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ABSTRACT The perception of different visual motion cues is crucial for autonomous mobile robots to react
to or interact with the dynamic visual world. It is still a great challenge for a micro mobile robot to cope
with dynamic environments due to the restricted computational resources and the limited functionalities of
its visual systems. In this study, we propose a compound visual neural system to automatically extract and
fuse different visual motion cues in real-time using the extremely constrained computation power of micro
mobile robots. The proposed visual system contains multiple bio-inspired visual motion perceptive neurons
each with a unique role, for example to extract collision visual cues, darker collision cue and directional
motion cues. In the embedded system, these multiple visual neurons share a similar presynaptic network
to minimise the consumption of computation resources. In the postsynaptic part of the system, visual cues
pass results to corresponding action neurons using lateral inhibition mechanism. The translational motion
cues, which are identified by comparing pairs of directional cues, are given the highest priority, followed by
the darker colliding cues and approaching cues. Systematic experiments with both virtual visual stimuli and
real-world scenarios have been carried out to validate the system’s functionality and reliability. The proposed
methods have demonstrated that (1) with extremely limited computation power, it is still possible for a micro
mobile robot to extract multiple visual motion cues robustly in a complex dynamic environment; (2) the cues
extracted can be fusedwith a lateral inhibited postsynaptic network, thus enabling themicro robots to respond
effectively with different actions, accordingly to different states, in real-time. The proposed embedded visual
system has been modularised and can be easily implemented in other autonomous mobile platforms for real-
time applications. The system could also be used by neurophysiologists to test new hypotheses pertaining to
biological visual neural systems.

INDEX TERMS Bio-inspired, neural network, visual motion perception, micro robot, multiple cues.

I. INTRODUCTION
Computer vision has underpinned the rapid development of
autonomous mobile robots in various applications, such as
surveillance, transportation and manipulation [1]–[3]. A dis-
tinctive feature of computer vision is that its performance is
strictly determined by the scale of available computational
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resources [4], [5]. In many remote robotics applications, such
as ruin investigation [6], moon rovers [7] and underwater
surveillance [8], micro mobile robots often play a unique role
because of their size. However, conventional computer vision
systems demand a highly capacious computational resource,
and may not be readily incorporated into micro mobile robots
for autonomous navigation. Novel approaches that function
with less computational power are desperately needed for
those applications.
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Like robots, many animal species must address quite sim-
ilar visual challenges in order to navigate (and survive) in
a dynamic environment. These challenges are visual motion
perceptions which, in animals, are perceived and computed
by their extremely efficient visual neural systems. For exam-
ple, in flying insects, their daily behaviour such as flight
stabilisation [9], visual tracking [10], predator detection and
avoidance [11], navigation [12] or landing control [13] are
controlled mostly by visual cues. Neurophysiological and
anatomical studies have shown that these behaviours rely on
specific sensory neural pathways. Each of them is highly
efficient in extracting specific visual motion patterns in
dynamic scenarios with minimum energy costs or structural
complexity.

Benefiting from the unique characteristics [14], bio-
inspired computational visual perceptive neural systems have
been extensively developed and gradually applied in the field
of robotics to undertake rapid visual motion recognition tasks.
For example, the lateral inhibitory neuron Lobular Giant
Movement Detector (LGMD1 and LGMD2) [11], the Small
Target Motion Detector (STMD) [15], [16] and the typical
lobular plate tangential cells (LPTC) Elementary Motion
Detector (EMD) [17], [18] are all highly effective visual
neural systems that have been modelled and successfully
emulated in small robot platforms.

Although individual neurons can exhibit a very high degree
of selectivity for a stimulus produced in response to a specific
feature, a single neuron is of limited utility for stimulus
encoding [19]. One reason for this is that an individual neu-
ron could exhibit sensitivity to multiple stimuli so that the
output response could be mixed and lack precision; another
reason is that single neuron’s performance fluctuates sig-
nificantly according to different parameters and scenarios.
To eliminate these influences in the vision system of some
animals, multiple visual perceptive neurons with common
structures and similar neural mechanisms coexist [9], [20],
[21]. This mechanism is considered to be a critical prerequi-
site which enables these species to interact robustly with the
dynamic complex real-world. For example, the LGMD1 and
LGMD2 are a pair of wide-field detectors in the optic
lobe of the locust’s which detect looming objects [22]–[25].
The latest research has shown that their neurophysiologi-
cal behaviours vary significantly despite the fact that their
morphological structures have only minor differences. For
instance, the LGMD2 selectively responds to darker objects
moving on a colliding trajectory against brighter backgrounds
whilst the LGMD1 responds to all looming objects [11].
Nonetheless, it is clear that multiple visual cues extracted by
different neurons could be the key to the agile reactions and
decisions made by animals in relation to real-world dynamic
events.

For micro mobile robots, it is critically important that
they react to the dynamic environment with rich visual cues,
with the highly restricted computing resources. To overcome
these challenges, we propose in this paper a ‘‘Visual Motion
cues Discrimination Neural Network’’ (ViMDNN) which

functions effectively under extremely constrained computa-
tion power, and which enables a micro robot to detect and
react autonomously to varied visual motion scenarios in real
time. The proposed ViMDNN is constructed in two parts:
a presynaptic visual cue detective array and a postsynaptic
visual cues fusion neural network, followed by action trig-
gering neuron groups to trigger reaction motion commands.
The presynaptic neural array comprises four individual Visual
Motion Perception Neurons (VMPN) that detect specific
visual motion cues. Each VMPN contains a unified neural
structure known as the Extended-LGMD (E-LGMD), which
is an optimised neural prototype inspired by the insect LGMD
neurons. In the postsynaptic part of the system, visual cues
pass results to corresponding action neurons through the
feature of lateral inhibition. A Translational Motion Cue
Identification System(TMCIS) compares a pair of directional
cues to generate translational cues, which are given the
highest priority for reactive control, followed by the dark
collision cues and approach cues.

The rest of this paper is organised as follows. An overview
of related works is given in section II. The proposed mod-
els, including the E-LGMD and their postsynaptic connec-
tions, are described in section III. Section IV illustrates our
experiments on both simulated platforms and real robots.
In section V, we further discuss the proposed system and
future research.

II. RELATED WORK
A. CONVENTIONAL METHODS OF VISUAL
MOTION DISCRIMINATION
The majority of conventional methods for visual motion
discrimination focus on distinguishing between the physical
difference in the foregrounds and backgrounds, including
their size, shape and texture details [26]–[28]. So far, prelimi-
nary visual motion perception techniques utilise three typical
methods: geometric feature detection [29]–[31], background
subtraction [32], [33] and optical flow [34], [35].

These methods are powerful in identifying specific objects
in complex backgrounds. However, they are highly dependent
on prior knowledge of the objects of interest. Even though
some learning methods exist to increase the adaptability in
unfamiliar and dynamic environments [36]–[38], the grow-
ing demand for computational resource is considered as an
increasing challenge for real-time processing on a mobile
platform [39].

