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ABSTRACT A potential limitation of motor imagery (MI) based brain-computer interface (BCI) (MI-BCI)
is that it usually requires a relatively long time to record sufficient electroencephalogram (EEG) data
for robust feature extraction and classification. Moreover, due to the non-stationarities in EEG signals,
the offline training model has poor adaptability and classification ability in cross-session or sample-wise
online testing. Methods: To address the problems, we propose a model updating scheme with adaptive and
fast operation. Based on the Common Spatial Pattern (CSP), we propose an online and fast generalized
eigendecomposition method by Recursive Least Squares updates of the CSP filter coefficients (RLS-CSP),
which allows incremental training for CSP spatial filters. Additionally, we present an Incremental Self-
training Classification algorithm based on Density Clustering (ISCDC) to select high-confidence samples
to update spatial filters and classifier, and classify at the same time. Results: We conducted extensive
experiments to validate the efficiency of the proposed adaptive CSP and classifier on the BCI III_IVa and
BCI III_V data sets. Experimental results demonstrate that RLS-CSP outperforms significantly in a small
sample setting (SSS), and ISCDC has great adaptability in cross-session and non-stationary EEG signals.
The results indicate that our proposed methods are feasible to improve the real-time performance of online
BCI system.

INDEX TERMS Brain-computer interface, common spatial pattern, recursive least squares, self-training
classification, density clustering.

I. INTRODUCTION
Brain-Computer Interface (BCI) is a human-computer inter-
action technology. It does not rely on the peripheral nerve and
muscle system and aims to provide a bridge between human
brain and external devices [1], [2]. It has demonstrated broad
application prospects in the rehabilitation of disabled people
and auxiliary control of healthy people [3].

MI-BCI generates correlation signals by thinking, which is
accompanied by event-related desynchronization and event-
related synchronization (ERD/ERS) in functional motor
areas [4], [5]. Effective characterization of ERD/ERS phe-
nomenon is of vital importance to a MI-BCI system.
The Common Spatial Pattern (CSP), is a widely used a
time-spatial feature extraction method in MI-BCI system,
which is effective to extract the frequency band variances as
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features [6], [7] by conducting spatial filtering on multichan-
nel simultaneously [8].

A. SMALL SAMPLE SETTING
CSP is highly dependent on sample-based covariance [2],
and is very sensitive to noise and prone to overfitting in a
small sample setting (SSS) [9]. The regularization CSP is
developed to estimate a covariance matrix by adding a-priori
information into the CSP learning process, under the form of
regularization terms [10], [11]. The regularization CSP can
be implemented in two levels. One method is performed at
the covariance matrix estimation level, since spatial covari-
ance matrix estimates can suffer from noise or small train-
ing sets. The other approach is regularizing CSP at the
level of the objective function itself. Tikhonov Regularization
CSP (TRCSP) reduces deviation by adding identity matrix
to the denominator of the objective function to constrain the
norm of spatial filters [12], [13]. TRCSP performs equal
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weighted penalty on all signal channels, whereas it ignores
the particularity of the channels in reflecting region. There-
fore, the weighted Tikhonov Regularization CSP (wTRCSP)
is improved based on TRCSP by introducing priori infor-
mation of channels weights, which can be obtained from
training samples of auxiliary objects. However, wTRCSP
ignored the personality and individual differences between
auxiliary subjects and the target subject. Invariant CSP (iCSP)
maintains the robust of spatial filters under given noise by
adding general invariances to the objective function [15].
However, in order to compute the penalty covariance matrix,
an extra artifact recording and additional preprocessingmeth-
ods are needed. Complex CSP (CCSP) uses the samples
of other subjects to compensate for the estimation bias of
covariance matrix [16], which may aggravate the estimation
bias due to the differences between subjects. In Regularized
CSP with Selected Subjects (SSRCSP), samples of other
subjects are selectively added into covariance matrix, how-
ever, when the data set is large, the selection process takes
a long time [9].Besides, a filter band regularization with
CSP(FBRCSP) [2] has been proposed to overcome depen-
dence on the frequency and covariance matrix estimation,
which a regularization CSP [9] is worked as spatial filters on
each frequency filter.

Moreover, subject-to-subject feature transfer provides a
promising approach to learn reliable features from the lim-
ited data of the target subject with help of sufficient data
from other subjects [17]–[19].A sparse representation-based
classification (SRC) scheme has demonstrates its advantage
in exploring potential relationship of CSP features among
subjects [20]. Based on SRC, the Sparse Group Representa-
tion Model (SGRM) aims at finding out the most significant
training feature from both the target and other subjects by
exploiting two norm regularizations[8].A sparse filter band
CSP (SFBCSP) [21] is proposed to improve the selection of
filter band in a supervised way by exploiting sparse repre-
sentation learning [20], [22], and a temporally constrained
sparse group spatial pattern (TSGSP) [22],for the simultane-
ous optimization of filter bands and time window within CSP
to further improve accuracy ofMI-related EEG. However, the
sparse-based method represents a linear relationship of all the
training samples, which puts forward higher requirements on
the quality of the training samples [20].

