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ABSTRACT Unmanned aerial vehicles (UAVs) can provide remote data collection services with quality
of service guarantees. The typical application fields include geographic information systems, such as
topological survey and natural disasters and hazardsmonitoring. In the bad geographic environment, wireless
communication performance of UAVs cannot be guaranteed. Therefore, the efficiency of remote data
collection cannot be guaranteed. This paper proposes a collaborative framework of UAVs and fog computing
for remote data collection. Our goal is to maximize the revenue of UAVs with the support of fog computing,
so we need to find the optimal computation resources allocation and task assignment scheme. This is a mixed
integer nonlinear programming problem. The block coordinate descent method is used to solve this problem,
which allows the original problem to be divided into the optimal task assignment sub-problem and the
optimal computation resource allocation sub-problem. The greedy algorithm, heuristic algorithm and brute
force algorithm are proposed to solve the optimal task assignment sub-problem. The convex optimization
analysis method is used to solve the optimal resource allocation sub-problem. The genetic algorithm is used
as a benchmark to compare with the heuristic-based block coordinate descent algorithm. The numerical
simulation and network simulator based-simulation results show that the proposed UAV-Fog collaborative
data collection problem can be efficiently solved by the block coordinate descent algorithm based on the
heuristic strategy.

INDEX TERMS Unmanned aerial vehicles, geographic information system, fog computing, remote data
collection.

I. INTRODUCTION
A. BACKGROUND AND PROBLEM STATEMENT
Unmanned aerial vehicles (UAVs) with sensor devices can
perform remote data collection tasks in complex geographical
environment due to their high mobility, therefore they can be
used as a new technology for remote sensing and surveying
tasks [1], [2] or as a supplement and alternative to the tradi-
tional wireless sensor networks [3]–[5]. For example, in [2],
UAVs were introduced and applied to collect geographic data
in Sweden. In [6], UAVs were used to inspect power lines in
China. In [7], forest data were collected by UAVs in the USA.
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The research results of these practical works show that UAVs
can achieve better remote data collection performance, and
UAV-enabled remote data collection is a trend in remote
sensing technology. Some efforts have been devoted to opti-
mizing the operating parameters of data collection UAVs,
including optimizing energy consumption [3], flight time [4]
and trajectory [3], [4]. In these papers, UAVs collect data and
send them directly to a ground base station (GBS) through
wireless networks; therefore, the quality of the data collection
service depends on the quality of the wireless communica-
tion. However, broadband wireless networks are not available
in all places. When the data collection work is carried out
in a remote region, the network conditions are poor and
the broadband wireless network is not covered. Therefore,
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the delivery after data collection needs to be carried out
through the Delay Tolerant Network (DTN) [1], which will
make the efficiency of remote data collection low. AUAV can
also fly to the communication range of the ground base station
to transmit data, but the energy consumption of the flight
will increase, and the data collection cost will increase too.
To achieve a better balance between data collection efficiency
and cost, this paper proposes a remote data collection service
framework that combines UAV and fog computing.

B. RELATED WORK
Fog computing is devoted to providing computation and com-
munication resources for Internet of Things (IoT) users in
the proximate area of IoT devices [8], [9]. Fog computing
is similar to multi-access edge computing (MEC), which
is treated as one of the key technologies towards 5G by
European Telecommunications Standards Institute (ETSI)
[10]–[12]. Fog computing is expected to play an important
role in the industrial IoT and cyber-physical systems [13],
such as smart industry [14] and smart agricultural technol-
ogy [15] Without loss of generality, we use ‘‘fog nodes’’
to represent the nodes with communication and computing
resources near IoT devices [16]. Because the nodes of edge
computing and fog computing are limited by their geograph-
ical location, UAV assisted edge computing is proposed to
expand the ability of edge computing [17]–[21]. In [18],
agents (UAVs) are introduced to the task offloading, and
a new task offloading framework based on agents (UAVs)
is proposed. UAV and edge cloud execute the offloaded
tasks together. In [19], Hu et al. studied the architecture of
UAV-assisted edge computing (UMEC). A UAV hovering in
an area can be used as a computing server or as a relay to help
the user device compute its tasks by further offloading the
computing tasks to the access point. In [20], Sahil Garg et al.
proposed a data-driven traffic optimization model, in which
the UAV shares information with edge computing devices,
and the UAV acts as a relay node between the vehicle and the
edge node, thus reducing the data processing delay. In [21],
a UAV not only serves as an MEC server, but also powers IoT
devices via Wireless Power Transfer (WPT) technology. All
of the above works regard UAVs as MEC nodes with strong
communication and computation abilities. In contrast, in the
remote sensing and surveying data collection work, after the
UAVs collect the data, they need to be transferred back to the
ground base station for storage and processing. For example,
in geographic information collection, the obtained data need
to be sent back to the ground base station for 3Dmodelling via
stereophotogrammetry [2]. Therefore, the previous methods
of combining UAVs with edge computing or UAV-enabled
MEC cannot be directly used for UAV-enabled remote data
collection services.