B. BIO-INSPIRED VISUAL MOTION DETECTORS
Nature provides abundant methods to detect moving objects,
which can be classified into looming detectors and lobu-
lar plate tangential cells (LPTCs) and Small target motion
detectors (STMDs).

Nature provides abundant inspiration for detecting moving
objects. The lobular plate tangential cells (LPTCs), LGMD
and Directional Selective Neurons (DSN) [40] are gener-
ally regarded as typical neurons that respond to wide-field
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motion and have been modelled into computational algo-
rithms widely.

The lateral inhibition-based neural models have been
applied to robots for many years [41]–[44]. The early
models of LGMD1 typically included four layers [41],
to which a fifth layer (grouping layer) was eventually added
to increase robustness against cluttered backgrounds [43].
Several approaches have been proposed to simulate the
selectivity between collision and receding motions [45],
[46]. However, the biological basis has not yet been eluci-
dated [11]. The study of LGMD2 by computational mod-
elling commenced only recently and little work has been
reported [44], [47]. Fu et al. proposed the first LGMD2model
using ON/OFF pathways and Spiking Frequency Adapta-
tion (SFA) to achieve motion direction selectivity [44].
Unmanned Air Vehicles (UAV) are ideal lightweight plat-
forms for LGMD1 and LGMD2 models [48], [49]. In [49],
an event camera serves as input sensor to maximise compu-
tation efficiency.

There are also other types of bio-inspired neural models
which, being simple but sensitive, have been deployed on
light-weight platforms. For example, in fruit flies, the well-
known LPTC model elementary motion detector (EMD)
has been shown to be responsible for detecting translation
motion [50]–[52] and has been applied on robots to enable
course stabilisation and navigation [17], [53]. The Small Tar-
get Motion Detector (STMD) found in dragonflies and hover-
flies is specifically sensitive to movements caused by dark
objects with very small or limited size [15], and has shown
potential in the development of small target automatic detec-
tion and tracking systems [16], [54]. Honey bees are widely
studied for their flight control behaviour evoked by specific
visuo-motor neurons [12], [55], [56]. There is also evidence
showing that the praying mantis utilises individual neuro-
mechanical visual-motor pathways to control prey-orienting
movements [57]–[59]. Most of the afore mentioned neural
models exhibit single functionalities, that can barely distin-
guish between, or recognise multiple visual motion cues.

C. COORDINATION OF VISUAL MOTION
DETECTING NEURONS
Multiple neural models can be integrated to achieve complex
tasks. In [53], [60], [61], hybridmodels combining both EMD
and LGMD systems are proposed. A high-reliable flight con-
trol system for UAVs is proposed in [60]. However, these
models serve two independent tasks: course stabilisation and
collision avoidance. Thus, the system lacks exhaustive recog-
nition of the current visual situation.

Several attempts have been made to combine bio-plausible
lateral inhibition models to carry out tasks that require higher
level recognition [40], [61]–[63]. As one variant model of
LGMD, the DSN is sensitive to translational motion towards
a specific direction. DSNs are commonly deployed in an array
to identify whole-field translational motion using a compet-
itive mechanism [40], which creates a translational selective
neural network (TSNN). Further studies have investigated

the effectiveness of TSNN combined with LGMD using a
computational switching gene [61]. Fu et at. proposed a
compound visual model that employs both LGMD1 and
LGMD2 in competition within one robot to compare their
different selectivities [64].

Hu et at. proposed a neural structure employing more than
ten DSN-like neurons with their corresponding directions
arranged in a circle to detect rotation motion detection [62]
or even spiral motion [65].

Compared to visual models with single functionalities,
these studies demonstrate the potential for recognising
dynamic and complex visual motion scenes by integrat-
ing multiple bio-inspired visual motion detectors. However,
the redundancy in structure could be a significant problem
for constrained computing platforms such as micro robot
platforms or UAVs.

III. MODELS AND METHODS
In this section, we present the proposed neural models in
detail. The proposed visual system compromises of four sub-
systems, including 1) the image capturing and preprocessing;
2) visual motion perceptive neural array; 3) visual motion
cues fusion neurons and 4) action neurons, as illustrated
in figure 1. Image data is captured and preprocessed first,
then transmitted into four individual VMPNs. In the follow-
ing process, the visual motion cues fusion neurons arbitrate
the right visual motion event and select the corresponding
pathway to the action neurons. Finally, the results of visual
motion perception are indicated by different reactive motor
commands autonomously triggered by the micro robot in
real-time.

FIGURE 1. A schematic of the proposed ViMDNN model. Four VMPNs
based on lateral inhibition model (LGMD1, LGMD2, DSNL and DSNR) that
serve as visual motion perception neurons are deployed in this system.
Their recognised individual visual motion cues are fused and integrated
subsequently to generate responding motion commands by the action
neurons. The visual cues fusion neurons arbitrate the corresponding
output by the defined priority. The dashed arrows represent the inhibition.

As revealed in biological studies, the perception and dis-
crimination of multiple visual motion cues compromises of
two stages: 1) the perception of individual visual motion
patterns and 2) the fuse and selection of corresponding
visual motion cue. In ViMDNN, excitations from all the four
VMPNs are gathered and fused. The post-synaptic structure
contains two parts: one TMCIS that compares the directional
visual motion cues and one array of visual cues fusion
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neurons. This bio-plausible structure may reflect an insect’s
neural connections that use parallel pathways to process
visual information and their mechanisms of natural behaviour
generation mechanism [66].

A. THE VISUAL MOTION PERCEPTIVE NEURONS
As shown in figure 1, each VMPN model is responsi-
ble for a specific visual motion pattern, including the
LGMD1/LGMD2 pair that detect approaching motion and
DSNs that are sensitive to translational motion. In this work
that ground mobile robot is utilised, the left/right transla-
tional motion is dominant (caused by ego-motion or objects
passing by). In contrast, the up/down translational motion
seldom happens. Thus only two DSNs are required. Along
with the pair of LGMD to discriminate approaching objects,
the final system is composed of four VMPNs, i.e. the
LGMD1, LGMD2, left-sensitive DSN (DSNL) and right-
sensitive DSN (DSNR).

1) THE LAYER ARRANGEMENT OF E-LGMD
The E-LGMD is a layered neural model formed by six layers
and several individual neural processing cells and an auxil-
iary FFI pathway, as illustrated in figure 2. The six layers
are the 1) Photoreceptor layer (P layer), 2) Excitation layer
(E layer), 3) Inhibition layer (I layer), 4) Pre-Summing layer
(pre-S layer) 5) Summing layer (S layer) and 6) Grouping
layer (G layer). The luminance change of local individual
single eye (pixel) is gathered by each cell in the P layer.

