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ABSTRACT The transient electromagnetic method can obtain resistivity and chargeability simultaneously
in polarizable medium detection. Typically, we assume that the earth may contain a chargeable medium
if the electromagnetic (EM) data appear negative values or sign reversals. Unfortunately, with barely
perceptible characteristics, some EM responses with the induced polarization (IP) effects are considered
to be non-polarizable responses. Insufficient understanding of features and inaccurate identification of
the IP responses limits the use of the IP effects for broader purposes. For these reasons, we perform 1D
forward modeling to discuss the degree of EM response affected by the IP effects and to extract polarization
characteristics. To identify the IP effects, we combine partial mutual information (PMI) and the fuzzy
support vector machine (FSVM) methods to complete the intelligent identification algorithm. We verify
the efficiency and practicality of the algorithm by building Debye loops in field experiments. From the
analysis, we distinguish the strong and weak IP effects by introducing the impact ratio. The strong IP
responses manifest fast decays and sign reversals, and the weak IP responses primarily show fast decays
or outward concavity. The identification algorithm validation results show that the recognition accuracy
reaches 90.7%. In the field experiment verification, the Debye loop successfully simulates the IP effects of
different intensity, and the identification results indicate that the algorithm has potential in the measured data.
With this intelligent identification algorithm, the measurements can provide access to the weak polarizable
medium when the impact ratio exceeds 30%.

INDEX TERMS Polarizable medium detection, characteristic analysis, intelligent identification.

I. INTRODUCTION
The induced polarization (IP) effect is a crucial electro-
chemical phenomenon that exists primarily in the dispersive
medium with high economic value, such as disseminated
sulfide minerals, some aqueous media, and hydrocarbon
resources. The fast development of the multiparameter inter-
pretation method or inversion extends the application of the
IP data to a broader area, such as the detection of metal mines,
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water resources, geothermal resources, and oil resources,
which has made it a heavily researched issue [1]–[3].

The transient electromagnetic (TEM) method is a critical
time-domain sounding method with notable performance in
the search for the polarizable targets. The TEM has many
advantages: the secondary electromagnetic (EM) field mea-
sured is not affected by the ground electrodes, and it contains
both resistivity and chargeability information. However, the
TEM system operates at much higher frequencies than the
conventional IP method, making it insensitive to some eco-
nomic sulfide deposits, which have time constants of many
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seconds or more [4]. Initially, in the TEM detection, the IP
effects raised attention because the EM data revealed sign
reversals or negative values in later time [5]–[7]. Therefore,
the crucial step is to analyze the impact of the IP effects
on the EM data under different parameters and to extract
characteristic parameters of IP responses. The influences of
polarization parameters on the time of sign reversals and
the maximum absolute value of the negative response were
studied intensively in [8]–[9]. An overall analysis reported
the influences of the polarization parameters, size, and buried
depth of the target on the negative responses. They also
demonstrated that only moderately sized, highly-polarizable
media in a shallow layer could generally be detected [10].

Furthermore, in the field experiment, the traditional way to
identify the IP effects is to investigate the negative responses
or sign reversals. Unfortunately, IP decay curves are easily
affected by polarization parameters and earth topography,
or even system parameters [11], [12], and usually dis-
play more complex polarization characteristics. For example,
a survey for the IP effects in airborne TEM data (AEMIP)
found that the measured EM data do not have sign rever-
sals [13]. If we continue to identify these IP data by the
appearance of sign reversal, that will lead to subjective con-
jecture and inaccuracy in the identification of polarizable
media. After exploring the features of the IP effects on EM
data, one survey found that the EM data might show only
one indicator, i.e., steep decay, which can enable the AEMIP
inversion [14].

Machine learning (ML) is a collection of a variety of
algorithms (e.g., neural networks, support vector machines,
self-organizing mapping, decision trees, random forests,
case-based reasoning, and genetic programming) [15].
Among these algorithms, neural network and support vec-
tor machine (SVM) methods have been successfully applied
to the classification of underground rock structures [16],
geophysical parameter estimation [17], [18], and even in
earthquake detection and localization [19]. EM responses can
be divided into two types: with or without the IP effects,
which belongs to the typical classifier category. In 1995,
the SVM method was first proposed in [20], and the SVM
method has many unique advantages in solving nonlin-
ear high-dimensional pattern recognition and delivers out-
standing performance in real-world classification problems
and estimation problems. Traditional SVM has developed
to more precise models, such as the least-squares support
vector machine [21] and the fuzzy support vector machine
(FSVM) [22]. We apply the FSVM method for classification
problems with outliers or noises because it is robust.