In this paper, we propose a fog computing supported UAV-
enabled remote data collection service framework, abbrevi-
ated as UAV-Fog Collaborative Data Collection (UFDC). The
main contributions of this paper are as follows:

1. For the first time, a framework of remote data collection
based on the cooperation of UAVs and fog computing is pro-
posed, and a formal model is established to describe the prob-
lem of maximizing the revenue of UAV cluster under the con-
straints of time delay and resources. This is a mixed-integer
nonlinear programming (MINLP) problem.

2. The block coordinate descent method is used to solve
the optimization problems described above. The original
problem can be divided into two sub-problems. The greedy
algorithm, heuristic algorithm and brute force algorithm are
proposed to solve the task assignment sub-problem of UAVs.
Using the KKT condition analysis method of convex opti-
mization, the analytic solution of computation resource allo-
cation sub-problem of fog node is obtained.

3. The model and algorithm are verified by numerical
simulation and network simulator based simulation. It is ver-
ified that the block coordinate descent method based on the
heuristic algorithm can obtain the best cluster revenue when
the algorithm execution time is small.

The rest of this paper is organized as follows: in the sec-
ond section, the UFDC system model is introduced, and
the formulated description of the problem of maximizing
the UAV cluster revenue is described. In the third section,
the optimizationmethods of this problem are presented. In the
fourth section, the numerical results are introduced. In the last
section, the conclusions are drawn.

The main notations used in this paper are listed in Table 1.

TABLE 1. Notations.
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FIGURE 1. An example scenario to illustrate the system framework of UAV-Fog collaborative data collection.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. DESCRIPTION OF FRAMEWORK
In the scenario proposed in this paper, because the data collec-
tion point is located in a remote area, the broadband wireless
network does not cover the area, therefore, after the UAV col-
lects the data, it needs to fly back to the ground base station to
transmit the data, which brings the flight time delay and costs.
The operator of the data collection service can choose to rent
the resources of a fog computing node to preprocess, store
and forward the collected data. A fog computing node has a
certain amount of communication and computing resources.
A fog computing node can receive the IoT data collected by
UAVs with low latency and preprocess the data. Because a
fog node has a storage device, it can also temporarily store
data, and then asynchronously send the data to the remote
ground base station. Consider a scenario as shown in Fig. 1,
where there are three UAVs, two fog nodes and a ground
station. Here, UAV1 offloads the collected geographic infor-
mation data to node fog1 for preprocessing, UAV2 offloads
the collected geographic information data to the node fog2 for
preprocessing, and UAV3 offloads the collected geographic
information data to the ground base station. Because the fog
node asynchronously sends the data to the ground base sta-
tion, UAV1 and UAV2 do not need to wait for the ground base
station to receive the data. UAV1 and UAV2 can immediately
return to the collection point to continue to collect data. In this
way, compared with UAV3, UAV1 and UAV2 can reduce the
time of returning data and improve the efficiency of remote
data collection.

The formal description of the UFDC proposed in this paper
is as follows. There are n UAVs in the system, which are
expressed as Ui, i = 1, 2, 3 . . . , n. Each UAV’s speed is
constant, with a speed of V and a fixed flight height of H.
The size of the task data collected by each UAV and the
number of clock cycles required for preprocessing are Di,
and Ci respectively. The initial coordinates of the UAV are
(xi, yi), i = 1, 2, 3, . . . , n, and they are distributed near

the data collection point. There are m fog nodes, which are
expressed as Fj, j = 1, 2, 3,. . . , m. Each fog node has
computing resources. The maximum resource of each fog
node is f max

j , j = 1, 2, 3, . . .,m, and the position coordinates
of each fog node are expressed as (xj, yj), j = 1, 2, 3, . . .,m.

B. COMPUTATION AND COMMUNICATION MODEL
1) COMPUTATION MODEL
Without loss of generality, suppose that UAVs are randomly
distributed near the data collection point at the beginning.
When enough data are collected by UAVs, there are two
offloading modes as follows:

a: OFFLOADING AT THE GROUND STATION
When UAV Ui is assigned to offload its task to the GBS,
the revenue of the UAV is as follows:

ZGUi = t(R− (
L
V
× γ + β × P× tH )) (1)