FIGURE 2. A schematic of the proposed VMPN model based on E-LGMD.
Notice that the P layer is treated as the common part for multiple VMPNs.
One column of cells are taken as examples for detailed illustration. The
solid arrows indicate exciting pathways, while dashed arrows indicate the
inhibition pathways. The P cells accept luminance change from the image
sensor and pass excitations to the E cells directly. The E cells obtain value
from neighbouring P cells. The pathway from the P cells to the I cells are
delayed by one frame. The I and E cells are then separated by the ON and
OFF channels and joined into the pre-S cells, then the S cells accordingly.
The local spatial enhancing mechanism is realised in the G layer by
grouping a small number of neighbouring S cells (indicated by grey
arrows). Additionally, for LGMD1, the Feed Forward Inhibition (FFI)
gathers excitations from the P cells with no delay.

The excitation pass into the excitation layer without any
delay; however, the inhibition layer accepts delayed signals
according to the desired feature. Before the excitations and
inhibition meet in the summing layer, an ON/OFF separator
is inserted between the excitation/inhibition layers and the
summing layer, thus forming a pre-S layer. Followed by the
summing, a group layer is introduced for signal enhancement.
The K cell gathers excitations in the G layers for generating
E-LGMD spikes. The spikes of E-LGMD neuron are gener-
ated afterwards.

2) THE PHOTORECEPTOR LAYER
In locusts, the first layer of LGMD consists of photoreceptors
that represent the excitations from the lamina, which are
the luminance change. Similarly, in E-LGMD, the P layer
is formed by grid-shaped P-cells that convey the difference
between adjacent frames captured by the camera, with a
residue part serving as the visual persistence effect. Respect-
ing to the biological facts, all the VMPNs accept the same
visual inputs from a single photoreceptor layer that a single P
layer acts as their common input. The P layer at frame f can
be defined as a matrix P(f ):

P(x, y, f ) = L0(x, y, f )− L0(x, y, f − 1)

+

np∑
i=1

eµi · P(x, y, f − i) (1)

where f donates the frame index. L0 is the greyscale image
inputs from the camera, which represents the luminance
value. L0(f ) and L0(f − 1) are the current and last images.
In the visual persistence part, np is the confined steps of per-
sistence. The visual persistence coefficient µ < 0 determines
the decaying speed. The index i indicates the last ith frames.
To balance the performance and complexity, the depth of
visual persistence np = 1, and the decaying coefficient
µ = −2. These parameters are selected empirically with con-
sideration of a balance between the model’s functionalities
and the compatibility for embedded environments.

3) THE EXCITATION AND INHIBITION LAYERS
As the core mechanism of E-LGMD modelling, the lateral
inhibition is accomplished by utilising two types of layers that
exhibit conversed features. The excitation layer (the E layer)
holds all the current visual motion cues, which are directly
retrieved from excitations in the P layer.

E(x, y, f ) = P(x, y, f ) (2)

The inhibition layer spread inhibitory features with short
latency:

I (x, y, f ) = ωI ·
r∑

i=−r

r∑
j=−r

P(x, y, f − 1) ·WI (i+ r, j+ r)

(3)

where the ωI stands for the inhibition coefficient, WI is
the inhibition kernel pattern. The variation in WI repre-
sents whether the selectivity is omnidirectional or directional,
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TABLE 1. Configurations set for the applied VMPNs.

which determines the feature of formed VMPN. The r indi-
cates for the size of applied inhibition pattern WI . When
pattern size is 3× 3, r = 1, and for size of 5× 5, r = 2.
The applied inhibition kernels meet the list in Table 1.

Notice that for LGMD1/LGMD2 pair, the kernels are sym-
metrical, while for DSNs, horizontal biases are applied.

4) THE PRE-SUMMING LAYERS
In the earlier modelling work of LGMD, the lateral inhibition
is performed in the S layer, where the excitation from E cells
and inhibition from I cells meet. The S layer in the earlier
model is calculated by:

SRAW(x, y, f ) = E(x, y, f )− I (x, y, f ) (4)

in which the SRAW(x, y, f ) donates the raw S cells in ear-
lier simplified models [43], [64]. However, this method
should be improved since it cannot separate the signal on-
set and off-set, which could be the major difference between
LGMD1 and LGMD2. In the pre-S layers of the proposed
model, the ON/OFF excitations are processed individu-
ally. Moreover, concerns about the overflow issue, an anti-
overflow limiter is applied to each of the layers:

SON(x, y, f ) = [E(x, y, f ),E(x, y, f )− I (x, y, f )]⊕ (5)

SOFF(x, y, f ) = [E(x, y, f ),E(x, y, f )− I (x, y, f )]� (6)

in which the SON(x, y, f ) and SOFF(x, y, f ) stands for the on-
channel and off-channel respectively. the definition of ⊕ and
� operations are defined in the appendix. This anti-overflow
limiter ensures that the output amplitude of pre-S cells does
not exceed the input of E cells. A simple illustration of how
excitation and inhibition affect the pre-S layers are shown
in figure 3

5) THE SUMMING LAYER
After joining the excitation and inhibition together into the
pair of pre-S layers, the final S layer is regulated by a switch-
ing mechanism.

S(x, y, f ) = SON(x, y, f ) · gon + SOFF(x, y, f ) · goff (7)

FIGURE 3. An illustration of the process of obtaining SON and SOFF from
excitation and inhibition layers, which refers to the eq. 5 and eq.6. The
horizontal and vertical axis represent the input value of excitation and
inhibition respectively. The output value of pre-S cells’ value is indicated
by the colour-map.

in which the gon and goff are switching parameters that are
either 0 or 1. The values for each VMPN are listed in table 1.
Notice that the LGMD2 has turned off the ON channel to
reject on-sets.

6) THE GROUPING LAYER
The G layer of the VPMN enhances spatial contrast. The
process contains two steps.

In the spatial enhancement process, a passing coefficient,
which is determined by local excitation strength, is set for
each local cell. The array of passing coefficient Ce is com-
puted by a 2-D filter:

Ce(f ) =
r∑

i=−r

r∑
j=−r

S(x, y, f ) ·WG(i+ r, j+ r) (8)

in whichWG is the influence from neighbouring cells, which
can be described as:

WG =
1
9

1 1 1
1 1 1
1 1 1

 (9)

The spatial enhanced G layer is then obtained by:

G(x, y, f ) = S(x, y, f ) · Ce(x, y, f ) · ω(f )−1 (10)
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where ω is a scale that measures the passing coefficient
intensity of the whole frame:

ω(f ) = 0.01+max
∣∣∣Ce(f ) · C−1ω ∣∣∣ (11)

where Cω is a certain value.
In the second step, small signals are blocked by a certain

threshold:

G̃(x, y, f ) =

{
G(x, y, f ) if G(x, y, f ) ≥ tde
0 otherwise

(12)

where the tde is the constant threshold that filters out small
signals. For modelling DSN, only the second process (eq.12)
is involved since grouping will increase undesired non-
linearity to later process in TMCIS.