Moreover, if we consider a high number of variables simul-
taneously, the cost in time and precision of the FSVM is
substantial; therefore, we usually select the main variables
from numerous variables. Partial least squares, principal com-
ponent analysis, and Schmidt transform can extract critical
features from all variables to reduce dimension and elimi-
nate correlations [23]–[25]. However, these methods perform
poorly in solving nonlinear problems. The partial mutual

information (PMI) method is a method derived from the
mutual information (MI) concept, which uses MI values to
quantify the correlations between variables. Compared with
the MI method, the PMI method can not only eliminate the
coupling between multiple input variables but also reduce the
data dimension and improve the learning algorithm’s perfor-
mance, especially for the nonlinear problem. The method has
been applied to nonlinear variable selection in artificial neural
networks and achieved excellent performance in the learning
and generalization process [26].

Therefore, we currently apply an intelligent method to
identify electromagnetic data with IP effects. We perform
1D forward modeling to simulate the EM response based on
the homogeneous half-space, three-layered, and ten-layered
models with different electrical properties. We divide EM
curves into roughly three types and further summarize and
supplement the polarization characteristics. By analyzing
different impact ratios, we define the strong polarization
response and weak polarization response. With the initial
input, we select the optimal characteristic parameters and
eliminate the redundant variables using the PMI method.
Finally, we establish and train the FSVM model for IP
response recognition and verify the algorithm’s accuracy
and feasibility through numerical test and field simulation
experiments.

II. 1D FORWARD MODELING FOR THE IP EFFECTS
To analyze the polarization characteristics, we perform a
1D forward modeling method to numerically simulate the
EM responses induced by the central circular loop. The
transmitter transmits a step waveform current. When the
transmitter and receiver are located on the ground surface,
the frequency-domain equation of the vertical component of
the EM response at the center is

Hz = Ia
∫
∞

0

λZ (1)

Z (1) + Z0
J1(λa)dλ (1)

where Hz is the vertical magnetic field intensity, I is the
amplitude of the transmitter current, a is the radius of
the transmitter coil, λ is the integral variable, J1(λ) is the
first-order Bessel function, Z0 is the wave impedance of the
surface medium, and Z (1) is the total wave impedance. First,
we calculate the solution in the frequency-domain, and then
we obtain time-domain responses through the frequency-time
transform method. Conventional frequency-time transform
methods include sine, cosine transform, and the Guptasarma
filtering method.

To describe the dispersion characteristics of the earth,
we introduce the Cole-Cole model [4]. The conductivity
expression in the frequency-domain is

σ (ω) = σ∞(1−
η

1+ (1− η)(iωτ )c
) (2)

where σ∞ is the conductivity at the infinite frequency and τ
is the time constant. Moreover, η and c are the chargeability
and frequency dependence, respectively, both of which range
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from zero to one. When c = 1, the Cole-Cole model reduces
to the Debye model. Fig. 1 shows the equivalent circuit for a
polarizable medium induced by the inductive source, where
emf represents the induced electromotive force generated by
the primary field during the switch-off time. In the field
experiment of Shaoguo, in northeastern China, we also built
a circuit loop based on the same loop to test the algorithm.

FIGURE 1. Equivalent current loop for a polarization medium induced by
an inductive source, where R1 and R0 represent the resistors, and L
represents the inductor, whereas C represents the capacitor.