L represents the distance from the UAV to the GBS, which
is the same and a constant for each UAV when it offloads
data to the GBS; γ represents the energy consumption cost
parameter of the UAV’s flight time; R represents the reward
that Ui can obtain for performing the task once; and V rep-
resents the flight speed of the UAV. For the convenience of
the analysis, we temporarily assume that V is a constant.
We will further discuss the case that V is not a constant in
the network simulator-based simulation section. β is the cost
parameter of the energy consumption of a UAV when hover-
ing. P is the energy consumption of a UAV when hovering.
tH is the hovering duration of a UAV. t is the number of
times that a UAV performs data collection tasks in time
period I . Without loss of generality, these parameters are
identical for all UAVs performing the same data collection
task.
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b: OFFLOADING AT THE FOG NODES
When UAVUi is assigned to offload its task to Fj, the revenue
of the UAV is as follows:

Z
Fj
Ui =

∑m

j=1
kij

×

tij
R− m∑

j=1

kij
(
T f
ij
× γ+β×P× tH

ij
+q×fij

)
(2)

This is subject to the following constraints:∑m

j=1
kij = 1, kij ∈ {0, 1} (3)

0 < tHij ≤ T
max
i (4)

n∑
i=1

kijfij ≤ f max
j , fij ≥ 0 (5)

Constraint (3) indicates that the task of a UAV can only be
offloaded to one fog node, constraint (4) indicates that there
is a maximum hovering time for a UAV, and constraint (5)
indicates that the sum of all computation resources allocated
to UAVs from fog node j cannot exceed the maximum com-
putation resources that can be rented from fog node j. T fij is
the time when UAV Ui flies into the communication range of
fog node Fj. Then, we have the following:

T fij =
dij
V

(6)

where dij is the distance from Ui to Fj:

dij =
√(

xi − xj
)2
+
(
yi − yj

)2 (7)

and tHij is the hovering time of UAV, tHij can be expressed as
follows:

tHij = trij + t
c
ij (8)

where trij represents data transmission time of the task, and tcij
represents data computation time of the task. The expressions
are as follows:

trij =
Di
rij

(9)

tcij =
Ci
fij

(10)

where rij is the data rate between UAV Ui and Fog node Fj.
It is calculated using the following formula:

rij = B∗ log2

(
1+

p∗i hij
σ 2

)
(11)

where B is the bandwidth, and σ 2 is the power of noise. hij
is the channel gain power, which can be calculated using the
following formula:

hij =
β0

H2 +
(
xi − xj

)2
+
(
yi − yj

)2 (12)

where tij represents the number of times the UAV performs
data collection tasks in time period I .

tij =
I

2∗ dijV +
Di
rij
+

Ci
fij
+ S

(13)

where S is the constant duration that a UAV spends in data
collection.

2) COMMUNICATION MODEL
Because the remote data collection task is carried out in
remote areas, a broadband network, such as a 5G cellular net-
work, is not available. Thus, direct ground-to-UAV communi-
cations, such as unlicensed spectrum 2.4GHz, are often used
for data transmission [23]. The confirmation information of
UAV communication with the ground station is very small,
so we can ignore the data transmission time on the downlink.
The transmission rate of the uplink between a UAV and the
ground station or fog node is calculated using (11).

C. ECONOMIC VIABILITY ANALYSIS
Obviously, compared with the traditional model, if the pro-
posed UFDC model is to improve revenues, it should meet
the following requirements:

Z
Fj
Ui > ZGUi (14)

Therefore, it is easy to get the following results:

q <
R(1− δ)+ θ (δL − dij)+ βP(δtH − tHij )

fij
(15)

where δ = t
tij
< 1, θ = γ

V
Here, q is the unit price of one CPU cycle of fog node.

Only when q is a very small value, can we improve rev-
enues. According to the current quotation of cloud computing
providers, such as that of the Azure cloud computing service
of Microsoft,1 the corresponding unit price of the virtual
machine computing resources is approximately $5.2× 10−4

per GHz per minute (with supporting storage and network
resources) in the pay-as-you-go class of the tariff. Thus,
the proposed model can be expected to improve revenues in
most cases applying fog computing.

D. PROBLEM FORMULATION
To maximize the revenue of UAVs, it is necessary to optimize
the resource and task allocation of the UFDCmodel. Suppose
that the initial locations of the UAVs are near the data col-
lection point. The resource and task allocation optimization
problem of the UFDC model can be formulated as follows:

MP : Max
kij,fij

Ut =
n∑

i=1

Z
Fj
Ui

subject to : (3), (4), (5) (16)

1https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
windows/
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The MP problem is a mixed-integer nonlinear programming
problem (MINLP), which is an NP-hard problem [24], [25].
It is very hard to figure out the precise optimal solution of
this kind of problem. Therefore, we use the block coordinate
descent method (BCD) to obtain the approximate solution.
As presented in [23], the BCD is widely used to solve
the complicated non-convex multivariable joint optimization
problems [3], [16], [21], [23]. Although the BCD algorithm
cannot guarantee the global optimal solution of the MINLP
problem, it can obtain the suboptimal solution via division
and iteration and greatly reduce the difficulty of solving the
non-convex multivariable joint optimization problem. The
performance of the BCD algorithm has been verified in many
research works [3], [16], [21], [23]. In the block coordinate
descent method, the vector of variables is partitioned into
different blocks. In each iteration, the algorithm fixes the val-
ues of some variable blocks, and searches in one-dimension
along a coordinate direction at the current point to obtain the
local optimal value of a function. According to the feature of
the main problem MP, we can fix kij to get the computation
resource allocation sub-problem and fix fij to get the task
assignment sub-problem.

