optimize the system offloading strategy of MEC
networks, in order to reduce the network latency and energy
consumption. In addition, the authors in [29] employed the
ant colony optimization (ACO) algorithm to optimize the
offloading strategy and used the relay selection technique,
in order to reduce the system cost measured by a linear com-
bination of both latency and energy consumption. Moreover,
the authors in [30], [31] considered price mechanism in the
MEC networks, and studied the impact of price on the system
offloading strategy. In further, the authors in [32] proposed
a novel framework to optimize the offloading strategy as
well as the relay selection and wireless bandwidth allocation,
in order to enhance the network performance in terms of
latency and energy consumption. All these works clearly
indicate that the offloading strategy plays a significant role
in the system design for the MEC networks.

Another key challenge in the MEC networks is the attack
from the smart attackers in the networks. The smart attack-
ers can operate in spoofing, jamming or eavesdropping
mode, which severely affects the system secrecy perfor-
mance. Hence, it is of vital importance to suppress the smart
attackers in order to safeguard the secrecy performance of
MEC networks. In this viewpoint, the recent unmanned aerial

vehicle (UAV) technique can be used to assist the secure
transmission, based on the interference alignment [33], [34].
Moreover, the non-orthogonal multiple access (NOMA)
technique can be implemented to enhance the network
security, where the secrecy data rate can be significantly
increased [35]. In further, caching technique can be exploited
into the wireless networks, in order to enhance the network
security, through increasing the dimension of communication
resources at the cost of storage [36], [37].

In this paper, we consider an MEC network where the
transmitter has some computational tasks to be computed,
under the environments of intelligent attacker. Due to the
limited computational capability, the sender needs to offload
some tasks to the receiver. By combining the technology of
reinforcement learning and game theory, this paper proposes
a power allocation algorithm, in order to achieve an optimal
secure data rate and reduce the whole task latency of both
communication and computation with Q learning and Nash
equilibrium. Then, the Nash equilibrium and its existence
conditions are derived and proven mathematically. Finally,
we perform some simulations under Matlab platform, and
the results show that the proposed algorithm can effectively
improve the secrecy data rate and reduce the whole system
latency.

The organization of this paper is given as follows. After
the introduction, Section II describes the model of MEC
networks with under intelligent attack, and then details the
communication and computation process. Section III presents
the transmission game based on the system latency for the
transmitter and attacker, and Section IV provides an effective
power allocation algorithm for the transmitter in the net-
works. Simulation results are provided in Section V to offer
valuable insights into the system performance, and finally,
conclusions are drawn in Section VI.

Notations: Let CN (0, β) be a random variable (RV) with
zero mean and variance β, subject to circularly symmetric
complex Gaussian. In addition, we use fX (·) to denote the
probability density function (PDF) of the RV X , and the
operation Pr(·) returns probability.

II. SYSTEM MODEL
As shown in Fig. 1, Alice sends some secure messages to
Bob through the main link and there is an attacker Eve in the
network. Alice has a computational task, but due to the lack
of computational capability, she needs to offload a part of the
computational task to Bob. Alice has the flexibility to adjust
her transmit power PA. Eve has the option of keeping silent,
eavesdropping, jamming, and spoofing as its mode of attack.
• Eve chooses to keep silent: In this case, Alice sends a
normalized signal xa to Bob, and then Bob receives a
signal y0,

y0 = hABxa + nb, (1)

where hAB ∼ CN (0, σ 2
ab) is the channel parameter of

the main link and nb ∼ CN (0, σ 2
n ) is the additive white

Gaussian noise (AWGN) at Bob.

VOLUME 8, 2020 150751



Y. Sun et al.: Mobile Cooperative Sensing Based Secure Communication Strategy of Edge Computational Networks for Smart Cities

FIGURE 1. A secure communication of an edge computational network
under intelligent attack.