It should be noted that all the regularized-based or
sparse-based CSP algorithms are affected by their hyper-
parameters. However, the parameter optimization based on
cross-validation is relatively time-consuming and requires
additional dataset for validation, which inevitably produces
parameter deviations in SSS [9], [20]. Besides, the parameters
need to be re-determined when adding new samples, which
limits the practicality of BCI system to some extent.

Aiming at time-consuming and poor adaptability of the
offline regularization CSP in MI-BCI system, this paper
proposes RLS-CSP, an online and fast generalized eigen-
decomposition method, which updates the filter coeffi-
cients by Recursive Least Squares (RLS). Compared with

FIGURE 1. The proposed online training and adaptation scheme.

regularization CSP that relies on batch computing, RLS-CSP
allows adding testing samples to alleviate the overfitting
and improve the adaptability of the RLS-CSP filters. How
to select high-confidence samples is very important to the
performance of RLS-CSP.

B. NON-STATIONARITY IN THE TESTING PHASE
Because of the non-stationarities in EEG, the feature dis-
tribution change obviously across sessions. Therefore, spa-
tial filters adaptive improvements are necessary to maintain
their high performance in a long duration. One of the ways
to keep CSP adaptive is to update the initial spatial filters
with high-confidence testing samples [23]–[25].To evaluate
the confidence, this paper proposes an Incremental Self-
training Classification method based on Density Cluster-
ing (ISCDC) by combining Density Peaks Clustering (DPC)
and Density-Based Spatial Clustering of Applications with
Noise (DBSCAN). In ISCDC, the self-training method based
on density peaks is redesigned to classify in SSS, and quantify
the reliability of classification. Moreover, a parameter-free
local noise filter based on DBSCAN is proposed to filter out
mislabeled instances. Compared with existing classifications
used in MI-BCI, the ISCDC can remove mislabeled samples
by exploiting the information of both labeled data and unla-
beled data, and assess the reliability of classification.

Fig.1 demonstrates the framework of our proposed
approach for a simple-wise online learning. The main con-
tributions of this work are as follows.
1) Aiming at feature extraction in SSS, this paper pro-

poses an adaptive CSP method (RLS-CSP), which allows
incremental updating covariance matrix and fast decompos-
ing eigenvectors by RLS. The RLS-CSP has two advantages:
a) allows incremental computation of the filter coefficients
which is efficient regarding the required memory and compu-
tational effort, and b) allows the incorporation of new samples
to adapt the current filter, improving overfitting gradually.
2) Adaptation classification of time-varying EEG, a clus-

ter classification method based on density clustering is pro-
posed to execute reliability evaluation on testing samples,
remove outliers, and adaptively update cluster centers and
spatial filters. Moreover, that distinguishes from recent inves-
tigated batch-base clustering [26-29], our algorithm per-
forms efficient classification in SSS, and is applicable in
sample-wise online BCI.
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3) In the case of SSS and cross-session, A series of
detailed experiments are designed, with RLS-CSP for feature
extraction and ISCDC for classification.

The rest of this paper is organized as follows. Section II
details the basic principle of proposed RLS-CSP algo-
rithm. Section III describes the proposed adaptation classifi-
cation and the implementation framework of our algorithms.
Section IV provides a detailed description of the experiment
design. Section V evaluates the performance of our method
on two datasets. Finally, the conclusions and future work are
presented in Section VI.

II. ADAPTIVE CSP SPATIAL FILTERS IN SSS
Since the CSP algorithm is the basis of ourmethod, we shortly
describe it in the beginning. Afterwards, we introduce the
RLS feature decomposition method [30] to incorporate
new arrival samples to fit the current spatial filters in an
application.

A. BASIC CSP
Suppose Xc ∈ RMxT represent a single-trail time-space
matrix, with M channels and T samples in each channel.
We suppose except for different cognitive tasks, the matrix
and recording conditions are the same in two classes indexed
by c ∈ {1, 2}. CSP aims at learning spatial filters which
maximize the variance of band-pass filtered EEG signals
from one class while minimizing their variance from the other
class, which its objective function can be defined as:

g(ω) = argmax
ω

ω
∑

1 ω
T

ω(
∑

2)ωT

subject to ω(
∑

2
)ωT = K (1)

where
∑

c is mean covariance matrix for class c, ω denotes
spatial filters with K a real constant. Using the Lagrange
multiplier method, this constrained optimization problem
amounts to extremizing the following function:

L(ω, λ) = ω
∑

1
ωT − λ(ω(

∑
2
)ωT -K) (2)

The spatial filters ω extremizing L are such that the deriva-
tive of L with respect to ω equals zero:∑

1
ω = λ(

∑
2
)ω (3)

Equation (3) is a standard eigenvalue decomposition prob-
lem. The spatial filters ω are the eigenvectors of V =

(
∑

2)
−1∑

1, which correspond to its largest and lowest eigen-
values. The extracted features are the logarithm of the EEG
signal variance after projection onto ω.