III. SOLUTIONS
A. COMPUTATION RESOURCE ALLOCATION
SUB-PROBLEM
The computation resource allocation sub-problem can be
formulated as follows:

SP1 : Max
fij

Ut =
n∑

i=1

Z
Fj
Ui

subject to : (4), (5) (17)

Constraints (4) and (5) are linear, and it is easy to verify
that the objective function Ut is a concave function. Hence
we can use Lagrange dual function and Karush-Kuhn-Tucker
(KKT) [26] conditions to solve SP1. The Lagrange dual
function and Lagrange multipliers are expressed as follows:

L(f , λ) = −
n∑
i=1

Z
Fj
Ui +

m∑
a=1

λa(
n∑
i=1

kiafia − f max
a )

−

m∑
b=1

λb

n∑
i=1

kibfib +
n∑

c=1

λc(tHcj − T
max
c )

−

n∑
g=1

λgtHgj (18)

where:

λa ≥ 0, a = 1, . . . ,m

λb ≥ 0, b = 1, . . . ,m

λc ≥ 0, c = 1, . . . , n

λg ≥ 0, g = 1, . . . , n (19)

Since kij is known, we only need to consider the case of
kij = 1 here. When kij = 1, fij > 0 and tH > 0 hold.

According to the KKT conditions, we can get the following
expressions for the optimal solution:

∇f L(f ∗, λ∗) = −∇
n∑
i=1

Z
Fj
Ui +

m∑
a=1

λ∗a∇(
n∑
i=1

kiaf ∗ia − f
max
a )

−

m∑
b=1

λ∗b∇

n∑
i=1

kibf ∗ib +
n∑

c=1

λ∗c∇(t
H
cj − T

max
c )

−

n∑
g=1

λ∗g∇t
H
gj = 0 (20)

λ∗ ≥ 0 (21)

(
n∑
i=1

kiaf ∗ia − f
max
a ) ≤ 0, a = 1, . . . ,m (22)

−

n∑
i=1

kibf ∗ib ≤ 0, b = 1, . . . ,m (23)

(tHcj − T
max
c ) ≤ 0, c = 1, . . . , n (24)

−tHgj ≤ 0, g = 1, . . . , n (25)

λ∗a(
n∑
i=1

kiaf ∗ia − f
max
a ) = 0, a = 1, . . . ,m (26)

λ∗b

n∑
i=1

kibf ∗ib = 0, b = 1, . . . ,m (27)

λ∗c (t
H
cj − T

max
c ) = 0, c = 1, . . . , n (28)

λ∗gt
H
gj = 0, g = 1, . . . , n (29)

where f ∗, λ∗ are the optimal decision variables and Lagrange
multipliers. ∇ means the partial derivative
Using formula (20) - (29), we can discuss the following

cases to get the optimal solution.
1. All Lagrange multipliers λ∗ = 0. In this case, according

to (20), the following equation holds:

∂
∑n

i=1 Z
Fj
Ui

∂fij
=
a1× f 2ij + b1× fij + c1

( a1q × fij + Ci)
2

= 0 (30)

We get the optimal solution as follows:

f ∗ij =
−b1+

√
b12 − 4∗a1∗c1
2∗a1

a1 = q× (2× T fij + t
r
ij + S)

b1 = 2× Ci × q

c1 = Ci × [T fij × γ − (S + 2× T fij )× β × P− R] (31)

This solution must satisfy constraints (22)-(25). Otherwise,
this solution will be rejected. Here f ∗ij > 0 always holds
because c1 < 0 holds. Therefore, the following constraints
should be guaranteed when f ∗ij is the optimal solution.

Ci
f ∗ij
+
Di
rij
≤ Tmax

i ⇒ f ∗ij ≥
Ci

Tmax
i −

Di
rij

(32)

n∑
i=1

f ∗ij ≤ f max
j (33)
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2. λ∗b 6= 0 or λ∗g 6= 0. In this case, f ∗ib = 0 and tHgj = 0
hold. Nevertheless, we only consider the case of kij = 1, that
is, we only optimize the computation resource allocation for
UAVUi when its data are offloaded to fog node Fj. Therefore,
this case will not happen in the context. 3. λ∗a 6= 0 and
λ∗c 6= 0. In this case, according to (26) and (28), the following
equations hold:

n∑
i=1

f ′ij = f max
j (34)

f ′′ij =
Ci

Tmax
i −

Di
rij

(35)

It’s hard to guarantee that formula (34) and (35) hold at the
same time. Formula (34) and (35) correspond to the upper
bound and lower bound of the computation resources that can
be allocated to UAVs in a fog node Fj. Since kij = 1, for-
mula (35) is always larger than zero, that is, Tmax

i −Di/rij > 0
holds.