According to the Shannon’s theorem [38], the system
secrecy data rate R0 can be described as

R0 = WB

[
log2

(
1+

PA |hAB|2

σ 2
n

)]
, (2)

where WB is the wireless bandwidth and σ 2
n is the noise

power.
The local latency to compute the local task can bewritten
as [27], [28]

tlocal =
(1− ρ)Lη

fA
, (3)

where ρ is the proportion of task offloading, and L
represents the task size. We use η to denote the number
of CPU cycles required for one-bit task and the compu-
tational capability of the CPU at the Alice is represented
by fA. In particualr, ρ represents the proportion of the
task to be calculated by the Bob, while 1− ρ represents
the proportion of the task to be computed by the Alice
itself.
The transmission latency of offloading, t1, is given by

t1 =
ρL
R0
. (4)

The computational latency at the Bob, t2, can be written
as

t2 =
ρLη
fB
, (5)

where fB represents the computational capability of the
CPU at the Bob.
Therefore, the whole latency is tlocal + t1 + t2.

• Eve chooses to overhear the message: In this case,
the Alice sends Bob the secure message xa, and then Eve
receives a signal y1,

y1 = hAExa + ne, (6)

where hAE ∼ CN (0, σ 2
ae) is the channel parameter of the

Alice-Eve link and ne ∼ CN (0, σ 2
n ) is the additive white

Gaussian noise (AWGN) at Eve.

Similarly, the system secrecy data rate under eavesdrop-
ping attack can be written as

R1 = WB

[
log2

(
1+

PA |hAB|2

σ 2
n

)

− log2

(
1+

PA |hAE |2

σ 2
n

)]+
, (7)

where [x]+ returns x if x is positive, or zero otherwise.
From (7), the secure transmission latency t1 becomes

t1 =
ρL
R1
. (8)

• If Eve chooses to send a jamming signal xJ with jam-
ming power PJ to obstruct transmission of information:
In this case, Bob will receive a signal y2 as

y2 = hABxa + hBExJ + nb, (9)

where hBE ∼ CN (0, σ 2
be) is the channel parameter of the

Bob-Eve link.
Similarly, the system secrecy data rate under jamming
attack mode, R2, is denoted by

R2 = WB log2

(
1+

PA |hAB|2

σ 2
n + PJ |hBE |

2

)
. (10)

From (10), the secure transmission latency t1 is given by

t1 =
ρL
R2
. (11)

• Eve chooses to send a spoofing signal xS with a spoofing
power PS to deceive Bob: In this case, the Bob will
receive a signal y3, denoted by

y3 = hBExS + nb. (12)

Similarly, the system secrecy data rate under the spoof-
ing attack is denoted by

R3 = WB

[
log2

(
1+

PA |hAB|2

σ 2
n

)

− γ log2

(
1+

PA |hAE |2

σ 2
n

)]
, (13)

where γ represents an influence factor on the spoofing
signal. From (13), the secure transmission latency, t1,
becomes

t1 =
ρL
R3
. (14)

III. TRANSMISSION GAME BASED ON SYSTEM LATENCY
According to the game theory, the interaction between the
Alice and Eve can be viewed as a non-cooperative game.
The action set of Alice is [0,Pmax], i.e., Alice can choose
a proper power PA from the range [0,Pmax] as its transmit
power, where Pmax is the maximum transmit power that Alice
can choose. The action set of Eve is [0, 1, 2, 3], i.e., Eve
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can choose one attack mode q from these attack modes,
where q = 0, 1, 2 and 3 correspond to four modes of keep
silent, eavesdropping, jamming and spoofing, respectively.
The purpose of Alice is to reduce the whole latency of the
system as much as possible, while the purpose of Eve is to
increase the whole latency of the system as much as possible.
In order to achieve the goal of optimizing the system latency,
we set the benefit function of Alice uA as

uA = − (tlocal + t1 + t2)− CAPA, (15)

whereCA is the cost coefficient of transmit power. From (15),
we can find that the benefit of the Alice becomes worse when
the latency becomes larger or an increased transmit power
is used. Hence, the Alice tends to use a smaller transmit
power and achieve a smaller latency in the whole secure
transmission process.

On the contrary, the benefit function of Eve uE is denoted
by

uE = tlocal + t1 + t2 − C(q), (16)

in which C(q) represents the cost of Eve launching a specific
attack mode with C(1) = 0,C(2) = θE ,C(3) = θJ and
C(4) = θS .