Obviously, the optimization of the spatial filter is based
on the variance estimation. However, in SSS, the covariance
matrix estimation is overfitted [9]–[12]. Also, non-stationary
factors such as noise, fatigue and emotion lead to the devia-
tion in spatial filter [14], [15]. One way to solve this problem
is to adjust spatial filters adaptively through test samples.

B. RLS BASED CSP
The optimal spatial filter of (3) is a standard generalized
eigendecomposition. Instead of using the QRD and SVD,
we introduce an incremental approach based on the recursive
least squares (RLS) method [31].

All the generalized eigenvalues are stationary points of (3).
Hence the formula is transformed as:∑

1

ω =
ω
∑

1 ω
T

ω(
∑

2)ωT
∑

2
ω (4)

Left multiplying (4) by
∑
−1
2 becomes:

ω =
ω
∑

2 ω
T

ω(
∑

1)ωT
∑−1

2

∑
1
ω (5)

Here Recursive Stochastic algorithm [27] is used to
approximate the maximum eigenvector of the n th iteration
as:

ω1(n)
ω1(n− 1)

∑1
2(n)ω1(n− 1)T

ω1(n− 1)(
∑1

1(n))ω1(n− 1)T

∗[
∑1

2
(n)−1

∑1

1
(n)ω1(n− 1)] (6)

where ωi(n) represents the ith eigenvector of nth iteration,∑i
c(n) denotes the c-class covariance matrix corresponding

to the ith spatial filter.
Equation (6) explains how to approximate the largest

eigenvector in the nth iteration with the largest generalized
eigenvector in the n− 1th iteration. Especially, the eigenvec-
tors of ω are arranged in descending order.
Computation

∑1
2(n)
−1: According to Sherman-Morrison-

Woodbury theorem, the inverse of
∑1

2(n) can be
imp-lemented using recursive estimators, then,{∑1

2
(n)−1 =

∑1

2
(n−1)−1−

∑1

2
(n−1)−12

∑1

2
(n−1)−1

2 = X2(n)(I + XT2 (n)
∑1

2(n−1)
−1X2(n))XT2 (n)

(7)

where Xc(n) denotes new sample of c-class in n th iteration,
the superscript T denotes the transpose of a matrix.
Covariance matrix

∑1
c(n): The covariance matrix can be

updated by:∑1

c
(n) =

∑1
c(n− 1)+ Xc(n)XTc (n)

2
(8)

Lower-Order Filters: By using (6) the first spatial filter
is obtained. For the minor components, a standard deflation
procedure [26] is considered:

∑i

1
(n) = [I +

∑i-1
1 (n)ωi−1(n)ωTi−1(n)

ωTi−1(n)
∑i-1

1
(n)ωi−1(n)

]
∑i-1

1
(n)

∑i

2
(n) =

∑i-1

2
(n)

(9)

Hence the low-order filer ωi(n) is given by (6) with
∑1

1(n)
and

∑1
2(n) replaced by

∑i
1(n) and

∑i
2(n).
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Note that the deflation given by (9) does not increase the
complexity of the algorithm because all the terms in (9) are
pre-computed in pre-iteration, and each filters ωi(n) in n th
iteration depends on the preceding iteration filter ωi(n− 1).

The complete algorithm is detailed in Alg.1.

Algorithm 1 RLS Based CSP(RLS_CSP)

Input: Training data Xi ∈ RMxt , (i = 1, 2, . . .N )
with labels Yi ∈ RNxt , (i = 1, 2, . . .N )

Testing data Xt ∈ RMxt , (t = 1, 2, . . .N )
Output: The new spatial filter ω̂
1. Initialization:∑1

2(0)\6
1
2 (0)\

∑1
2(0)
−1
;ω(0)

n = 0 and ω(0) = ω(0)
2. Begin:
While the new sample available do
counter n++
Update

∑1
1(n) or

∑1
2(n) by (8), and

∑1
2(n)
−1 by (7)

for i ∈ [1, 2, . . .m] do
if i > 1 then
using (9) to get

∑1
1(n)

ωi(n− 1) = ω̄(n− 1)
Calculate ωi(n) using (6)
Normalize ωi(n)
Save ωi(n) in ω̂(n)

Get ω̂(n)

III. ADAPTIVE CLASSIFICATION OF TIME-VARYING EEG
Notations: CoNb(x) is the set which lies in the region with
x as the center and cutoff distance distcutoff as the radius,
defining as CoNb(x) =

{
xi ∈ D|dist(xi, x) ≤ distcutoff

}
.