7) THE SPATIAL INTEGRATION NEURON
The spatial integration neuron (K cell) in this VMPN model
represents the average excitation levels in the previous layer.
It first gathers neural excitations from all cells in the previous
layer:

k(f ) =
∑
x

∑
y

∣∣∣G̃(x, y, f )∣∣∣ (13)

Following by that, the value kf is transformed by a
normaliser:

κ(f ) =
1
2
· tanh

(√
k(f )− ncell · cα
ncell · cβ

)
+

1
2

(14)

where the cα and cβ are constants that can shape the nor-
malising function with varied gain settings for small and big
signals. The ncell is the number of element cells in theG layer.
The structures followed by this K cell is dependent on the

actual model. In this work, the output of four utilised VMPNs
are represented by κ1(f ), κ2(f ), κL(f ) and κR(f ) respectively.
For the LGMD1/LGMD2 model, κ1(f ) and κ2(f ) cells are
followed by the spiking mechanism that represent a promi-
nent approaching event. For DSN modelling, the comparison
of κL(f ) and κR(f ) will be described later for the TMCIS
modelling.

8) THE SPIKING MECHANISM FOR LGMD1/LGMD2
In E-LGMD process, if the spatial integration neuron exceeds
a determined threshold, a spike is produced:

sspike(f ) =

{
1 if κ(f ) ≥ tspike
0 otherwise

(15)

An impending collision is confirmed after several succes-
sive spikes. Longer decision time lead to solid and reliable
outputs, but it is harder to respond to sudden and fast collision
events. In our tests, the decision time is set to 3-6 frames
(100-200 ms) for best performance.

9) THE FFI PATHWAY OF LGMD1
In LGMD1 circuitry, an auxiliary feed-forward inhibition
pathway is responsible for detecting large and sudden whole-
field visual motion, which could be introduced by self-
rotation or other unknown significant motion. The FFI neuron
and lateral inhibition work together to prevent false spiking
alarms in these situations.When theVMPN is configured into
other neuron types, the FFI mechanism is bypassed.

The FFI cell is proportional to the average excitation level
of E layer with one frame delay:

kFFI(f ) =
∑
x

∑
y

|E(x, y, f − 1)| n−1cell (16)

A constant threshold is set to enable the FFI mechanism.
This threshold should be high enough that it will not interfere
with normal reactive control.

sspikeFFI(f ) =

{
1 if kFFI(f ) ≥ tFFI
0 otherwise

(17)

10) THE PARAMETERS SETTING
By setting the unified E-LGMDmodels with different param-
eters, they can be initialised into varied VMPNs with unique
functionalities. This facilitates the implementation of multi-
plemodels with little extra ROMoccupation. The parameters’
configuration of applied VMPNs are described in table 1.
Currently, there is no learning or adaptive mechanism applied
in E-LGMD thus most of the parameters are empirically fixed
considering the functionalities of designed models. However,
there are several methods developed to optimise the param-
eters [67]. As mention before, some parameters are selected
for better compatibility with embedded environments. Notice
that the WI are fractions with denominators of 4 or 8. Mean-
while, some parameters are determined by the physical prop-
erties of the model such as the value of ncell and the gating
parameters.

B. THE POSTSYNAPTIC NEURONS
As a higher-level architecture, theViMDNNcoordinatesmul-
tiple VMPNs according to their functions and generates the
right behavioural response to each type of visual challenge.
Therefore the robot with the ViMDNN can cope with dif-
ferent visual stimuli reliably. If only with single function
model, for example, only with LGMD, the robot will not
be able to respond to translating objects correctly; only with
DSNs, it can hardly cope with collision events. The ViMDNN
provides the right structure for a robot to initiate the right
response to moving visual cues in the real world.

However, different VMPNs cannot simply be integrated
together. The LGMD produce intensive spikes when an
object approaches. This spiking mechanism contributes to
rapid and solid results but with strong non-linearity. On the
contrary, the DSNs are tuned to be sensitive to certain motion
directions, although they also exhibit minor excitations to
approaching objects or even translating objects towards
other directions. Therefore, the DSNs must be merged and
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transformed into spiking outputs before they meet the LGMD
neurons. The TMCIS is deployed to achieve this goal.

1) THE TRANSLATIONAL MOTION CUE IDENTIFICATION
SYSTEM
For flying insects such as fruitflies, two steering strategies
are applied, which are course stabilisation and obstacle avoid-
ance. Required visual information could be obtained by com-
paring between left and right visual motion trends through
the visual motion detector EMD [68]. It is demonstrated that
when triggering saccade reactions, the direction of saccades
(left or right) is opposite to the side who experience larger
visual motion. This approach has also inspired several con-
trolling models in robotics [69], [70] with EMD neurons.

Similarly, a TMCIS based on E-LGMD neurons can pro-
vide directional information for steering control of robots,
compromising results from the divergence of a pair of DSNs.
The output of TMCIS represents the dominating motion
direction. The structure of TMCIS and the comparison to
fly’s Spatial-temporal Integration if Motion (STIM) model is
illustrated in figure 4.

FIGURE 4. (a) The spatio-temporal integration of motion (STIM) model
inspired by fruitflies (figure adapted from [71]). (b) A schematic of the
proposed TMCIS model. Notice the difference of inhibition masks in DSNL
and DSNR.

The basic idea of obtaining the directional motion is to
compute the divergence of the DSN cells directly:

dRAW(f ) = κL(f )− κR(f ) (18)

in which the output value dRAW(f ) contain the information
of both the direction and strength of translational motion.
However, due to the noise introduced by calculating DSN,
this approach is not practical and should be improved by
further noise reduction and gating techniques.

Here in TMCIS, it evaluates the divergence between the
pair of DSNs, namely dTMCIS(f ). First, the output of both
DSNs are filtered by a single-pole recursive filter (also can
be regarded as a leaky integrator) to reduce noise:

κ̃L(f ) = κ̃L(f − 1) · ηL + κL(f ) · (1− ηL) (19)

κ̃R(f ) = κ̃R(f − 1) · ηR + κR(f ) · (1− ηR) (20)

where ηL and ηR are the decaying factors within range (0,1).
A smaller value contributes to a lower filtering strength.

A greater value contributes to smoother output but with
longer latency. This is a practical approach of low-pass filters
for micro-controllers. In TMCIS, both decaying factors are
empirically set to 1/7.

Then the divergence of two DSNs dTMCIS(f ) is calculated
by:

dTMCIS(f )=
(κ̃L(f )− κ̃R(f ))

2√
κ̃L(f )2 + κ̃R(f )2

· sign (κ̃L(f )− κ̃R(f )) (21)

where the strength of the divergence (|dTMCIS(f )|) shows
the strength of dominate direction of motion. This operation
slightly compresses small signals to increase the robustness
of direction detection, because a small signal means the κL
and κR grows simultaneously, which is not the case of trans-
lational motion. A simple illustration of this mechanism is
shown in figure 5.