From the definition of Nash equilibrium, the Nash equi-
librium (PA∗, q∗) of the game can be obtained from the
following two inequalities,

uA
(
P∗A, q

∗
)
≥ uA

(
PA, q∗

)
, (17)

uE
(
P∗A, q

∗
)
≥ uE

(
P∗A, q

)
. (18)

It can be seen from (17) and (18) that the strategies of Alice
and Eve in Nash equilibrium are better than other strategies
in the same environment, that is, both sides reach a balance.
In this condition, the system balance is achieved by both the
Alice and Eve.
Lemma 1: When inequalities (20a)-(23d) are satisfied,

there exists a Nash equilibrium (PA∗, 0) in the game, and PA∗

is given by (19),
ρL(
R∗0
)2 WB |hAB|2(

P∗A |hAB|
2
+ σ 2

n
)
ln 2
= CA, (19a)

0 ≤ PA∗ ≤ Pmax . (19b)

If 

θE ≥
ρL

(
R∗0 − R

∗

1

)
R∗0R
∗

1
, (20a)

θJ ≥
ρL

(
R∗0 − R

∗

2

)
R∗0R
∗

2
, (20b)

θS ≥
ρL

(
R∗0 − R

∗

3

)
R∗0R
∗

3
, (20c)

ρL(
Rm0
)2 WB |hAB|2(

Pmax |hAB|2 + σ 2
n
)
ln 2

< CA, (20d)

where the superscript * in R∗0,R
∗

1,R
∗

2 and R
∗

3 represent that PA
is PA∗ in R0,R1,R2 and R3, respectively. Similarly, the super-
script m in Rm0 represents that PA is Pmax in R0.

Proof 1: If (20a)-(20c) hold, from (16), we have

uE
(
P∗A, 0

)
− uE

(
P∗A, 1

)
=
ρL
R∗0
−

(
ρL
R∗1
− θE

)
≥ 0,

uE
(
P∗A, 0

)
− uE

(
P∗A, 2

)
=
ρL
R∗0
−

(
ρL
R∗2
− θJ

)
≥ 0,

uE
(
P∗A, 0

)
− uE

(
P∗A, 3

)
=
ρL
R∗0
−

(
ρL
R∗3
− θS

)
≥ 0.

Thus, (17) holds for (PA∗, 0). From (15), we have

∂uA (PA, 0)
∂PA

=
ρL

R20

WB |hAB|2(
PA |hAB|2 + σ 2

n
)
ln 2
− CA,

∂u2A (PA, 0)

∂P2A
= −

WBρL |hAB|2[
R20
(
σ 2
n + PA |hAB|

2)]2 ln 2
×

[
R20 |hAB|

2
+ 2 R0

WB |hAB|2

ln 2

]
≤ 0,

which indicates that ∂uA (PA, 0) /∂PA monotonically
decreases with respect to PA. Moreover, we can have

lim
PA→0+

[
ρL

R20

WB |hAB|2(
PA |hAB|2 + σ 2

n
)
ln 2

]
→+∞.

Therefore, when PA → 0+ holds, we can have
∂uA (PA, 0) /∂PA > 0.
If (25d) holds, we have

∂uA (PA, 0)
∂PA

|P=Pmax =
ρL(
Rm0
)2 WB |hAB|2(

Pmax |hAB|2 + σ 2
n
)
ln 2
− CA

< 0.

Therefore, we know that there is only one solution which
satisfies ∂uA (PA, 0) /∂PA = 0, and the solution is given by
(19). From the above derivation, we can see the monotonicity
of the function uA (PA, 0)with respect to PA. Thus, uA (PA, 0)
achieves the maximum value at P = PA∗, i.e., (17) also holds
for (PA∗, 0). In this way, we have completed the proof of
Lemma 1.