A. IMPACT DEGREE OF THE IP EFFECTS ON EM DATA
We first concentrate on the homogeneous half-space to study
the polarization characteristics considering the simplicity.
The transmitter is a square loop of 40 m× 40 m, equivalent to
a circular loop with a radius of 70 m through the area equiva-
lent principle. The transmitter current is a 50 A step wave-
form. Simulations are run for high-resistivity (0.001 S/m),
middle-resistivity (0.01 S/m), and low-resistivity (0.1 S/m)
media and the time constant is 0.01 s; the frequency depen-
dence is 0.1 and 0.4; and the chargeability ranges from 0.2 to
0.8. The time derivative of the vertical magnetic field, dBz/dt ,
is computed from 1µs to 10 ms, shown in Fig. 2. The results
demonstrate that when η is larger, EM data shows sign rever-
sals; when η is smaller, EM data only shows changes within
slopes in the late time. The appearance of sign reversal also
depends on c and σ∞. We are not going to talk about how
the Cole-Cole parameters affect EM decay curves. We try
to summarize the characteristics of EM curves with the IP
effects. Our analysis reached a similar conclusion comparing
with the AEMIP survey that the EM data might show the only
indicator of the IP effects, i.e., steep decay [14]. Additionally,
we also find that some curves show an outward concavity
(inset figure of Fig.2 (a)). Thus, we divided the curves into
three types by the changing of slopes: curves with (A) steep
decay and sign reversal; (B) steep decay but no sign reversal;
(C) an outward concavity. Unfortunately, the latter two types
of IP responses are usually regarded as non-IP responses,
which leads to inaccurate interpretation.

The IP effects of the rock are affected by many factors,
such as mineralogy (especially the concentration of metal
particles and clay minerals), porosity and tortuosity, pore
saturation, and pore water salinity. The chargeability char-
acterizes the intensity of the IP effects within the rock.
However, the chargeability can only quantify the physical

FIGURE 2. Time derivatives of the vertical magnetic field with the IP
effects: σ∞ is 0.001S/m, 0.01S/m, and 0.1S/m respectively; τ is 0.01 s; c is
0.1 and 0.4; and η is 0.2, 0.4, 0.6, and 0.8, respectively. The inset
figures show details of some curves.

characteristics of the local medium specifically and cannot
reflect the impact degree of the IP effects on the EM field
comprehensively. Thus, we define a parameter to demon-
strate an overall impact degree of the IP effects on the EM
data, including the influences of earth topology, polarization
parameters, and measurement system. The total field can
be regarded as the sum of the fundamental EM field and
the polarization field [27]. Therefore, to qualify the impact
degree of the IP effects on EM data, we define the impact
ratio below.

Q =
VFund − VTotal

VFund
× 100% (3)

whereQ is the impact ratio, VFund represents the fundamental
EM responses, and VTotal represents the total EM responses
that include the IP effects.

In this study, we present the impact ratio of the previous
three types in Fig. 3, 4, and 5. From Fig. 3(a), we know that
VFund is approximately a straight line on the log-log axis with
a negative slope. The slopes of VTotal are negative in the early
time, and its absolute value is increasing with time. At 0.6 ms,
sign reversal appears, and at 0.9 ms, the absolute value of
negative response reaches the maximum. Then, the slopes
change to positive values. Q increases with time, and during
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FIGURE 3. Comparison of EM responses with and without IP effects for
Type A: (a) EM responses, where red and black curves represent VTotal
and VFund, respectively; (b) impact ratio.

FIGURE 4. Comparison of EM responses with and without IP effects for
Type B: (a) EM responses, where red and black curves represent VTotal
and VFund, respectively; (b) impact ratio.

the sign reversal, it is close to 100%. After 1 ms, the impact
ratio soars to 150%. For type B (Fig. 4), with the increment
of time, the absolute value of the slope also increases, and Q
increases from 35% to 75%. For type C (Fig. 5), the absolute
value of the slope of VTotal first increases and then decreases,
which reveals an outward concavity. Q rises from 25% to
70%, approximately. The impact ratio of type A exceeds
100%, even twice the other two types, so we call it a strong IP
response. The decay curves of type B and C are less affected
by the IP effects and show polarization characteristics indis-
tinctly; therefore, we call them weak IP responses. Actually,
from the analysis of the decay curves, we know that the slopes
and sign reversals are the crucial IP characteristics. Thus,
apart from the characteristic parameters about sign reversals
such as time of sign reversal, the maximum absolute value

FIGURE 5. Comparison of EM responses with and without IP effects for
Type C: (a) EM responses, where red and black curves represent VTotal
and VFund, respectively; (b) impact ratio.

of negative responses [7], [10], and the duration of negative
values, we also need to pay attention to the slopes of curves.

