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ABSTRACT In this paper, we focus on the global stability analysis with respect to dynamical delayed
neural networks (NNs) that contain parameter uncertainties. Many investigations on the sufficient conditions
utilizing different upper bounds for the norm of interconnection matrices pertaining to the global asymptotic
robust stability of delayed NNs have been conducted. In this study, a new upper bound of the norm of
connection weight matrices is derived for the delayed NNs under parameter uncertainties. The key focus
is on how the new upper bound is able to yield minimum result with respects to some of the existing
upper bounds. We demonstrate that the new upper bound can lead to some new sufficient conditions
with respect to the global asymptotic robust stability of equilibrium point of the delayed NNs. The slope
bounded activation functions and Lyapunov-Krasovskii functionals (LKFs) are employed for formulating
the sufficient conditions of the equilibrium point of NNs. Moreover, the derived sufficient conditions are
independent on the time delay parameter. Numerical examples are provided and the outcomes obtained are
compared with those of the existing results subject to different network parameters.

INDEX TERMS Dynamical delayed neural networks, slope bounded activation function, interval matrices,
parameter uncertainties, robust stability analysis.

I. INTRODUCTION
In recent years, the role of neural network (NN) has been
significantly developed due to their successful applications
to different areas. Indeed, many different types of neural
networks (NNs), e.g. Hopfield, Cohen-Grossberg, Bidirec-
tional Associative, and cellular NN models, have been uti-
lized to solve various engineering problems pertaining to
combinatorial optimization, pattern recognition, image and
signal processing, etc. Recently, Amazon, Epinions, Face-
book and Twitter are running in the field of data science and
neural network science systems [1]–[4]. However, a common
challenge of NN hardware design and implementation is that
it is difficult to determine appropriate and accurate network
parameters. The issue of parameter fluctuation of NN imple-
mentation on VLSI chips is also unavoidable. The designing
process of NN includes numerous estimation errors in the
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measurement of important data such as synaptic interconnec-
tion weights, fire rates of neurons, and signal transmission
delays. Nevertheless, it is possible to examine the range
of network parameters even in the presence of incomplete
information. In this regard, by using the interval theory of NN
connectionweight matrices, we can identify the upper bounds
with respect to the norm of intervalmatrices. Recently, a num-
ber of studies on the derivation of the upper bounds of the
norm of connection weight matrices have been conducted
[5]–[10]. Specifically, the sufficient conditions pertaining to
the NN global robust stability have been derived.

As reported in the literature, different kinds of NN sta-
bility analysis, such as global asymptotically robust stability
(GARS), exponential stability and complete stability with
time delays have been examined [7]–[14]. The Lyapunov sta-
bility theory, linear matrix inequalities, non-smooth analysis,
M-matrix theory have been used in the stability analysis of
delayed NN models. In this respect, the stability properties
of equilibrium point play a vital role in dynamical delayed
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NN models. In other words, it is important to examine and
understand the GARS of dynamical delayed NN models
under parameter uncertainties, as reported in [15]–[28]. It is
well-known that a delayed NN model usually includes a
delay parameter in the state of a neuron. However, it is very
interesting to add a delay to the neuron state and study their
effects. Many different types of time delays can be used,
e.g. constant time delay, discrete time delay, distributed time
delay, neutral time delay, leakage time delay etc. In this paper,
we concentrate on constant time delay NN models. We cover
mathematical modelling of NN dynamics with time delays,
inwhich the results have awide range of practical engineering
problems [29]–[32].

Motivated by the above account, we specifically examine
the global robust stability of dynamical time-delayed NN
models in this study.While several upper bounds with respect
to the connection weight matrices of dynamical delayed NNs
have been derived, we aim to obtain a new upper bound for
the connection weight matrices of this class of NN models.
Our study is significant because different upper bounds play
a major role in the determination of the sufficient conditions
pertaining to the global robust stability of dynamical delayed
NN models. Through this new upper bound, we are able
to formulate the sufficient conditions with respect to the
GARS of delayed NN models. In our analysis, the activation
functions are considered as unbounded, but as slope bounded
functions.

This paper is organized in the following manner. The
dynamical time-delayed NNmodel with interval technique of
network parameters is described. For the norm of connection
weight matrices, we derive a new upper bound in section II.
Also we give some new sufficient conditions with respect to
the global asymptotic stability using the new upper bound in
section III.We also restate some existing sufficient conditions
with respect to the stability of NN models in section IV.
A comparative study of numerical examples to illustrate the
effectiveness of our results over previously published results
of delayed NN models is presented in section V. Conclusions
are given in section VI.

A. NOTATIONS
We utilize the following notations for the norm of vectors
and matrices. Let w = (w1,w2, . . . ,wn)T ∈ Rn. The most
common vector norms are used, i.e., ‖ w ‖1, ‖ w ‖2, ‖ w ‖∞
have the corresponding definitions of ‖ w ‖1=

∑n
i=1 | wi |,

‖ w ‖2=
√∑n

i=1 w
2
i and ‖ w ‖∞= max1≤i≤n | wi |.

Suppose R = (rij)n×n, the following are the definitions of
‖ R ‖1,‖ R ‖2 and ‖ R ‖∞. ‖ R ‖1= max1≤j≤n

∑n
i=1 | rij |,

‖ R ‖2= [λmax(RTR)]1/2 and ‖ R ‖∞= max1≤i≤n
∑n

j=1 |

rij |. For any vector w = (w1,w2, . . . ,wn)T , | w | defined
as | w |= (| w1 |, | w2 |, . . . , | wn |)T . For any matrix
R = (rij)n×n with real entries | R | is defined as | R |=
(| rij |)n×n. In addition, given matrix R, its minimum and
maximum eigenvalues are denoted by λmin(R) and λmax(R)
respectively. A positive definite (or semi-definite) symmetric

matrix of R = (rij)n×n exists if wTRw > 0(≥ 0), for any real
vector w = (w1,w2, . . . ,wn)T . Given two positive definite
matrices H = (hij)n×n and R = (rij)n×n, H < R indicates
wTHw < wTRw for any real vector w = (w1,w2, . . . ,wn)T .