FIGURE 5. The illustration of obtaining dTMCIS from the outputs of DSNs.
Notice that the output is suppressed (flattened) along the line:
κL − κR = 0.

a: THE COMPARING CELL
A solid decision of translational motion is made when
dTMCIS(f ) has steady output. A tri-state hysteresis neuron is
applied here to reduce sudden and frequent fluctuations. The
tri-state hysteresis neuron has two constant on-set thresholds:
one on each side and an off-set threshold zero, which con-
tribute to three outputs: left, right and centre. They are repre-
sented by −1, 1 and 0 respectively. The decision of a certain
direction is selected when the input strength (absolute value)
is greater than the on-set threshold, however, it will return to
the centre state once the input strength drops below the off-
set threshold and cross to the other side. When the value is
between two thresholds, the decision remains unchanged:

TDir(f ) =


1(right) if dTMCIS(f )> tTR
−1(left) else if dTMCIS(f )< tTL
0(centre) else if dTMCIS(f ) · TDir(f − 1) 6 0
TDir(f − 1) otherwise

(22)

in which TDir(f ) is the decision at frame f . The tTR and tTL
are two thresholds for the left side and right on-set (tTR > 0,
tTL < 0). In this work, the values are set to tTR = 4 and
tTL = −4.
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b: THE CROSS PARTIAL IMAGE CONFIGURATION
Consider the situation that a right motion happens in the
rightmost part of the view. It is usually not hazardous since the
object has almost moved outside the field of view. Similarly,
the leftmost part of the view can be skipped when judging
a hazardous left-moving object. Thus, the input of DSNs
can be tailored to increase selectivity and reduce process-
ing time. The DSNL takes only the right part of the input
image into the process, and the DSNR calculates only left
part. In TMCIS model, the overlap of 60% provides good
separation, as shown in figure 4. A simple test of TMCIS with
video stimuli is shown in figure 6.

FIGURE 6. Test of TMCIS with a virtual visual stimulus cast on the screen.
The virtual stimulus’ motion trajectory is approaching (expand) ->
receding (shrink) -> moving right -> moving left -> moving right. The
upper figure shows the DSN outputs. The middle figure shows the dTMCIS
and TDir. The lower figure shows the dTMCIS with different motion
speeds.

2) THE VISUAL CUES FUSION NEURON
As illustrated in figure 1, the proposed visual cues fusion
neurons collect visual motion cues from VMPNs and the
TMCIS, then generate a single output directly to the action
neurons. The extracted visual motion cues could be either
of: 1) safe, 2) approaching motion, 3) approaching motion
caused by dark objects, 4) translational motion to the left and
5) translational motion to the right.

The visual cues fusion neurons use a prioritised preemption
mechanism to organise the orders of input neurons. In this
work, five cells representing possible identified visual motion
situation are assigned with defined priority to connecting
presynaptic neurons, including a default cell. A neuron can
inhibit other neural excitations whose priority is lower to
ensure only one output is active at any time. The LGMD1 and
LGMD2 are responsible for detecting approaching object
motion, which has a higher priority than the s̈afes̈ituation.
Further identification of the dark approaching object can be
given by LGMD2. However, the decision of an approaching
motion will be inhibited by a translational motion (either left
or right) given by the TMCIS.

C. THE SYSTEM IMPLEMENTATION AND OPTIMISATION
According to the structure of the proposed neural model,
only low-level calculations are involved in the whole process

FIGURE 7. The utilised micro-robot platform Colias-IV. (a) An explosion
view of the mechanical structures, including the boards, battery and
motors. (b) An assembled robot compared the size to a genuine adult
locust. They are nearly equal in length.

such as excitation transferring and neighbouring operations,
which make it a desired model for embedded platforms with
constrained computational resources. However, it is still not
an easy task for adapting this neural structure successfully.

1) THE ROBOT PLATFORM
A micro ground robot Colias-IV is selected, as shown
in figure 7, to be the application platform to demonstrate
the high computing efficiency and low-hardware demanding.
The Colias-IV which has constrained computation resources
is a low-cost vision-based micro ground robot developed for
swarm robotic applications and bio-robotic research [72]. The
Colias-IV employs a circular body with 4cm in diameter that
has two layers of circuit boards. The bottom part serves as an
only primary robotic platform such as power supply, motion
control and primary sensing. Driven by a pair of differentially
driven wheels and a third pin-stand in front, the Colias-IV
can run up to 35cm/s at full speed. The upper part, which
called the Colias-Sensing-Unit (CSU), is designed for on-
board high-level sensing such as vision. The CSU contains
a tiny CMOS camera as a visual sensor that captures RGB
image sequences at 30 frames per second (fps). The field
of view angle (FOV) is about 70 degrees horizontally. The
CSU utilises an STM32F427microcontroller as themain pro-
cessor, which is running at 180MHz. It contains 256KBytes
internal RAM space and 2MBytes ROM space.

2) THE COMPUTATIONAL COMPLEXITY ANALYSIS
For embedded programming, both spatial complexity and
temporal complexity are critical issues and should be opti-
mised. In addition to the basic principle of optimising
ELGMD-based model described in [42], the P layer is
regarded as a common part for all the VMPNs for further
memory saving. Thus the P layer can be stored separately and
calculated only once for each frame. Regarding the calcula-
tion procedure, two consecutive P layers should be accessi-
ble for implementing delayed inhibition, and for differential
image calculation and temporary storage, three input buffers
are allocated. Due to the maximum available RAM space,
the utilised scale of the input image is 100x72. The break-
down of total occupied memory space is shown in figure 8.

The time used for each process also depends on the scale
of active neurons. For each E-LGMD, even though five layers
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FIGURE 8. The illustration of RAM space allocation for images and
E-LGMD models. The total occupied RAM is around 190KBytes. Notice
that two P layers are independent and are re-used by all E-LGMD models.
In each E-LGMD model, the size of G layer (16-bit signed number) is
almost twice than the I layer and S layer (8-bit unsigned).

exist, calculations for some layers can be omitted or merged
in a single loop to save time. As briefly illustrated in algo-
rithm 25 and figure 9, the calculations of I layer and S layers
are combined into one loop, the calculation of Ce map and
the G layer are also combined. Meanwhile, the boundary
of convolution is omitted that the time cost for convolution
operation can be further reduced by skipping the edge cells.
Thus, the computation process of the full process mainly
consists of three loop phases: 1) the P layer, 2) I layer and S
layer of each VMPN, and 3) the loop for G layer and spatial
integration for each VMPN. When the input image has the
size of Hin · Win pixels and convolution kernel size of k ,
the computational complexity of each phase can be estimated
as NP = O(Hin ·Win), NIS = O(k2I · (Hin − 2) · (Win − 2) +
Hin ·Win) and NG = O(k2G · (Hin − 4)(Win − 4)), where NP,
NIS and NG represent time for the three phases.

NVMPNs = NP + 2NLGMD + 2NDSN (23)

where i represents the index of utilised VMPNs. A test of time
consumption in different image scales is shown in figure 10a.
The timing profile of utilised model that has a scale of
100× 72 is shown in figure 10b.
As a result, these further optimisations, the total time used

for processing all the modules including four E-LGMD struc-
tures has reached 23 ± 2 ms, which is within the duration
of one single frame ( typically 33ms). This indicates that the
proposed compound visual motion detection system can be
performed in real-time on the Colias-IV platform.