B. SLOPE FITTING BASED ON PIECEWISE NONLINEAR
LEAST-SQUARES METHOD
Decay curves (−dBz/dt or Bz) in a nonpolarizable homoge-
neous half-space approximate a straight line under the log-log
coordinate axis. These curves agree with the form of y = bxk ,
where k represents the slope under the log-log axis [28].
We apply a piecewise nonlinear least-squares method to
fit the slopes because it is a nonlinear problem. From the
theoretical analysis, we know that the slope of strong IP
responses is negative before the maximum absolute value of
negative responses; therefore, we extract only the negative
slopes. If the curves have multiple sign reversals, we care
mainly about the first one because it has the largest amplitude.
We first locate the sign reversal, then record the time of the
sign reversal and the maximum absolute value of negative
responses, and then set the end time Tend at the same point.
If the curves do not have any sign reversal, we set Tend at the
end of the curves. Thewhole fitting time is Tf = Tend−Tinitial,
where Tinitial is the initial time. Tinitial takes 100 µs for three
reasons: first, most sign reversals appear after 100µs; second,
due to the limitation of the sampling frequency of the receiver,
few points are recorded before 100 µs; third, the fitting error
of early time is undesirable because t > tL = 100a2/2π107ρ
does not meet, where a is the radius of the transmitting coil,
and ρ is the resistivity [29]. Then, we divide the Tf into
several segments and perform a piecewise fitting algorithm
to fit the changing slopes.

The length of time window 1t directly affects the fitting
accuracy, especially in the curves with sign reversal because
they change rapidly. Figure 6 shows the fitting solutions
when1t takes different values. An exceptionally longer time
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FIGURE 6. Fitting solutions when 1t takes 1500 µs, 1000 µs, 750 µs, and
250 µs. Parameters of the Cole-Cole model: σ∞ = 0.001 S/m, τ = 0.01 s,
c = 0.4, and η = 0.1.

window such as 1500 µs, 1000 µs, and 750 µs can make
the slopes obtained inaccurate and may lead to failure in
extracting IP features. In the fitting process of the sharply
changing curve, the shorter the time window is, the better
the fitting precision is. However, an exceptionally short 1t
may create a large amount of data. To guarantee the fitting
accuracy and efficiency, 1t = Tf / n, where n is the number
of parameters we desire, and 1t is proportional to Tf . For
example, if Tf is 2.5 ms, when we set n as ten, the time
window is 250 µs.

III. PARAMETER SCREENING AND
CLASSIFICATION METHOD
A. SCREENING OF CHARACTERISTIC PARAMETERS
BASED ON THE PMI METHOD
Shannon first proposed the information entropy to describe
the quantity of information carried by variables [30]. Fur-
thermore, Mutual Information (MI) represents the informa-
tion shared by variables and measures the interdependence
between two or more variables. It has an excellent perfor-
mance in parameter selection for both linear and nonlinear
variables.

Usually, for the given samples of X (x1, x2, . . . , xn) and Y
(y1, y2, . . . , yn), where xn and yn are the nth observed data, and
the probability density distributions are unknown. I (X, Y)
can be calculated by the probability density estimation.

I (X,Y) =
1
n

n∑
i=1

log2
f (xi, yi)
f (xi)f (yi)

(4)

where f (·) represents the estimated probability density
function. The nonparametric estimation method provides
an approach for unknown distribution. Following [26],
we applied the kernel density estimation method to obtain an
estimation of probability density. The kernel function is the
Gauss kernel function.

For a multi-input system, given random input variables X1
and X2, the output is Y . The variable that corresponds to
the maximum value of MI will be selected. Assuming that
X2 is chosen, if there is a correlation between X1 and X2,
the solution of MI of the next round will result in bias. Refer-
ring to [26], we also use a Partial Mutual Information (PMI)
Method to exclude the correlation between variables by cal-
culating conditional expectation mX1(X2) and mY(X2), which
can effectively improve the accuracy of variable selection.

m̂Y (X2) = E (y|X2) =

n∑
j=1

yjf
(
x2j
)

n∑
j=1

f
(
x2j
) (5)

where m̂Y (X2) denotes the regression estimator and n is
the number of observed data. An estimator m̂X1 (X2) can be
similarly constructed. Therefore, the residuals u and v can
subsequently be obtained using the expressions below and
they work as the inputs in the next loop.

u = X − m̂X1 (X2) (6)

v = Y − m̂Y (X2) (7)

The Akaike Information Criterion (AIC) is a standard for
evaluating the performance of fitting statistical models [31].
The following equation seeks the best balance between the
complexity and the fitting ability of the model.