In the following Lemma 2, we provide an NE (Pmax , 0)
result.
Lemma 2: The game has an NE (Pmax , 0), if

θE ≥
ρL

(
Rm0 − R

m
1

)
Rm0 R

m
1

, (21a)

θJ ≥
ρL

(
Rm0 − R

m
2

)
Rm0 R

m
2

, (21b)

θS ≥
ρL

(
Rm0 − R

m
3

)
Rm0 R

m
3

, (21c)

CA ≤
ρL(
Rm0
)2 |hAB|2(

Pmax |hAB|2 + σ 2
n
)
ln 2

, (21d)

where the superscriptm in Rm0 ,R
m
1 ,R

m
2 and Rm3 represents that

PA is Pmax in R0,R1,R2 and R3, respectively.
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Algorithm 1: Q-Learning Based Power Allocation Algorithm
1: Initialize all parameters
2: for each time slot n do
3: Update the system state sn = [qn−1]
4: Choose a transmit power Pn using the ε-greedy policy
5: Choose the proportion ρ of tasks to compute in local
6: Observe the attack types qn and the utility of Alice uA
7: Update the Q function:

Q(sn,PAn) = (1 − α)Q(sn,PAn) + α(uA(sn,PAn) +
δV (snC1))

8: Find the optimal value function:
V (sn) = max

0≤PA≤Pmax
Q(sn,PA)

9: end for

Proof 2: Similar to the proof of Lemma 1, if (21d) holds,
we have

∂uA (PA, 0)
∂PA

∣∣∣∣
P=Pmax

=
ρL(
Rm0
)2 WB |hAB|2(

Pmax |hAB|2 + σ 2
n
)
ln 2
− CA

≥ 0.

As ∂uA (PA, 0) /∂PA decreases monotonically with respect to
PA, we can find that uA (PA, 0) is increasing monotonically,
and it can achieve the maximum value at PA = Pmax . i.e., (17)
holds for (Pmax , 0).
If (21a)-(21c) hold, from (16), we have

uE (Pmax, 0)− uE (Pmax, 1) =
ρL
Rm0
−

(
ρL
Rm1
− θE

)
≥ 0,

uE (Pmax, 0)− uE (Pmax, 2) =
ρL
Rm0
−

(
ρL
Rm2
− θJ

)
≥ 0,

uE (Pmax, 0)− uE (Pmax, 3) =
ρL
Rm0
−

(
ρL
Rm3
− θS

)
≥ 0.

Thus, (18) also holds for (Pmax , 0). In this way, we have
completed the proof of Lemma 2.

IV. POWER ALLOCATION ALGORITHM
In this paper, we describe the power allocation algorithm
for the Alice, which is of vital importance for the system
benefits of both Alice and Eve. Specifically, the parame-
ters are firstly initialized, and then Alice uses a ε-greedy
strategy to select the transmit power as her current action
strategy. After that, Eve selects an attack mode as its behav-
ioral strategy. The Q function Q(s,PA) is related to the
system state s as well as the power PA, and the system
state s on time slot t is the attack mode of Eve on time
slot t − 1. The value function V (s) records the optimal
value of the Q function Q(s,PA). We set the learning rate to
α ∈ [0, 1], and the discount factor to δ ∈ [0, 1]. Finally,
through repeated learning, a solution of the power alloca-
tion for the Alice can be achieved. The whole procedure
of the power allocation algorithm can be summarized in
Algorithm 1.

FIGURE 2. Average secrecy data rate of the MEC networks versus the time
slot: ρ = 0.1.

FIGURE 3. Average secrecy data rate of the MEC networks versus the time
slot: ρ = 0.5.

V. SIMULATION RESULTS
In this part, we perform some simulation experiments by
using Matlab to verify the effectiveness of the proposed
secure communication strategy. The main parameters are set
as follows. The average channel gain of themain channel, σ 2

ab,
is set to 1.2; the average channel gain of the eavesdropping
link, σ 2

ae, is set to 0.2; and the average channel gain of the
jamming and spoofing link, σ 2

be, is set to 0.6 [39], [40]. The
noise power is set to 1, and the wireless bandwidth WB is
set to 100MHz. The task size L is set to 100Mbit, and CPU
cycle required for one-bit, η, is set to 10. Moreover, we set
fA = 1GHz, and fB = 20GHz. The cost coefficient of the
transmit power at the Alice, CA, is set to 0.1, and the influ-
ence coefficient of the spoofing, γ , is set to 0.6. In further,
the eavesdropping attack cost θE is se to 2.6, the jamming
attack cost θJ is set to 2.8, and the spoofing attack cost θS is
set to 3.