The power consumption of the model is mainly depended
on the MCU’s clock frequency due to the architecture of
the embedded processor. In its typical condition (180MHz),
the power consumption of MCU is around 76mA with the
capability of processing 225 Dhrystone Million Instructions
Per Second (DMIPS). The power consumption breakdown is
briefly listed in table 2.

Algorithm 1 The Process of ViMDNN

1 while has valid image do
// Calculate VMPNs

2 Process the P layer;
3 foreach E-LGMD do
4 foreach cell do

// First cell-wise loop
5 if not to omit E layer then
6 deal with E layer;

7 Process I layer;
8 if is LGMD1 then
9 Calculate FFI;

10 if is not LGMD2 then
11 Calculate SON;

12 Calculate SOFF;
13 Calculate S layer;

14 foreach cell do
// Second cell-wise loop

15 if is LGMD1 or LGMD2 then
16 Process Ce value map;
17 Calculate G layer;
18 Process G layer thresholding;

19 else
20 Process simple G layer thresholding;

21 Process Spatial Integration ;

22 Process Spiking Mechanism ;

23 Calculate TMCIS;
24 Calculate VCFM;
25 Motion Control;

FIGURE 9. The method to optimise for computation time. Comparing to
the upper part which is a straightforward implement without
optimisation, the optimised algorithm 1) re-use P layer for all VMPNs;
2) The merging of layers into two main loops; 3) the edges of convolution
operation are skipped. Notice that in G layer, two boundary rings are
skipped.

IV. EXPERIMENTS AND RESULTS
The performance of proposed ViMDNN is evaluated in sys-
tematic experiments including basic functional tests with
virtual visual stimuli, real-world challenges and simple
autonomous control scenarios.
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FIGURE 10. Timing profile of real-time processing on the embedded
processor. (a) The measured time cost in different phases per cell when
the size of input image changes, showing the measured results of
LGMD1 and DSNL as examples. The x-axis is in log scale. Notice that in
the most efficient situation, the input size should be 400-600 pixels.
(b) The timing profile observed and logged by a multi-channel
oscilloscope (Sampling Rate 1GHz) using 100×72 cells. The time
measuring labels are added manually. In the duration of a full frame
(33 ms), four VMPNs are processed successively after the P layer
calculation, and the whole execution is completed within 24ms. The
change of calculation phases is indicated by the signal flips.

TABLE 2. The power consumptions of major components.

A. RESPONSES OF VMPNs TO VIRTUAL VISUAL STIMULI
The proposed VMPN models are firstly tested by virtual
visual stimuli to demonstrate their fundamental features. The
computer-generated visual stimuli are categorised into two
groups: 1) an approaching object that has an expanding edge
and 2) a translating object that moves from left to right with
constant speed, then reverse. Each group of visual stimuli is
set with different object-background contrasts Cobj, which is
defined by:

Cobj = Bobj − Bback (24)

where Bobj is the brightness value of moving object, Bback
is the brightness of background. The brightness values are
within the range [0,1]. No additional noise is added to the
image stimuli. Experiment stimuli, explanation and sample
data logged from the robot are shown in figure 11.

1) SIMULATED APPROACHING OBJECTS
Firstly, we would like to compare the selectivity between
LGMD1 and LGMD2 when an object is on the approaching
trajectory, as shown in figure 11a. When challenged by a dark
approaching object (figure 11e up-left), both LGMD1 and
LGMD2 generate increasing membrane potential rapidly
as the object expands in the retina. When the object is
bright while the background is dark (figure 11e up-right),
the LGMD2 neuron is inhibited during the whole approach-
ing process as expected. The reactions of DSN towards vir-
tual approaching visual stimuli are also tested, as shown
in figure 11b. Since the object on an approaching trajectory
donates brightness change on both sides evenly, it is clear
that both DSNs generate spikes evenly and show no direction
preference on any object/background contrast group.

2) SIMULATED TRANSLATING OBJECTS
When the simulated visual stimulus is moving at translating
trajectory (figure 11e down), the LGMD1 and LGMD2 neu-
rons show only constant and weak outputs during the whole
process for either dark or bright stimulus (figure 11c). In this
situation, the peak values for both motion directions (left and
right) is almost the same, indicating that the pair of LGMD
neurons is not sensitive to motion directions.

Meanwhile, the outputs of both DSNs differ along with the
motion direction. For the motion from left to right regardless
of the object/background contrast, the DSNL is weaker than
DSNR, and vice versa. The divergence between these two
DSNs, which is close to the TMCIS output described in the
above section, have almost the same strength for motion in
two opposite directions, The results demonstrated the func-
tions of biased inhibition mechanism set in the I layer.

The results of tests on simulated visual stimuli with dif-
ferent object/background contrast set are compared and con-
cluded in figure 12. The results shown in figure 12a show that
LGMD2 only detects an approaching object when it is darker
than the background. Moreover, the sensitivity of proposed
LGMD1 and LGMD2 structures decrease when the object
becomes more obscure against the background, resulting in
a shorter alarm time for responding reactions.

The peak output of DSNs in the object translating scene has
shown stable and distinctive selectivity within a singlemotion
scene, as illustrated in figure 12b. It shows that the sensitivity
of each DSN is related to the object/background contrast. The
clearer the object stands out from the background, the higher
values generates. Results of additional tests on translating
objects from the opposite side have shown little difference
in the peak value, except the swapping of places. This result
reveals that the peak value of DSN is related to the contrast
with the given direction, but the polarity of motion does not
affect the performance of DSN, which is different from the
LGMD2 model.

Figure 12c has drawn a relationship between the time to
collision (TTC) and the motion speed. When the motion
gets faster, the TTC decreases, which result in a shorter
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FIGURE 11. The experiments of VMPNs challenged by computer-generated visual stimuli. (a) & (b) The output of both LGMD1, LGMD2 DSNL and DSNR
when the virtual stimulus is on an approaching trajectory. (c) & (d) The output of all VMPNs when the virtual stimulus is translating from one right to
left, then left to right. (e) The explanation of applied virtual visual stimuli. The colour combination of both background and foreground are tested in
groups.

FIGURE 12. Analysis of experiments on virtual stimuli. (a) The TTC of both LGMD1 and LGMD2, when challenged with approaching objects under
different object/background contrast settings. Notice that the LGMD2 only respond to dark objects in front of a bright background; (b) The peak
value of DSNs when challenged with translating objects from left to right. Showing the standard errors of logged data during the progress; (c) The TTC
of LGMD1 and LGMD2 when the moving speed of approaching object changes. (d) The peak value of DSNs when challenged with translating objects
with different motion speeds, where Cobj = −1. Showing the standard errors with errorbar.

responding time for an agent to take actions to avoid an
impending collision.