ECoNb(x) is defined as ECoNb(x) = {xi ∈ D|dist(xi, x) ≤
λ ∗ distcutoff }, where λ = 1, ...N ,N is a non-zero integer.
ECoNb(x) is the set which lies in the field of extended
CoNb(x).
Xi ∈ RMxT is a single-trail EEG signal, with M channels

and T sample points.
xi ∈ Rm is a m-dimension feature vector.
L = {(x1, y1), (x2, y2), . . . , (xn, yn)} is the set of all labeled

samples.
U = {xu1 , x

u
2 , . . . , x

u
t } is a training set without labels.

A. DENSITY CLUSTERING-BASED CLASSIFICATION
Peak density clustering is a widely used unsupervised cluster-
ing method, which is based on the idea that clusters centers
have a higher density than their neighbors [26]. For each
sample xi two quantities have to be present: its local density
ρi and its distance δi from points of higher density.
The local density ρi of data point xi is defined as:

ρi =
∑
xj

φ(dist(xi, xj), distcutoff ) (10)

where distcutoff is a cutoff distance, φ(x, y) is usually defined
as a sign function, i.e. φ(x, y) = 1 if x−y ≤ 0 and φ(x, y) = 0

otherwise. However, for computing the density for cases in
SSS, the exponential kernel is suggested φ(x, y) = exp−x

2/y2 .
δi measures minimum distance between the sample xi and

any other point with higher density:

δi =


min
j,ρj>ρi

dist(xi, xj)

max
j,ρi≥ρj

dist(xi, xj)
(11)

The cluster center is quantified using relatively large δi
and ρi. Then, the samples are clustered in the direction of
decreasing density with the cluster center as the starting
point. Similar to the DPC principle, DBSCAN calculates
the local density by εi− neighborhood, and the number of
samples in neighborhood is the wanted density. Points with
a density higher than MinPts are considered cluster cen-
ters. Eventually the samples are classified according to the
neighborhood accessibility starting from the central clus-
tering. Readers can refer to [27] for more details about
DBSCAN.
Once the cluster centers are selected, the testing samples

can be classified by calculating the distance to the cluster
centers. However, for time-varying samples, especially in
online BCI, the clustering-based classification has the follow-
ing disadvantages:
1) Because of the limitation in SSS, the obtained cluster

center is a local optimum under current samples, not a global
one for the whole test set.
2) Batch-based updating method for cluster center burdens

time-consuming, which makes it unsuitable for sample-wise
online BCI system.
3) Due to the non-stationarity, the influence of test samples

on model is different, some are conducive to clustering, and
others are not, so filtering outliers is of particular importance
for a robust classifier.

B. ADAPTIVE CLASSIFICATION FOR A TIME-VARYING
SITUATION: ISCDC
Aimed at above problems, an adaptive density classifi-
cation method (ISCDC) is proposed. It uses incremen-
tal computation to reduce time consumption, automatically
updates cluster centers through sample distribution, and
performs confidence evaluation and parameter-free noise
filtering.
Fig.2 shows a general framework of ISCDC, which can

be divided into three steps. At the first step, we use DPC
to conduct a supervised classifying on a small amount of
labeled data, and construct the neighborhood of each labeled
point CoNb(x).Step two is a standard self-training process,
where unlabeled samples are initially predicted according
to the density with c-class points. Besides, we introduce a
concept of ECoNb(x) to assess the reliability of pre-predicted
labels and remove noisy instances. Then, continuously add
high-confidence samples to the labeled data to expand the
neighborhood of the labeled samples and update the spatial
filter.
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FIGURE 2. The framework of ISCDC.

1) DISCOVER THE UNDERLYING STRUCTURE OF TRAINING
DATA
Unsupervised DPC clustering may cause mislabeling
[25], [28]. Therefore, we utilize labeled instances to obtain
the best distcutoff by adjusting distcutoff and repeatedly clus-
tering. The expected result is that the clustering results
of the training samples are as consistent as possible with
the true labels, and distcutoff is relatively small. After that,
we construct the neighborhood set ({CoNb(xi)}) of training
samples with distcutoff being radius in density decreasing
order. Algorithm 2 illustrates the procedure of mining the
structure of the training samples by our algorithm, and the
output is the set {CoNb(xi)}.

Algorithm 2 Discover Structure (DS)
Input: L = {(xi,yi)}, distcutoff , ε
Output: CoNb(xi), i = (1, 2, . . . , l), l < n
1: Cluster using DPC on {xi}with cutoff distcutoff
2: Validation with the labels {yi}, and adjust distcutoff
3: repeat step1&2 until recognition error < ε

4: for each xi in L
CoNb(xi) = find (dist(xi, xj) < dist ′cutoff )
If CoNb(xi) == CoNb(xj)
delete CoNb(xj)

end for

2) CLASSIFICATION AND CONFIDENCE EVALUATION OF
TESTING SAMPLES
Equation (12) indicates that in Euclidean space, the closer the
point is to a group of samples, the higher the local density.
Therefore, we get an initial prediction on the tested sample
according to the density between the point and different types
of labeled ones. After that, it is crucial to assess the reliability
of the classification.