4. Only λ∗a 6= 0.
For the consistency of the symbolic expression, here we

use λ′j for λ
∗
a. In this case, the following equation must hold

according to the KKT conditions:

∇f L(f , λ) = 0

⇒
a1× f 2ij + b1× fij + c1

( a1q × fij + Ci)
2

+ λ′j = 0

⇒ λ′j = −
a1× f 2ij + b1× fij + c1

( a1q × fij + Ci)
2

(36)

Because λ′j > 0, we thus get the following:

a1× f 2ij + b1× fij + c1 < 0 (37)

As depicted in Fig. 2 (a), if formula (37) holds, the optimal
solution should be in the interval of the horizontal coordinate
values corresponding to the shadow part in (a), where f ′′ij is
the lower bound of solution and is expressed as formula (35).
The following conditions must be satisfied for the optimal
solution:

f ′′ij ≤ f
opt
ij < f ∗ij (38)

n∑
i=1

f optij = f max
j <

n∑
i=1

f ∗ij (39)

Formula (39) is inferred from formula (26) (38) and λ∗a 6= 0.
f optij represents the optimal solution. As mentioned at the
beginning of this section, the objective function Ut is a con-
cave function and f ∗ij is its maximum point. Therefore, in the
interval of [f

′′

ij , f
∗
ij ), the function is monotonically increasing.

Thus the optimal solution in this case can be found via linear
search with the constraint (39).

5. Only λ∗c 6= 0
For the consistency of the symbolic expression, here we

use λ′i for λ
∗
c . The following formula must hold according to

FIGURE 2. Optimal solution to resource allocation in two different cases:
(a) Only λ∗a 6= 0, and (b) Only λ∗c 6= 0.

the KKT condition in this case:

∇f L(f , λ) = 0

⇒
a1× f 2ij + b1× fij + c1

( a1q × fij + Ci)
2

− λ′′i
Ci
f 2ij
= 0

⇒ λ′′i =
a1× f 2ij + b1× fij + c1

( a1q × fij + Ci)
2

×
f 2ij
Ci

(40)

Because λ′′i > 0, we thus get the following:

a1× f 2ij + b1× fij + c1 > 0 (41)

As shown in Fig. 2 (b), the solution satisfying (41) is in the
interval of the horizontal coordinate values corresponding
to the shaded part in the figure. Furthermore, the optimal
solution must satisfy the lower bound constraint. Therefore,
the following conditions must be satisfied for the optimal
solution:

f optij ≥ f ′′ij > f ∗ij (42)
n∑
i=1

f ∗ij <
n∑
i=1

f "ij ≤
n∑
i=1

f optij ≤ f
max
j (43)

f ′′ij is the lower bound of the solution and is expressed
as formula (35). Since the objective function Ut is a con-
cave function and f ∗ij is its maximum point, in the interval
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of (f ∗ij ,+∞), the function is monotonically decreasing. Thus
the optimal solution in this case is f ′′ij .

B. TASK ASSIGNMENT SUB-PROBLEM
The task assignment sub-problem can be expressed as follow-
ing formula:

SP2 : Max
kij

Ut =
n∑

i=1

Z
Fj
Ui

subject to : (3), (5) (44)

In the sub-problem SP2, the computation resource fij that is
allocated to UAV Ui by fog node Fj is fixed. SP2 is a kind of
integer programming problem called generalized assignment
problem [27], [28], which is NP-hard in the strong sense [27].
We use the brute force algorithm, greedy algorithm and
heuristic algorithm [28] to solve this problem.

1) GREEDY ALGORITHM
First, we rank each UAV according to the value density of its
task (from high to low), where the value density refers to the
revenue that can be achieved per unit of computing resources.
The algorithm needs to calculate the value densities of the
UAVs on each fog node. Next, starting from the fog node
closest to the data collection point, the UAVs are selected for
task offloading to the fog node in the order of their unit value
density from high to low. When the computation resources
of one fog node have been exhausted, the next closest fog
node is selected, until all tasks are offloaded. If there are still
UAVs left after the computation resources of all fog nodes
are allocated, the remaining UAVs are set to fly back to the
ground base station for task offloading. The pseudo code of
the greedy algorithm is as follows.

Algorithm 1 Greedy Algorithm

Input: Z
Fj
Ui , t

H
ij , fij, f

max
j ,Tmax

i , n,m
Output: kij,Ut
1: calculate value density vdij = Z

Fj
Ui/fij for each i, j;

2: rank each UAV according to vdij in non-ascending order;
3: Loop while there are UAVs that are not allocated compu-
tation resources and there are fog nodes that have resources
left;
4: choose the largest vdij with kij = 0; if assigning UAV Ui
to fog node Fj can satisfy constraint (3) and (5), set kij = 1;
5: End Loop
6: Let the remaining UAVs offload their data to the GBS.