The relationship between DSN outputs and the translating
motion speed is also tested, as shown in figure 12d. The
results show that both the DSNs output increase along with
the moving speed, but selectively gradually saturates when
the speed of the object increases.

B. EXPERIMENTS WITH REAL-WORLD STIMULI
Comparing to computer-generated virtual stimuli, the visual
scene in real-world is noisy, caused by unwanted flashings
or shadows cast by poor illumination. Moreover, the object’s
motion speed cannot be strictly maintained as video do.
Therefore, the performance of proposed neural models should
be tested in the ‘‘real’’ dynamic scenes.

1) CHALLENGE WITH ROLLING BALLS
To test the postsynaptic visual cues fusion neurons and
demonstrate the ability to distinguish different motion pat-
terns successfully, a rolling ball is used as the visual stimulus
in the following experiments.

The experimental configuration used in this test is shown
in figure 13. Several billiard balls with four different pure
colours are used as visual stimuli, which the variety in colours
contribute to different brightness levels in the luminance
channel ranging from totally black to very light grey. The
object’s trajectory is defined by the approaching angle against
the robot’s median plane θ and a determined safe range d .
The object’s speed v is approximately 20 cm/s when crossing
the robot’s median plane. Sets of experiments are conducted

FIGURE 13. The set-up for object looming experiments. (a) The
illustration of defining the looming object’s trajectory. (b) The objects
used in the experiments, with four different colours. The image is
captured by the robot itself, stored with the original YUV format and
displayed without alteration. (c) The brightness channel of (b) that
motion detection models actually processes, which indicates the visual
stimuli and background’s real appearance of brightness levels.

in nine groups of motion trajectories, which are listed in
table 3. For each group of motion trajectories, experiments
are repeated for 20 times. During the object moving process,
the recognised visual motion cues from the compound model
are logged and compared in figure 14. The result of motion
pattern detection is shown in figure 15 and figure 16.
The neural outputs during the tests are measured, and

the response details in some typical scenarios are illus-
trated in figure 14. In the results, the performances of
designed VMPNmodels are consistent with our expectations.
Both LGMD1 and LGMD2 can recognise dark approaching
objects and produce spikes accordingly, but the LGMD2 pro-
duces slight excitation when a bright object is observed.
When the object is near-miss but not on a head-on collision
trajectory, both LGMD1/LGMD2’s response cannot reach
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TABLE 3. Experiment configurations of looming balls.

FIGURE 14. Model variables and outputs during a typical experiment with
real-world stimuli, showing the VMPNs’ outputs (upper plot), TMCIS
output dTMCIS (middle plot) and spiking outputs (lower plot). In the
output plots, horizontal dashed lines indicate the threshold for shown
models. Vertical dashed lines indicate the time when a collision happens,
or the stimulus cross the median plane. The decision of recognised
motion is made by the uppermost spiking neuron shown in the
spiking plot.

the threshold to produce any spikes. The TMCIS formed by
two DSNs can successfully recognise translating objects in
certain scenarios. In object approaching scenarios, although
both DSNs are triggered vigorously, their divergence is too
small to contribute a sound output in TMCIS. The decision
making of visual cues fusion neurons is also illustrated in the
figure. The uppermost spike is the corresponding fused neural
output that represents the current visual situation.

The recognised visual motion results are briefly counted
in figure 15, which shows the decisions with a head-on
colliding object with varying brightness levels. For white

FIGURE 15. The performance of motion pattern recognition evoked by a
head-on colliding object with varied colours. (a) The counted results of
recognised motion patterns of the head-on colliding object. The CORRECT
decision is marked with a blue bar. (For white and pink objects, the bright
approaching results are considered as ‘‘correct’’. For red and black
objects, dark approaching are considered as ‘‘correct’’.) The maximum
chance of correctly recognise a motion pattern is 1 (100%). (b) The ratio
of detected bright approaching and dark approaching results vs.
different ball colours.

and pink visual stimuli that are brighter than the back-
ground, the ViMDNN model showed more bright approach-
ing results than rest of the decisions, however, for red and
black visual stimuli, the dark approaching result is preferred.
The figure 15b showed that the object’s brightness affects the
probability of what category the object would be classified.
The total error rate (other decisions other than two types of
collision) is less than 10%.

In figure 16, the results of challenges with a single black
ball but on different translating paths are shown. For objects
moving not far away from the robot, most of the translating
motion can be recognised and separated correctly. However,
for the motion happening far away from the robot, the scene
has a higher chance to be treated as safe rather than a trans-
lational motion. Notice that in some cases, the ball suddenly
appears and passed by, an unknown scene might be prompted
due to the excitation of FFI cell in LGMD1 brought by the
fast brightness fluctuations.

2) EXPERIMENT WITH ROBOT BEHAVIOUR CONTROL
In the experiments above, it has been demonstrated that each
of the VMPNs can reliably detect specific motion patterns,
and the visual cues fusion neurons, including the TMCIS, can
integrate and fuse the visual cues and make a final decision.
Now the motor commands are associated with each recog-
nised visual motion situation to test whether the integration of
VMPNs in a miniature mobile robot can trigger responding
actions robustly.
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FIGURE 16. The ratio of recognised results stimulated by a black ball with
different motion trajectories (approaching angles). The definition of
motion trajectories is listed in table 3. For objects translating 90◦ far
away (last figure), both translating and safe decisions are considered as
correct.

An experiment arena is built for the Colias-IV robot to run
freely inside. The arena is about 70x60cm2 surrounded by low
barriers which leave the robot’s view unblocked to the open
laboratory environment. An obstacle (a billiard ball described
in previous experiments) is used as the visual stimulus. The
path of the obstacle can be controlled when repeated.

The robot is set free from a fixed position inside the arena.
Before it detects an obstacle in front or translating in front,
it remains a certain course. Four kinds of visual events are
employed to challenge the robot: 1) fixed position dark loom;
2) fixed position bright loom, 3) object translating from left
to right and 4) object translating from right to left. Testing
scenarios are repeated 50 times each. The obstacle used in
the experiment is a black ball as dark loom and a white ball
as the bright loom. The motion command rules responding
to the visual obstacle is kept simple but clear enough to be
recognised, as described in table 4.

The robot’s path with correct responding to the testing
event in this experiment are illustrated in figure 17, and the
data conclusion of the experiment is illustrated in figure 18.
A top-down camera tracks the robot’s path by the Why-
con [73] tracking marker carried on top of the robot.

From the observed results, the following analysis can be
given, that 1) the proposed ViMDNN model can detect most
of the dynamic visual motion events and corresponding trig-
ger reactive motor commands. 2) The average success rate
(as indicated in figure 18 ) of detecting a visual stimulus
correctly with our proposed systems is slightly more than
85%. 3) The Distance to Collision (DTC) is nearly constant,
which demonstrates the robustness of the ViMDNN model.
However, evidence from the previous study proves that DTC
would increase as the moving speed gets faster [42], while the
TTC decreases that allowing less time to respond to a certain
event, according to the results depicted in figure 12c.