Figs. 2-4 demonstrate the variation of the secrecy data rate
versus the time slot, where several values of the offload-
ing ratio ρ are used. Specifically, Fig. 2, Fig. 3 and Fig. 4
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FIGURE 4. Average secrecy data rate of the MEC networks versus the time
slot: ρ = 0.8.

FIGURE 5. The system latency of the MEC networks versus the time slot:
ρ = 0.1.

correspond to ρ = 0.1, ρ = 0.5 and ρ = 0.8, respectively.
We can observe from Figs. 2-4 that after some trials, a stable
secrecy data rate can be achieved for different values of
the offloading ratio. In particular, a stable secrecy data rate
of 1.72 bps/Hz can be achieved after 2300 times of trial when
ρ = 0.1; a stable secrecy data rate of 1.74 bps/Hz can be
achieved after 1500 times of trial when ρ = 0.5; and a
stable secrecy data rate of 1.75 bps/Hz can be achieved after
1200 times of trial when ρ = 0.8. These results clearly
indicate that a stable secrecy performance can be achieved
for the MEC networks after some trials for different values
of ρ, which verifies the effectiveness of the proposed power
allocation scheme.

Figs. 5-7 illustrate the variation of the systemwhole latency
of the considered MEC networks versus the time slot, where
several values of the offloading ratio ρ are used. In particular,
Fig. 5, Fig. 6 and Fig. 7 are associated with ρ = 0.1,
ρ = 0.5 and ρ = 0.8, respectively. We can find from
Figs. 5-7 that after some trials, a stable latency performance

FIGURE 6. The system latency of the MEC networks versus the time slot:
ρ = 0.5.

FIGURE 7. The system latency of the MEC networks versus the time slot:
ρ = 0.8.

can be achieved for different values of the offloading ratio.
In particular, a stable latency of 1.1s can be achieved after
1000 times of trial when ρ = 0.1; a stable latency of 1.5s can
be achieved after 800 times of trial when ρ = 0.5; and a stable
latency of 1.6s can be achieved after 500 times of trial when
ρ = 0.8. These results clearly indicate that a stable latency
performance can be achieved for the MEC networks after
some trials for different values of ρ, which further verifies
the effectiveness of the proposed power allocation scheme.

Figs. 8-10 demonstrate the variation of the attack rate ver-
sus the time slot, where several values of the offloading ratio ρ
are used. Specifically, Fig. 8, Fig. 9 and Fig. 10 correspond to
ρ = 0.1, ρ = 0.5 and ρ = 0.8, respectively. We can observe
from Figs. 8-10 that after some trials, a stable attack rate
can be achieved for different values of the offloading ratio.
In particular, a stable attack rate of 0.138 can be achieved
after 2500 times of trial when ρ = 0.1; a stable attack
rate of 0.136 can be achieved after 2000 times of trial when
ρ = 0.5; and a stable attack rate of 0.140 can be achieved
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FIGURE 8. The attack rate of the MEC networks versus the time slot:
ρ = 0.1.

FIGURE 9. The attack rate of the MEC networks versus the time slot:
ρ = 0.5.

FIGURE 10. The attack rate of the MEC networks versus the time slot:
ρ = 0.8.

after 2000 times of trial when ρ = 0.8. These results clearly
indicate that a stable attack rate can be achieved for the MEC

networks after some trials for different values of ρ, which
verifies the effectiveness of the proposed power allocation
scheme furthermore.

VI. CONCLUSION
In this paper, we studied an MEC network where the trans-
mitter had some computational tasks to be computed, under
the environments of intelligent attacker. Due to the limited
computational capability, the sender needed to offload some
tasks to the receiver. By combining the technology of rein-
forcement learning and game theory, this paper proposed
a power allocation algorithm in order to achieve the opti-
mal secure data rate and meanwhile reduce the whole task
latency of both the communication and computation with the
Q-learning andNash equilibrium. Then, the Nash equilibrium
and its existence conditions were derived and proven mathe-
matically. Finally, some simulations under Matlab platform
were demonstrated to show that the proposed algorithm can
effectively improve the secrecy data rate and reduce thewhole
system latency. In future works, we will incorporate some
other wireless transmission techniques, such as UAV [41],
massive MIMO [42], and deep learning technique [43], [44]
into the considered MEC networks, in order to further reduce
the system latency and energy consumption.
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