2) HEURISTIC ALGORITHM
The heuristic algorithm proposed byMartello et al. [28] needs
to calculate the ‘‘desirability’’ of assigning UAV i to fog
node j first. Let eij be the measurement of desirability. The
algorithm considers all unassigned UAVs iteratively and finds
the UAV Ui∗ with the largest difference between the largest
and the second largest eij. Then, UAV Ui∗ is assigned to
fog node j with the largest ei∗j. Next, the current solution

is improved by locally adjusting the assignment strategy for
each UAV. The pseudo code of the heuristic algorithm is
in algorithm 2.

In the heuristic algorithm, the desirability measurement is
needed. According to the research in [28], good results can
be obtained by using the following measurement methods.

1. eij = Z
Fj
Ui . In this case, the improvement phrase can be

skipped.
2. eij = Z

Fj
Ui/fij

3. eij = −fij
4. eij = −fij/f max

j

Algorithm 2 Heuristic Algorithm

Input: Z
Fj
Ui , t

H
ij , fij, f

max
j ,Tmax

i , n,m
Output: kij,Ut
1: calculate desirability eij for each i, j;
2: Loop while there are UAVs that are not allocated compu-
tation resources and there are fog nodes that have resources
left;
3: calculate1i = eij′ − eij′′ fory each unassigned Ui, where
eij′ is the largest eij and eij′′ is the second largest eij, and
satisfy constraint (5) for each fij.
4: choose Ui∗ that has the largest 1i∗ , assign Ui∗ to the
corresponding fog node Fj′ ;
5: End Loop
6: If the feasible solution is found in the steps 1-5, Loop
7: for each kij = 1 find another j’ so that

Z
Fj′
Ui > Z

Fj
Ui and it would not violate constraint (5) if we

let kij = 0 and kij′ = 1
8:End Loop

3) BRUTE FORCE ALGORITHM AND COMPLEXITY ANALYSIS
Because it is NP complete to judge whether there is a fea-
sible solution to the generalized assignment problem [27],
and problem SP2 in this section is a non-linear optimization
problem, there is no suitable approximate algorithm that
approaches the optimal solution of the problem, and it is not
possible to use the algorithm of the linear integer program-
ming problem. To evaluate the performances of the greedy
algorithm and heuristic algorithm, we use the brute force
algorithm as the benchmark.

The time complexities of the brute force algorithm, greedy
algorithm and heuristic algorithm are O(mn), O(nm logm +
nm) and O(nm logm + n2), respectively. Obviously, if the
value of n is close to that of m, the time complexities of
the greedy algorithm and heuristic algorithm will be approx-
imately the same. If n � m, the time complexity of the
heuristic algorithm will be higher.

C. BLOCK COORDINATE DESCENT ALGORITHM
FOR MAIN PROBLEM
Because the main problem is a MINLP problem, there
is no polynomial time global optimization algorithm or

VOLUME 8, 2020 150605



Y. Luo et al.: Revenue Optimization of a UAV-Fog Collaborative Framework for Remote Data Collection Services

approximate optimization algorithm. To solve the main prob-
lemMP, we use the block coordinate descent method to find
the local optimal solution of the main problem. The pseudo
code of block coordinate descent algorithm is as follows:

Algorithm 3 Block Coordinate Descent Algorithm

Input: Z
Fj
Ui , t

H
ij , fij, f

max
j ,Tmax

i , n,m
Output: kij,Ut
1: set the initial values of fij(0) for each i, j; set kij(0) = 0
for each i, j;
2: Loop while |Ut(τ + 1)− Ut(τ )| > ε and τ ≤ 1000,
where τ is the number of iterations;
3: solve SP2 with fij(τ ) fixed to get kij(τ + 1);
4: solve SP1 with kij(τ + 1) fixed to get fij(τ + 1);
5: calculate Ut(τ + 1)
6: End Loop

The initial values of fij(0) can be calculated accord-
ing to formula (34) or randomly generated in the inter-
val

[
f min
ij , f max

j

]
, where f min

ij is calculated according to for-
mula (34), and f max

j is the upper bound of the computation
resources that can be allocated to the UAV on a fog node.
We choose the second way to generate the initial values of
fij(0). Because it is a NP-complete problem to determine
whether MP has a feasible solution, the greedy algorithm and
heuristic algorithm usually cannot be guaranteed to find a
feasible solution. However, because we can choose to offload
the UAV tasks to the ground base station, both algorithms
can return a feasible solution in the practice. Thus, in the
performance comparison, we only consider the cases inwhich
the feasible solution of the problem exists.