FIGURE 17. Illustration of some typical robot behaviours responding to
each kind of recognised visual stimuli. The experiments are recorded by a
camera above the arena. (a) The recorded video during a right translating
event to show the experiments’ set-ups, showing the paths of the robot
and the obstacle during the period; (b-f) The typical response to certain
visual stimuli showing the robot path and the position (trajectory) of the
obstacle. The start point of the robot in each trace is marked by a red
triangle. The definition of assigned motion command is listed in table 4.
Particularly in (f), shows the occasionally occurred near-miss trajectories
when conducting experiments.

It should be noted that compared to the study of a single
visual model on a micro robot such as LGMD2, it is difficult
to present different types of visual stimuli recognisable and
countable rather than looming only in a long-term arena run
setting. Within an arena, the proposed method may be able to
demonstrate the robustness in responding to looming, it can
hardly show the discrimination between looming and other
different visual stimuli. In future work, we plan to create a
‘‘playground’’ that contains more realistic moving objects for
motion perception experiments.

V. DISCUSSION
In biology, both LGMD1 and LGMD2 are believed to be
involved in triggering collision avoidance behaviours in
locusts; however, their exact roles and actual neural connec-
tions are still unknown. A bio-plausible computational model
could be a useful tool to unravel the mechanisms behind
these fascinating animal behaviours. One good source of
such speculation stems from the anatomy and behavioural
studies of young locusts [21], in which the LGMD2 grows
to a higher state of maturity than the LGMD1 in younger
locusts, especially for newborn and first instars. Meanwhile,
the ‘‘startling’’ behaviour is observed more frequently in
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TABLE 4. Actions to be taken by each recognised visual motion.

FIGURE 18. The ratio of actions taken by the robot in responding to
different visual stimuli, in which each action indicates a recognised
motion pattern described in table 4. Each set of experiment is repeated
for 50 times.

younger instars when tested with dark looming stimuli.
By assuming that LGMD2 plays the dominant role in detect-
ing and reacting to dark approaching objects during locust’s
young period, with slighter and delayed reactions (‘‘startle’’)
as opposed to stronger and immediate reactions (‘‘hiding’’),
the proposed visual cue fusion neurons provide a compelling
explanation of the biological behavioural studies.

Implementing complex visual algorithms into embedded
processors is not an easy task. In the proposed model,
the scale of neurons is tailored to fit the resources available,
while methods are used to ensure real-time specifically to
ensure the computation is almost constant and within the
duration of awhole frame. If the requirements of compactness
increase, there will be further room for optimisation through
the use of a sparse matrix to store and access data, expand-
ing loops into linear calculations, using bit-shift calculations
instead of multiplying or dividing, and taking advantage
of faster accessing RAM space or using Direct Memory
Access (DMA) channels etc.

The parallelism of ViMDNN can be achieved at two levels.
Firstly, for each of the presynaptic VMPNs, the layers formed
by cell arrays are implemented by low-level operations such
as multiplication and accumulation. This internal consis-
tency benefits from parallel processing. Secondly, VMPNs
employed in the ViMDNN are involved in minimum data
exchange during their processing except for the signal input
from the shared P layer. Therefore, the order of calculation
of different VMPNs does not affect the result which is advan-
tageous for multithreading. Meanwhile, unique functions of
different VMPNs, such as the selectivity to dark objects and

the direction selectivity, are achieved by parameterised and
re-configurable parts of the E-LMGD. This guarantees the
ease of accessibility to specific functions. On the platform of
Colias-IV, due to the constrain of hardware resources, only
four VMPNs have been implemented. When a platform with
better support for parallel computing can be utilised, such as
Field Programmable Gate Array (FPGA) or even Application
Specific Integrated Circuit (ASIC), a ViMDNN with more
complex motion selectivity may be conveniently designed.

This work provides a possible solution for low-cost and
reliable visual motion perception on micro robot platforms
with constrained computational resources. There are two
methods to implement the ViMDNN model on other robot
platforms. Firstly, the ViMDNN model may be applied via a
mainstream microcontroller which has been widely adopted
by other robot platforms. Therefore, the model can be easily
migrated onto these robots with minor tailoring and mod-
ifications. Secondly, thanks to the modular design of the
CSU module which contains all the necessary hardware
resources for data acquisition and processing, the CSU can
be regarded as a ‘‘plug and play’’ module which can be
easily attached and integrated within other robot platforms to
achieve the desired functions. This is highly advantageous for
multi-robot systems such as the bio-inspired swarm robotics
research [74].

VI. CONCLUSION
In this paper, we have proposed a bio-inspired visual motion
discrimination neural network (ViMDNN) for micro mobile
robots to enable them to effectively react to or interact with
the visual events in dynamic visual environments. Equipped
with the proposed ViMDNN, a micro mobile robot with a
tiny camera and an embedded processor can robustly detect
different visual motion cues in real-time at a rate of 30 frames
per second and respond with different behaviours accord-
ingly. The compact modularised ViMDNN is realised with a
bio-plausible fusionmethod to integrate multiple motion cues
based on E-LGMD. The functionalities and the robustness
of the proposed system have been demonstrated and verified
with systematic experiments. The proposed embedded visual
system shows the possibility of introducing rapid and reliable
reactive control strategies to micro-robots in spite of their
constrained computational resources. In the future, more inte-
gration methods for sequential visual cues under constrained
computing resources will be investigated.
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APPENDIX
A. THE NOTATION OF SIGNALS AND VARIABLES
1) The neuron layers are grid-shaped 2D gray-scale images.
Each pixel (neural cell) in most layers is stored as 8-bit
unsigned value (0-255), except in the G layer which each cell
is 16-bit unsigned value (0-65535). The input image format
is YUV and is stored by YUYV format, that every two pixels
take 32-bit in total.

2) The processing sequence for each frame is labeled with
index (f ) . A neuron layer at frame f from the processing
sequence are labelled in the form of P(f ), SON(f ), G̃(f ) and
so on.

3) Individual cell element at coordination (x, y) of a certain
layer is described in the form such as S(x, y, f ).

B. THE BOUNDARY ISSUE OF CONVOLUTION
OPERATION
Considering the boundary issue, the calculation of convo-
lution for image border ring is omitted out. For example,
we have input layer I with size M × N and a kernel K with
square size (2r + 1)× (2r + 1). Their convolution operation:

C = G⊗ K (25)

is defined as:

C(x,y)=


0 for x=0, ...,r−1,M−r, ...,M−1,

y=0, ...,r−1,N−r, ...,N−1
r∑

i=−r

r∑
j=−r

I(x+i, y+j) · K(i+r, j+r) otherwise
(26)

C. THE PRE-S LAYER CALCULATION
B. The operation of [x, y]⊕ and [x, y]� in calculating pre-S
layers are defined as follows:

[x, y]⊕ =

{
min(x, y) if x > 0 and y > 0
0 otherwise

(27)

[x, y]� =

{
−max(x, y) if x < 0 and y < 0
0 otherwise

(28)
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