TAIC = n log

1
n

n∑
j=1

u2j

+ 2(p+ 1)2 (8)

where n is the number of observed data, uj is the residual
error, and p is the number of variables. When TAIC reaches
the minimum value, the set of optimal independent variables
is screened out.

B. CLASSIFICATION MODEL BASED
ON THE FSVM METHOD
The EM responses can be divided into two types: with or
without the IP effects, which belongs to the typical classifier
category. The FSVMmethod can effectively improve the pre-
diction precision in binary classification problems with noise
and outliers [32], [33]. For the FSVM model, the training set
is

T = {(x1, y1, s1), (x2, y2, s2), . . . , (xl, yl, sl)} (9)

where xi ∈ Rn, yi ∈ [−1 1], and ξi ≤ si ≤ 1, where ξ is
a sufficiently small positive number, si represents the fuzzy
membership degree, and l is the number of observed data.

In the binary classification problem, if the IP effects exist,
yi takes the value 1, otherwise −1. To begin with, we map
data from sampling space to a higher dimensional space by
the kernel functions ϕ (·). Thus, the nonlinear problem is
converted into a linear divisible problem.
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The Lagrange function for the optimization problem is:

L(w, b, α, ξ ) =
1
2
wTw+ C

l∑
k=1

skξk

−

l∑
k=1

αk [yk (wTϕ(xk )+ b)− 1+ ξk ]

−

l∑
k=1

βkξk (10)

where w is the weight vector, b is the offset variable, C is
the penalty factor, and ξk is slack variables, and α = (α1,
α2, . . . , αl)T ∈ Rl+ is the Lagrange multiplier. Applying the
Karush-Kuhn-Tucker (KKT) condition equations, we solve
the dual problem. The flow-process diagram of the classifi-
cation of the IP effects based on the PMI-FSVM method is
shown in Fig. 7.

IV. SIMULATION AND EXPERIMENTAL RESULTS
A. VARIABLES SCREENING
One-dimensional forwardmodeling is performed in 880mod-
els that contain 440 homogeneous half-space and 440 three-
layered models. Here, the second layer of the three-layered
model is polarizable, and its parameters vary like the half-
space model. The first and third layers are nonpolarizable
media, with the conductivities fixed to 0.01 S/m. The trans-
mitter is a square loop of 40 m × 40 m, and the current is a
50 A step waveform. We select 200 values of conductivity,
i.e., 0.001: 0.001: 0.2 (S/m) for the nonpolarizable half-space
models and the middle layer. The number of chargeable half-
space and chargeable layered models is 240, respectively.
We choose three values for conductivity, i.e., 0.002, 0.02 and
0.2 S/m, four values for chargeability, i.e., 0.2, 0.4, 0.6,
and 0.8, five values for time constant, i.e., 0.1, 1, 10, 100,
and 1000 ms, and four values for the frequency component,
i.e., 0.2, 0.5, 0.7, and 1. The depths of the first and second
layers are 100 m, while the depth of the last layer is infinite.
In total, 480 samples are affected by the IP effects, and
400 samples are free from the IP effects. The responses for
-dBz/dt are calculated.
Through the analysis of polarization characteristics,

we extract the maximum absolute value of negative responses
as x1, time of sign reversal as x2, duration of negative
responses as x3, and the ten slopes along with the time as x4,
x5, . . . , x13, respectively. The values for each parameter are
normalized to the [0 1] range. To screen the main character-
istic variables, we use the dataset of 880 samples as the input
data. After three rounds, we finally get the solution until TAIC
no longer decreases. A part of the results is shown in Table 1.
From the first circle results, we can see that PMI between
x13 and y achieves the maximum, and TAIC is−829.29. Thus,
the slope in the latest time is an essential factor in identifying
the IP effects. The parameter x13 is added to set S. In the
second round, the PMI between x2 (time of sign reversal) and
y achieves a maximum with TAIC decreasing to −2404.32.