Inspirited by neighborhood-based clustering
(i.e. DBSACN), we introduce an extended neighborhood
method to quantify the confidence and remove outliers.
We suppose that there is no mutation between adjoining
samples of the same type, and the mislabeled sample has
a different label from its adjacent neighborhood. We use
CoNb(xi) to represent the neighborhood of a tested instance.
The distribution of the testing sample and training samples
generally consists of three situations, i.e. the neighborhood
of the tested point(CoNb(xi))(a) contains one category points,
(b) includes two categories points,(c) contains no points.
For the third case, an extended-CoNb(xi) (i.e. ECoNb(xi)) is
defined.

To quantify the confidence, we modify the definition of
harmfulness and usefulness of a sample xui in reference [31],
as follows:{

Harm (x) = N ({z|z ∈ ECoNb(x), l(z) 6= l(x)})
Help (x) = N ({z|z ∈ ECoNb(x), l(z) = l(x)})

(12)

Harm (x) indicates the number of instances z, where
ECoNb(x) contains z and z′ s label differs from that of x.By
contrast, Help (x) represent the number of a set that z ∈
ECoNb(x) and l(z) = l(x), where N indicates the number
of a set, l denotes the class label of an instance. According
to the (14), we can quantify the classification and filter out a
noisy point without any additional parameters.
Situation 1: The set CoNb(xui ) of point x

u
i contains only

one type of points. If Help
(
xui
)
= 0, xui is regarded as

an outlier and the initial classification result is revoked.
if Harm

(
xui
)
= 0, xui is considered reliable, which is benefi-

cial to supply the clustering distribution. So xui is incorporated
into training set and its neighborhood relationship CoNb(xui )
is preserved, and then its corresponding EEG signal Xui is
saved for RLS-CSP.
Situation 2: The set CoNb(xui ) contains two types of sam-

ples. IfHelp
(
xui
)
> Harm

(
xui
)
, it is considered that the initial

classification of xui is correct with a moderate confidence,
and then merge xui into training set, without its CoNb(xui ). If
Harm

(
xui
)
≥ Help

(
xui
)
, xui is treated as a noise point.

Situation 3: The set CoNb(xui ) contains no instances.
Under the circumstances, we construct a neighborhood
ECoNb(xui ) of x

u
i with the minimum λ(λ 6= 1), and then refer

to situation 1 and 2 to evaluate the instance xui . Significantly,
according to the constrain of ‘‘no mutation’’, if Harm

(
xui
)
=

0, the neighborhood ECoNb(xui ) of x
u
i and its single-trial Xui

are deleted.
At last, we can update clustering centers with themaximum

set of CoNb(xi),when the training scale accumulates to an
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appropriate size. Algorithm 3 describes the pseudo-code of
the proposed ISCDC.

Algorithm 3 The ISCDC

Input: testing feature set U =
{
xu1 , x

u
2 , . . . , x

u
t
}

Output: U ′ =
{(
xu1 , y1

)
,
(
xu2 , y2

)
, . . . ,

(
xur , yr

)}
, (r < t)

while xui ∈ U available do
1: Calculate local density ρc of xxi by (10)
2: Label xui according to ρc, and get CoNb

(
xui
)

3: if CoNb
(
xui
)
6= ∅

if Harm(x) == 0
save coNb

(
xui
)

save testing source signal
{
Xut
}
∪ Xui

update CoNb (xi) ∪ xui
else if Harm(x) ≥ Help(x)

delete noisy sample xui and CONb
(
xui
)

else if Harm(x) < Help(x)
delete coNb

(
xui
)

update CoNb (xi) ∪ xui

4: else
Search the minimum of ECONb(x)
if Harm(x) ≥ Help(x)
delete noisy sample xui and CoNb

(
xui
)

else
update coNb (xi) ∪ xui

5: update spatial filter ω̂ by
{
Xui
}
using Algorithm 1

IV. EXPERIMENT
This section presents a large number of experiments to sup-
port the following objectives:

1) Investigate how the performance of RLS-CSP is affected
by the size of training set and testing duration.

2) Investigate how the performance of ISCDC is affected
by the size of training set and testing duration.

3)Evaluate the efficacy of RLS-CSP combined with
ISCDC in continuous BCI system.