IV. NUMERICAL SIMULATION
The values of the simulation parameters in this paper are
taken from the configurations of [21], [22], which are listed
in Table 2.

TABLE 2. Simulation parameters.

Without loss of generality, we let the fog nodes be uni-
formly distributed in a line from 1km to 5km from the data
collection point. The initial location of UAVs is from 50m
to 100m from the data collection point. The task data size is
randomly distributed from 200GB to 230GB. The task CPU
cycles are randomly distributed from 800GHz to 830GHz.
The maximum computation resources that can be allocated
to UAVs are from 250GHz to 300GHz. There are 5 fog nodes
by default.

A. NUMERICAL RESULTS OF THE ALGORITHMS FOR THE
TASK ASSIGNMENT SUB-PROBLEM
In this section, we compare the performance of the differ-
ent algorithms in solving the task assignment sub-problem.
In each simulation round with the same parameters, we take
the average value of 5 runs for each data point. Fig. 3 shows
the revenues of four heuristic algorithms with different desir-
ability measures. It can be observed that under our simulation
configurations, the heuristic algorithm adopting the third and
the fourth desirability measurements have the best result.
Therefore in the next simulation, we use the fourth desirabil-
ity measurement.

FIGURE 3. The comparison of different desirability measurements of the
heuristic algorithm.

Fig. 4 and Fig. 5 show the change in the revenues and
running time of the three different algorithms as the number
of UAVs increases. As shown in Fig. 4, when the number of
UAVs is small, the difference between the three algorithms is
very small. When the number of UAVs exceeds 10, the dif-
ference becomes more obvious. Since the optimal solution
is always obtained by the brute force algorithm, the revenue
obtained by the brute force algorithm is larger than that of
the other two algorithms. In addition the heuristic algorithm is
basically better than the greedy algorithm. As shown in Fig. 5,
the running time of the brute force algorithm increases sig-
nificantly as the number of UAVs increases, while the other
two algorithms basically show no change and remain small.
Because the time complexity of the brute force algorithm is
much greater than those of the other two algorithms, we only
compare the performances of the heuristic algorithm and
greedy algorithm in the next comparison.

Fig. 6 shows the changes in the revenue obtained by
the three different algorithms as the number of fog nodes
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FIGURE 4. The impact of different numbers of UAVs on revenue.

FIGURE 5. The impact of different number of UAVs on the running time.

FIGURE 6. The impact of different numbers of fog nodes on revenue.

increases. It can be seen that as the number of fog nodes
increases, the revenue curve of the three algorithms tends to
be stable, and the difference between the heuristic algorithm
and brute force algorithm is not significant. This result shows
that in the case of abundant computation resources, increasing
the total number of fog nodes will not improve the overall
performance of the system.

B. NUMERICAL RESULTS OF THE BLOCK COORDINATE
DESCENT ALGORITHM FOR THE MAIN PROBLEM
Fig.7 and Fig.8 respectively show the changes in the rev-
enues obtained by the block coordinate descent (BCD) algo-
rithm based on the heuristic strategy and the greedy strategy
as the numbers of UAVs number and fog nodes increase,
respectively.

FIGURE 7. The impact of different number of UAVs on revenue(BCD).

FIGURE 8. The impact of different numbers of fog nodes on
revenue(BCD).

Compared with the results depicted in Fig. 4 and Fig. 6,
Fig.7 and Fig. 8 show that the block coordinate descent
algorithm achieves a better result, that is, more revenue is
obtained. This result occurs because the block coordinate
descent algorithm includes the adjustment of computation
resource allocation strategy in each iteration. The adjustment
of the computation resources enables the block coordinate
descent method to further optimize the solution of the main
problem using greedy strategy and heuristic strategy, and it
also reduces the gap between the heuristic algorithm and
greedy algorithm.

V. NETWORK SIMULATOR BASED SIMULATION
This section presents the simulation based on the oppor-
tunistic network simulator ONE [29]. As argued in [30],
the network simulator-based simulation can provide an easier
way to test applications and protocols than a real network
test-bed because the simulator based simulation has some sig-
nificant advantages, including scalability, flexibility, repro-
ducible scenarios, etc.. According to references [1], [2], [30]
and [31], the design of the UAV-fog collaborative remote data
collection framework is as follows:

1. The UAVs are equipped with sensors or cameras for
data collection tasks and are operated autonomously by
onboard computers [2].

2. The UAVs are piloted on the predefined routes, such as
the waypoint mobility model [1], [30].
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3. The UAVs utilize the UAV-to-ground communication
channel to communicate with fog nodes. The commu-
nication standard could be Wi-Fi [31] or the unlicensed
spectrum 2.4GHz [23].

4. Each fog node has a network interface for the receiving
UAVs’ data. The data of a UAV can only be offloaded to
one of the fog nodes.