FIGURE 7. Flow-process diagram of the PMI-FSVM classification of the IP
responses and non-IP responses.

Thus, x2 is added to set S. Then, in round three, x10 cannot
be added to S though PMI between x10 and y is the highest
because TAIC no longer decreases. Hence, the time of sign
reversal (x2) and the last fitting slope (x13) are screened out
by the PMI algorithm.

B. RECOGNITION RESULTS OF THE TEST SET
Next, we test the accuracy of the algorithm by adding another
400 samples of the ten-layered model. The depths of the
previous nine layers are 50 m, while the depth of the last layer
is infinite. We randomly select the Cole-Cole parameters of
each layer by a program within the range of common values,

VOLUME 8, 2020 150483



Y. Wu et al.: Feature Extraction and Intelligent Identification of Induced Polarization Effects in 1D Time-Domain Electromagnetic Data

TABLE 1. Resolution of PMI variable selection.

TABLE 2. Accuracy of the recognition algorithm.

where σ∞ ranges from 0.0001 S/m to 0.1 S/m; η ranges
from 0 to 0.8, τ takes 0.1 s, and c takes 1 or 0.5. Thus, we
randomly divided the 1280 samples into a training set and a
test set. The radial basis function (RBF) maps the nonlinear-
inseparable data to a high dimensional space. In choosing
σ in RBF, a large value will lead to terrible fitting results;
however, a minimal value will result in overfitting. In the
training process, we select σ =0.01 to achieve a relatively
good performance. The optimal set of variables S obtained
by the PMI method is the input set, and whether the IP effect
occurs or not is the output. To describe the performance of
the algorithm, we apply the accuracy index PA:

PA =
zi
zm
× 100% (11)

where zi is the number of samples that have been recognized
correctly, and zm is the total number of samples. Fig. 8 shows
the results of the recognition of EM response with or without
the IP effects. The black curve in the inset figure shows
the classification hyperplane that demonstrates the boundary
between non-IP responses (−1) and IP responses (+1). Inside
the hyperplane are the non-IP responses, whereas outside
the range are IP responses. The slope of non-IP responses
ranges from −2.7 to −2. From Table 2, we can determine
that the accuracy of the algorithm is 90.7%, which can make a
good performance in classification. The algorithm performed
notably in the non-IP medium samples recognition with the
accuracy reaching 94.7%, whereas a small imperfection in the
identification of IP responses with an accuracy rate of 86.5%.

Therefore, we further investigate the reasons for errors in
the IP response category. We extract the impact ratio of the
synthetic model to analyze the relationship between iden-
tification accuracy and the impact degree. Among 319 IP
samples, the strong IP effects (impact ratio> 100%) account

FIGURE 8. Results for the recognition of EM responses with or without
the IP effects.

FIGURE 9. Relationship between the identification precision and impact
ratio of the IP effects.

for 38%, and they are recognized correctly; the weak IP
effects account for 62%. From Fig. 9, we can see these mis-
recognized samples (approximately 13%)mainly concentrate
on the weak IP effects, especially in cases when the impact
ratio is below 30%. The results manifest that the algorithm
can successfully identify the EM response affected by the IP
effects greater than 30%.

C. RECOGNITION RESULTS OF TEM MEASURED DATA
Shaoguo town is located in northeastern China, where the
human and external electromagnetic noises are at a low level,
and we can record high SNR data. Thus, we lay a central
transmitter-receiver system and conduct TEM experiments
here. The transmitter is a square loop of 50 m × 50 m with
an amplitude of 10 A. The transmitter waveform is a bipolar
trapezoidal waveform, in which the transmitter frequency is
12.5 Hz, the duty cycle is 50%, and the switch-off time is
150 µs with the linearity of 94%. The peak-to-peak values of
the maximum input voltage and the receiver’s noise floor are
±5 V and±50 µV, respectively. The current SNR is 100 dB,
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and it is proportional to the square root of the number of
stacking. Thus, we apply 128 times stacking to guarantee the
SNR can reach 120 dB. The location and TEMdevice settings
are shown in Fig. 10.

FIGURE 10. TEM field measurement in Shaoguo town: (a) location in
Google map; (b) TEM devices setting, where red square loop (Tx) is the
transmitter loop, the blue circle at the center shows the Debye loop, and
the white dot at the center shows squid sensor that can record B field.