A. DATASET DESCRIPTION
1) BCI COMPETITION III DATASET Iva TERMED AS
DATASET 1
The dataset contains EEG signals recorded at 118 channels
with 1000 Hz sampling rate (downsamples to 100Hz in
this paper) from five subjects named ‘‘AA’’, ‘‘AL’’, ‘‘AV’’,
‘‘AW’’ and‘‘AY’’. For each subject, a total of 280 cue-based
trials are available (half for each class of MI). In each
trial, a cue was indicated for 3.5 s during which two MI
tasks were performed: (R) right hand, (F) right foot. Then
the cue was intermitted by periods of random length, 1.75
to 2.25 s, in which the subject could relax. See website
http://www.bbci.de/competition/iii/desc_IVa.html for more
details about the dataset.

2) BCI COMPETITION III DATASET V TERMED AS DATASET2
In this dataset, EEG was recorded from three subjects at
32-channel with a sampling rate of 512Hz for three tasks

left-hand movement, right-hand movement and word gen-
eration (in our experiment word-imagery was eliminated).
Each subject performs 4 sessions, each lasting 4 minutes
with 5-10 minutes breaks in between them. The subject per-
formed a given task for about 15 seconds and then switched
randomly to another task.

B. EXPERIMENT DESIGN
Dataset1 and Dataset2 were filtered by a 5-order Butterworth
band-pass filter of 8-30Hz. All trials were normalized before
the feature-extraction process, and two pairs of spatial filters
were selected for feature extraction.

For Experiment I, II and III were carried out on Dataset 1.
In each trial 3-second data was captured after o.5s of a cue.
In Experiment IV, Dataset2, a continuous data set, is used to
simulate the an online BCI system. The trial is captured by a
2-second-length sliding window with 1-second overlap.

The specific settings of each experiment are as follows:

1) EXPERIMENT I: RLS-CSP IN SSS
To investigate the performance of RLS-CSP in SSS, a set of
experiments were carried out with different size of training
set on each subject.

We randomly selected 30trials from each auxiliary sub-
ject (15 trials per class) and 0 to 140 trials from the target
subject for classifier training, and the rest 140 trials from
the target subject for testing. The hyperparameters β and γ
(from the set of 10 candidates {0.001,0.01,0.1, 0.2. . . ., 0.8})
and hyperparameter C in SVM were determined by five-fold
cross-validation on the calibration data.

RLS-CSP was compared against the conventional CSP as
well as other competing CSP:

CSP: the conventional CSP.
CCSP1: reduce the bias of covariancematrix by using other

subjects ’data with one parameter β [16].
TRCSP: a quadratic penalty β for the spatial filter [9].
SFBCSP: a regularization parameter β in SFBCSP, and

10subbands with 2Hz overlap were used, referred [21] for
details.

FBRCSP: 10subbands with 2Hz overlap for EEGfilter, and
R-CSP [10] with two parameters β and γ for the covariance
matrix estimation to extract features, referred [2] for details.

SGRM: two hyperparameters β and γ from 0.001 to 0.01
with an interval of 0.001 were suggested in [8].

2) EXPERIMENT II: RLS-CSP IN NON-STATIONARY EEG
To verify the adaptability of RLS-CSP to the time-varying
EEG, we designed the experiments in two scenarios: subject-
specific and subject- independent.

Subject-specific means that both training and test data are
from the same subject. we used 40trilas to initialize the spatial
filters and then analysed the feature distributions of sets of
the first-120trials (120st for short) and the second-120trials
(120nd for short), which two testing sets were organized in
chronological order. Furthermore, we defined a measurement
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TABLE 1. The average accuracy (%) for dataset1 in different training size by the RLS-CSP, CSP, SFBCSP, CCSP, TRCSP, FBRCSP and SGRM. the the highest
accuracy is marked in boldface.

to quantify the divergence of distributions.

DR =
Tr(Sb)
Tr(Sw)

(13)

where Tr(.) denotes the trace of a matrix, Sw is the scatter
within classes, Sb is the scatter between classes, and the result
DR represents the divergence ratio of feature distribution. The
larger the DR,the more separable the two sets of features are.

Subject-independent means that training data comes from
auxiliary subjects, and test data from the target subject. The
first 40 trials of each subject served as the training set and
rest 240 trials for testing. The propose RLS-CSP and ISCDC
were used for feature extraction and classification.

3) EXPERIMENT III: ISCDC IN SSS
The training set was randomly selected from 0 to 140 tri-
als for each target subject, and the rest 140tails for testing.
We evaluated the efficacy of ISCDC, by compared with DPC
and DBSCAN.

4) EXPERIMENT IV: THE EFFICACY OF RLS-CSP COMBINED
WITH ISCDC IN CONTINUOUS BCI SYSTEM
Dataset2 was used to simulate an online BCI system. The
first session was used in training phase and reflected a small
sample problem. The rest three sessions were used as test
data, which possessed the characteristics of time-varying and
instability of MI-EEG. We compared the online recognition
capabilities among the three algorithms: SGRM, SFBCSP
and RLS-CSP, which SFBCSP and RLS-CSP features were
classified with ISCDC. Here, we discarded the single-trial
with one more label.