5. Each UAV has two kinds of flight modes [32]: the circu-
lar flight mode for hovering or stay-at mobility [30] and
the straight flight mode for waypoint mobility.

6. Each fog node has limited computation and storage
resources for processing the UAVs’ data.

According to the above framework design, some simulation
environment parameters of the ONE are set as table 3:

TABLE 3. Some simulation parameters of the one.

As depicted in Fig. 9, b0 is the event generator, which
represents the data collection point. fly18 is a mobile node,
which represents a UAV. Fog12∼Fog67 are stationary nodes,
which represent fog nodes. It should be noted that the flight

FIGURE 9. The graphic user interface of the ONE simulator.

speed of each UAV varied from 10 to 15 (meters per sec-
ond) in this section. This configuration is different from the
previous assumption in section II that the flight speed is a
constant. Zeng et al. [32], [33] figured out the closed-form of
propulsion energy consumption models for fixed-wing and
rotary-wing UAVs in straight and level flight with a con-
stant flight speed. These authors also calculated the optimal
speeds for circular flight and straight flight mode. Therefore,
to optimize the energy consumption, the flight speed of UAVs
should be set as a constant, and it should be changed only
when the flight mode is changed. However, it is difficult
to keep a UAV flying at a constant speed. It is acceptable
that the speed of a UAV fluctuates in a small range. There-
fore, the simulation in this section is closer to the practical
situation, that is, the flight speed of a UAV is uniformly
distributed in a small range. In the optimization procedure,
the mathematical expectation of the flight speed can be used
for the calculation.

In this simulation, the performance of the heuristic-based
block coordinate descent algorithm (Heu-BCD) is compared
with that of the genetic algorithm [34], [35]. As mentioned
in the previous section, to the best of our knowledge, there
is no previous work that addresses the UFDC problem. The
key to solving this problem is to find a compromise between
the UAV flight time and data processing time. The UAV itself
cannot be used as a computing platform. In the related work,
the genetic algorithm is used to solve the service offload-
ing problem of fog computing in a bus network [34] and
the energy consumption optimization problem of the UAV
swarm [35]. Therefore, this section takes the genetic algo-
rithm as the benchmark. The basic parameters of the genetic
algorithm are set as follows: the probability of crossover is
0.9, themutation probability is 0.05, the size of the population
is 1000, and the maximum evolution generation is 1000.

The simulation procedure is as follows:
First, the solutions of two algorithms are calculated in

MATLAB. Second, the simulation parameters of ONE are
configured according to the obtained solutions. Then the
simulation results, such as the UAV flight duration and flight
times are obtained by running the simulation. Finally, the sim-
ulation results are substituted into the revenue formula (2) to
calculate the final revenue value.

The simulation results are shown in Fig. 10. The number
of fog nodes varied from 1 to 6. It can be seen that Heu-BCD
algorithm achieves better revenues than the genetic algorithm

FIGURE 10. The simulation results in the ONE simulator.
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at all simulation points. Similar to the results of the numerical
simulation, as the number of fog nodes increases, the overall
revenue gradually increases, which shows the feasibility of
UFDC model in the simulation environment of this paper.

VI. DISCUSSION AND CONCLUSION
According to the results of the numerical simulation and
the network simulator based simulation, based on the pro-
posed UAV-fog collaborative remote data collection frame-
work (UFDC) and the corresponding optimization model,
the corresponding optimization algorithm can effectively
improve the revenue of UAV-enabled remote data collection.
In the numerical simulation, the heuristic algorithm performs
better than the greedy algorithm. In the simulation based
on the ONE simulator, the heuristic-based block coordinate
descent algorithm outperforms the genetic algorithm. Dif-
ferent from the previous research work, this paper does not
assume that the UAV has enough computing power, but rather
it assumes that the UAV needs to send the collected data to the
ground base station for processing. One typical applications
is the collection of geographic information data. Because the
scenario considered in this paper is data collection in remote
areas, a large amount of data collected by a UAV cannot
be directly sent to the base station, but rather it must be
carried by the UAV to the base station and delivered within
the receiving range of the base station. Therefore, this paper
proposes renting the computation resources of fog nodes to
preprocess and forward data. The optimization results mainly
depend on the abundance of computation resources relative
to the number of UAVs. In the case of reduced computation
resources (more UAVs or less fog nodes), the optimization
results are poor. When the computation resources are reduced
to zero, the model will degenerate into the traditional UAV
data collection model in remote areas.

In the future research work, we can combine multiple data
transmission models with the UAV-fog computing frame-
work, such as using the UAV ad hoc network or cooperative
UAVs to transmit data [17], [31], [35], or we can consider
extending the UAV-fog collaborative data collection frame-
work to more application fields, such as electric vehicles and
smart grid [36], cooperative fog-based IoT [37], or intelligent
transportation [38], [39].
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