When carrying out field experiments, we sometimes face
a lack of accurate geologic information, and we also need to
consider efficiency limitations. Therefore, we first do prelim-
inary method verification, which can narrow the gap between
theoretical experiments and field experiments. In this exper-
iment, we propose a method to simulate the EM responses
with strong or weak IP effects by building the Debye loop in
hardware.Wewind a ten-turn coil with a radius of 0.25m, and
the self-inductance is about 0.1 mH. We also use adjustable
resistors (R0 and R1) and a capacitor (C) to build the Debye
model. Then, we connect it in series at two ends of the
multiturn coil. To reduce the distributed resistance of the
coil, the material of the wire is silver, and the resistance
is 0.25 � approximately. In this way, its internal resistance
can be neglected compared with R0 and R1. In addition,
the distributed capacitance between the current loop and
the ground, turn and turn is roughly the pF level and even
smaller, and they are almost negligible. The device allows
us to set different parameters according to different media.
Thus, we build loops of strong IP effects and weak IP effects.
Parameter settings for the strong IP effects: R0 = 20 �,
R1 = 100 �, C = 100 µF, τ = (R0 + R1) C = 0.006 s,
and η = R0 / (R0+R1) = 0.167; and for the weak IP effects:
R0 = 40 �, R1 = 400 �, C = 50 µF, τ = 0.022 s, and
η = 0.091.
Based on the superposition principle [27], we regard the

responses of the ground and the Debye loop as the back-
ground response and the IP response. The total fieldmeasured
is the superposition of the two responses [34]. We must
note that in real detection of the target, the total response is
inseparable, and the total response is no longer the responses
of a homogeneous half-space or a layered structure specifi-
cally. We first measure the background response B0 without
the Debye loop using the HT dc SQUID sensor, then we
measure the total response BT with the Debye loop cou-
pled in the center. The HT dc SQUID sensor’s noise level
is 100fT/

√
Hz@10KHz, the slew rate is 30 mT/s, and the

bandwidth is 100 kHz. The magnetic field response gener-
ated by the Debye loop can be decoupled by subtracting the
background field from the total field, that is, BD = BT −B0.
Fig. 11 and 12 show the responses measured for the Debye
loop 1 and Debye loop 2, where black, blue, and red curves
represent the background responses, IP responses, and the
total responses, respectively.

Figures 11 and 12 show the strong IP responses and weak
IP responses when the impact ratios are approximately 200%
and 75%, respectively. The total response in Fig. 11 decays
rapidly in late time and changes to negative values. The back-
ground response gradually decays to the noise level. After
subtracting the background field from the total response,
the pure IP response reveals polarization characteristics of
fast decay and sign reversal. In Fig.12, the total response
decays to the noise level, but no sign reversal appears. How-
ever, after subtracting the background field from the total
response, the pure IP response reveals an ideal polarization
curve with a sign reversal. We extract the polarization charac-
teristics parameters from the six curves as the input and show

FIGURE 11. TEM measurement responses with (red curve) and without
(black curve) of the test Debye loop 1. The difference is pure IP response
(blue curve).

FIGURE 12. TEM measurement responses with (red curve) and without
(black curve) of the test Debye loop 2. The difference is pure IP response
(blue curve).
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TABLE 3. Classification results for the responses of two Debye loops.

identification results in Table 3. The FSVM algorithm classi-
fies these curves correctly. The total responses are identified
correctly because their impact ratios are larger than 30%. The
background responses, which are free from the IP effects, are
classified as non-IP responses. The results verify the feasi-
bility of the FSVM recognition algorithm. The experimental
results are highly consistent with the simulation results. The
method has the following advantages: 1) it can simulate the
IP effects with different polarization intensities; 2) it can be
coupled to the total field through the superposition principle;
3) it provides a verification approach and narrows the gap
between theoretical experiments and field experiments.