V. RESULTS
A. A PERFORMANCE COMPARED WITH DIFFERENT
SPATIAL FILTERS
Table 1and Fig.3 summarize the experimental results for the
experiment I, where the average of five repetitions is reported
for each subject. Table1 shows that the RLS-CSP algo-
rithm achieves the overall superior performance compared
to other CSP-based algorithms in all scenarios. Specifically,
RLS-CSP achieved the highest average accuracy84.94%, and

FIGURE 3. Average accuracy of all subjects with respect to different
training sizes.

its performance was improved with the increase of training
size, which got its peak 90.46% when the number of training
size was 100triails. All of the methods tend to provide stable
classification when using sufficient (more than 80 trials)
training samples. The results illustrate that RLS-CSP method
can gradually remedy the covariance matrix estimation bias
caused by SSS, and update the spatial filter through high
confidence test samples to adapt to the time-varying in EEG.

Moreover, as shown in Table1, the average accuracy of
SFBCSP and SGRM were 83.09% and 79.92%, and these
of CCSP, TRCSP and FBRCSP were 77.19%, 77.71% and
81.04%, respectively. The sparse-based CSP algorithms were
better than the regularized-based CSP algorithms. The possi-
ble reason is that in the framework of group sparse learning,
compared with the regularization methods, it can eliminate
the less relevant features of the non-target objects more
rapidly, which contributes more significant test samples,
thus improves the classification performance. Besides, since
the optimal filter band is generally subject-specific, many
researches have proved the filter bands are more effective
than a wide frequency band.

Table2 and Table3 summarize the classification accu-
racy of each target subject using40and 80training trials,
respectively. Paired-sample t-test was used to investigate
the statistical significance of accuracy difference between
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TABLE 2. The accuracy (%) on dataset1. The number of trainig samples from target subject is 40. And p-values are derived by the paired t-tests between
results of RLS-CSP and each of other methods.

TABLE 3. The accuracy (%) on of each subject. The number of trainig samples from target subject is 80. And p-values are derived by the paired t-tests
between results of RLS-CSP and each of other methods.

FIGURE 4. The training time and test time for each CSP-based method.

these compared methods (see ρ-value). Table2 indicates
that RLS-CSP yields significantly higher accuracy than the
others in 40 trials and its performance difference is up to
95%. Nevertheless, Table3 shows sparse-based methods per-
form better than RLS-CSP. SGRM had a large performance
of 75.45% and 85.75% for subject ’AW’ and ‘AV’, and
SFBCSP was 84.67% for ’AY’. There was no significant
difference between SFBCSP, SGRM and RLS-CSP. In sum-
mary, RLS-CSP can improves the robustness and adaptability
of a feature model in SSS. However, its advantage is not
significantly when the training samples are sufficient.

Fig.4 depicts the training time and testing time for each
method, under the environment of MatlabR20116b on a com-
puter with 3.40GHz CPU(i5-7500, 8G RAM). In particu-
lar, RLS-CSP training time refers to a process of "offline

spatial filters initialization–ISCDC-based evaluation–spatial
filters update", and its testing time is the time to complete
"ISCDC-Classification and spatial filters update". The reg-
ularization CSP methods(CCSP,TRCSP, FBRCSP) required
much longer training time than the non-regularization
algorithms, and the FBRCSP was up to 410.204s. The
sparse-based methods(SGRM, SFBCSP) took a moderate
computational efficiency. It is because cross-validation for
parameter selection is time-consuming. Since RLS-CSP and
CSP did not need cross-validation, the training time was short
about 1.293s and 0.492s, respectively. The filter bands-based
CSP methods required much more testing time than other
algorithms. RLS-CSP method was about 1s for a single-trial
testing, which was acceptable in an online test. Therefore,
considered both time-consuming and performance in SSS,
RLS-CSP presents a comparable advantage than others.

B. EVALUATION ON THE EFFECT OF ADAPTION
To study the effect of non-stationarity on the feature dis-
tribution, experiments were carried out as described in
Experiment II. Fig.5 demonstrates the testing feature distri-
bution of CSP and RLS-CSP of subject ‘‘AY’’. The x-axis
represents the normal vector of the classifier of hyperplane,
and the y-axis is the largest PCA-component of testing fea-
tures. It can be seen from the Fig.5 that the feature distri-
butions of the two testing sets were transferred due to the
non-stationarities in EEG signal. For CSP, the features under-
went not only a rotation between 120stand 120nd but also
their distribution changed, which the 120st had smaller DR
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FIGURE 5. The test features for CSP and RLS-CSP of subject ‘‘AY’’.

than the latter. For RLS-CSP, the features were more robust
and discriminative than those of CSP, with DR of 0.806 and
0.862, respectively. Under the same testing set, the overlap
of RLS-CSP features was smaller than those of CSP, an DR
were improved 0.582 and 0.537, respectively. Therefore, it is
evident that RLS-CSP is more robust and discriminative than
CSP, and more powerful when dealing with time-varying
EEG signals.