V. DISCUSSION
A. INFLUENCE OF CONDUCTIVITY DISTRIBUTION
OF THE 1D SYNTHETIC MODEL
We found that the algorithm can successfully identify more
than 80% of weak IP effects and 100% of strong IP effects.
However, we also found that some errors are not from the
polarizable samples but the nonpolarizable samples. We have
to explore the factors that lead to identification errors. In the
synthetic models, the parameters of each layer are selected
randomly. We extract each layer’s conductivity of the nonpo-
larizable ten-layered models that are wrongly and correctly
identified, respectively, and show them in Fig. 13. The con-
ductivities of the near-surface layers (when the depth<200m)
and deep layers (> 400 m) in (a) and (b) are very close.
The only reason for the errors is the conductivity distribution
between the depth 200m and 400m. Taking (b) as a reference,
the mean of conductivities in (a) is smaller than that in (b),
and the cyan dots skew toward the high resistivity at the
same depth. Fig. 13(a) can roughly be divided into 3-layers,
i.e., low-resistivity layer, middle-high-resistivity layer, and
high-resistivity layer. The comparison demonstrates that the
conductivity distribution is a critical error factor. If a resistive
nonpolarizable medium appears in the medium depth (200 m
- 400 m), the EM data also show a fast decay in the late time,
which may be erroneously recognized as IP responses.

B. INFLUENCE OF SNR
The SNR of the instrument has a significant influence on
the precision of the signal we measured. In extreme cases,
the actual measured SNR is less than 40 dB. In an excellent
experimental environment, the SNR can reach more than
120 dB. We add Gaussian noise signals with different SNR

FIGURE 13. Conductivities of nonpolarizable ten-layered models that
come from: (a) samples are improperly identified, (b) samples are
correctly identified. The purple dotted line shows the mean value of the
conductivity of each layer. Cyan and pink dots represent those values
under and above the mean value, respectively.

FIGURE 14. Identification accuracy with different SNR values.

according to this range to simulate the measurement signals.
Then, we extract the characteristic parameters to test the
accuracy of the identification algorithm. Figure 14 shows the
identification accuracy with different SNR values. The result
demonstrates that SNR affects the recognition accuracy of
the IP responses. When the SNR is greater than 80 dB, the
recognition accuracies of the three sample sets are about 90%,
while when the SNR decreases to 60 dB, the identification
accuracy of non-IP samples reduces to 51.35%. At the same
time, the accuracy of IP samples also nearly reduced by
10%, and total accuracy is 67.35%. Therefore, SNR achieving
80 dB is one of the necessary conditions to identify the IP
effects.

C. INFLUENCES OF OTHER FACTORS
When applying the TEM method in the detection of the
polarizable medium, researchers found that the transmitter
frequency, anti-aliasing filter, and logarithmic sampling can
also affect the sign reversals and tried to determine a way to
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eliminate these interferences [35], [36]. Therefore, we need
to consider these factors before carrying out experiments.

In our experiment, the Debye loop lies in the center of the
transmitter and receiver coils. To measure a 2D or 3D target
body, we need to consider the spatial relationship between the
target body and the transmitter and receiver coils. Researchers
found that when the target body deviates from the receiver
coil, the measured data may reveal fast decays or sign rever-
sals that may be identified as the IP responses. In that case,
we can exclude them using local geological information or the
same loop mode [36]. Our current attempts to identify the IP
effects have achieved good results on the macroscale layered
structure, and the influence of local 2D or 3D objects on the
recognition accuracy is also one of the problems that we need
to solve.

VI. CONCLUSIONS
We provide an IP response identification algorithm based on
the PMI-FSVM method. This method can effectively iden-
tify the weak polarization effects and establish a foundation
for the high-precision interpretation of EM data. The total
identification accuracy is 90.7%, whereas the identification
accuracy of the IP responses is 86.5%. It is easy to identify
the IP response as the non-IP response when the impact
ratio is less than 30%. Conductivity distribution, SNR of the
system, transmitter frequency, anti-aliasing filter, logarithmic
sampling, and spatial location of the target also affect the
accuracy. This method can also be applied to the identifica-
tion of EM responses in other dispersive media. In addition,
the simulation of IP responses in field experiments provides
ideas for verifying the strategy proposed in the IP research
and significantly narrows the gap between theoretical analy-
sis and practical application.

However, we must clarify that the method is restricted to
the 1D model in application because the work focused on the
structure that can be regarded as layered models macroscop-
ically. It is essential to include 2D or 3D structures to expand
the application area because the IP responses may exhibit
some different features.
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