Table 4 shows the recognition accuracy of RLS-CSP in
the subject-independent. It was evident that the performance
of RLS-CSP in the subject-independent scenario is poor,
which fully illustrated the impact of individual differences
on classification. Further observation showed that in general,
the accuracy of 120nd training set was higher than that of
the 120st. It demonstrates that RLS-CSP is adaptive and
can compensate for the initial deviation of the spatial filters.
However, once the deviation is too large, the repair degree is
limited. Therefore, RLS-CSP is more suitable for a subject-
specific scenario.

C. EVALUATION OF CLASSIFICATION PERFORMANCE
The effectiveness of RLS-CSP is based on the merging
high-confidence testing samples and filtering outliers. Table1
reports the results for ISCDC concerning different training
sizes and compares them with DPC and DBSCAN. As can be
seen in Table5 that ISCDCwas superior to other two methods

with different data sets for all subject, and the performance of
all methods were improved with the increase of training size.
This may be that in SSS (below 80tirlas in our experiments)
the cluster center is only a local optimum, not a global one,
so the recognition accuracy of DPC and DBSCAN depending
on the cluster center are poor, whereas ISCDC is based on the
distribution of all test features, the diversity of distributions
are conducive to ISCDC classification. Sufficient samples
can reduce the deviation of cluster center, and provide a
variety of sample distribution information, which expands the
neighborhood set of ISCDC, and improves the recognition
rate of the three algorithms. In addition, ISCDC has the
function of non-parameter singular point filtering, which can
gradually overcome the model instability caused by the poor
quality of training samples.

D. PERFORMANCE ON THE CONTINUOUS IMAGERY
To verify the application value of proposed adaptive scheme
in online BCI system, experiment IV was carried out on
Dataset II. Fig.6 demonstrates that SFBCSP has a high accu-
racy in the first session of all subjects, and the proposed
scheme in our paper performs better in the second and
third session. The average accuracies of our method were
78.91%, 70.41% and 59.14% respectively, and compared
with the winners (79.6%, 70.31% and 56.02%, respectively),
the algorithm used less training samples, which proved the
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TABLE 4. The accuracy (%) of subject-independent on two orderly sets. Note: The numbers in solid frames represent results of subject-specific.

TABLE 5. The average accuracy (%) for dataset2 in different training size by the ISCDC, DCP and DBSCAN method.

FIGURE 6. The performance of experiment IV on dataset II.

advantages of our algorithm in small sample online BCI.
The results indicate that our scheme is capable to update the
feature model and classification model, and can better adapt
to the online time-varying system.

VI. CONCLUSION
Aiming at the problems of long calibration time and poor
stability of an online motor imagery BCI system, in this

paper, a feature model based on recursive least square
method (RLS-CSP) is proposed. RLS-CSP uses recursive
least squares method to update the spatial filters, which
allows incremental computation of the filter coefficients and
incorporates new samples to update the filters. Moreover,
an adaptive density clustering classification (ISCDC) is pro-
posed to classify the testing sample and quantify its classifi-
cation confidence.

To verify the efficacy of RLS-CSP spatial filters in SSS,
we compared RLS-CSP with CSP, TRCSP, CCSP, SFBCSP,
FBRCSP and SGRM in different training sets. As shown in
Table 1, RLS-CSP demonstrates better performance. Fig.5
illustrates the feature distributions in RLS-CSP, which proves
that RLS-CSP provides more robust and discriminative spa-
tial filters than CSP. Meanwhile, RLS-CSP method is effec-
tive to non-stationary EEG signals in SSS. The self-training
classification (ISCDC) works for both classification and con-
fidence assessment. Table5 prove the adaptive classification
ability of ISCDC.ISCDC achieves excellent performance in
SSS and improves its stability by filtering outliers. By classi-
fying in continuous EEG (Fig.6), our propose scheme shows
the advantages for small sample setting situation and online
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BCI system. Our method provides a new insight to shorten
calibration phase and improve the adaptability of an online
BCI system.

However, due the individual difference, RSL-CSP has poor
recognition effect in subject-independent. In recent years,
transfer learning has shown its promise in coping with the
subject-transfer in BCI system [17]–[19]. Thus, a transfer
learning extension of our RLS-CSP model could be benefit
for coping with the inconsistency of data distributions. In this
way, less training samples are required to initialize a spa-
tial filter and improve the subject adaptability of RLS-CSP.
In addition, with the accumulation of training samples, the
computation cost of ISCDC will be increased. An alternative
solution is to delete those training samples that do not con-
tribute much to classification, which will be worth our future
investigation.
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