II. PRELIMINARIES
The considered dynamical time delayed NN model is repre-
sented by a set of differential equations:

dwi(t)
dt
= −ciwi(t)+

n∑
j=i

dijfj(wj(t))

+

n∑
j=i

eijfj(wj(t − τ ))+ Ji, i = 1, 2, . . . , n, (1)

where the total number of neurons is n and the ith neuron state
of the vector at time t is wi(t). In addition, eij and dij are
the connection weights between the ith and jth neurons with
and without time delays respectively; ci indicates the rate of
charge for the ith neuron; fj(·) denotes the activation functions
at time t and t − τ , with τ denotes the constant time delay.
Besides that, Ji represents the vector with constant input
between the neurons. The matrix vector form of equation (1)
is as follows:

ẇ(t) = −Cw(t)+ Df (w(t))+ E f (w(t − τ )+ J , (2)

where w(t) = [w1(t),w2(t), . . . ,wn(t)]T ∈ Rn, C =

diag(ci > 0), E = (eij) ∈ Rn×n, D = (dij) ∈ Rn×n,
f (w(t)) = [f1(w1(t)), f2(w2(t)), . . . , fn(wn(t))]T ∈ Rn and
J = [J1, J2, . . . , Jn]T ∈ Rn. The initial condition is w(t) =
φ(t) ∈ C([−τ, 0],Rn). The most common approach for han-
dling the delayed NNmodel is to make the connection weight
matrices D = (dij)n×n, E = (eij)n×n and C = diag(ci > 0) in
an interval, i.e.,

CI = {C = diag(ci) : 0 ≺ C � C � C ,
ie., 0 < ci ≤ ci ≤ ci, i = 1, 2, . . . , n}
DI = {D = (dij) : D � D � D, ie., d ij ≤ dij ≤ d ij,
i, j = 1, 2, . . . , n}
EI = {E = (eij) : E � E � E, ie., eij ≤ eij ≤ eij,
i, j = 1, 2, . . . , n}

(3)

By using equation (3), we can define matrices D∗, D∗, E∗

and E∗:

D∗ =
1
2
(D + D), D∗ =

1
2
(D − D). (4)

E∗ =
1
2
(E + E), E∗ =

1
2
(E − E). (5)

Definition 1: The NN model given in (2) with the net-
work parameters satisfying (3) is globally asymptotically
robust stable if the unique equilibrium point w∗(t) =
[w∗1(t),w

∗

2(t), . . . ,w
∗
n(t)]

T
∈ Rn of the model is globally

asymptotically stable for all C ∈ CI ,D ∈ DI ,E ∈ EI .
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Definition 2: A slope bounded function has some positive
constants ki such that

0 ≤
fi(w)− fi(v)
w− v

≤ ki, ∀w, v ∈ R w 6= v, i = 1, 2, . . . , n.

A slope-bounded activation function of fi is used in this study,
inwhich the class of functions is denoted by f ∈ ķ. Note that it
is not necessary for this class of functions to bemonotonically
increasing, differentiable, and bounded. The upper bounds
for the norm of the connection weight matrices D = (dij)
and E = (eij) of model (2) play a vital role for finding the
sufficient conditions with respect to the global robust stability
analysis. GivenmatricesD andE , four different upper bounds
of their norm have been discussed in the literature. So, we first
restate the four existing upper boundswith respect to the norm
of interval connection weight matrices D and E .
Lemma 1 ( [7]– [10]): A matrix E is defined by E ∈ EI

as in equation (3), E∗ and E∗ are the matrices defined as in
equation (5).
Let T1(E) =

√
‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET

∗ E∗ ‖2,
T2(E) =‖ E∗ ‖2 + ‖ E∗ ‖2,
T3(E) =

√
‖ E∗ ‖22 + ‖ E∗ ‖22 +2 ‖ ET

∗ | E∗ |‖ and

T4(E) =‖ Ê ‖2, where Ê = (êij) with
êij = max(| eij |, | eij |). Then, ‖ E ‖2≤ Ti(E), where

i = 1, 2, 3, 4.
Lemma 2 [25]: Suppose E ∈ EI is any matrix defined as

in equation (3), E∗ and E∗ are defined as in equation (5), then

‖ E ‖2 ≤ T5(E),

where T5(E) =√
λmax(| (E∗)TE∗ | +ET

∗ | E∗ | + | (E∗)T | E∗ + ET
∗ E∗).

Our major contribution of our current study is to derive
a new upper bound with respect to the norm of matrices D
and E . Specifically, we formulate the new upper bound with
respect to the norm of interval connection weight matrices D
and E in the following form.
Lemma 3 Suppose E ∈ EI is any matrix defined as in

equation (3), E∗ and E∗ are the matrices defined as in equa-
tion (5), then

‖ E ‖2 ≤ T6(E),

where

T6(E) =
√
λmax(| (E∗)TE∗ | +2ET

∗ | E∗ | +ET
∗ E∗).

Proof: If E ∈ EI , then eij can be written as follows:

eij =
1
2
(eij + eij)+ tij

1
2
(eij − eij), −1 ≤ tij ≤ 1,

(or)

E = (eij) =
1
2
(E + E)+1

1
2
(E − E) = E∗ +1E∗,

where 1 = (tij)n×n, i, j = 1, 2, . . . , n. For any vector w(t) =
[w1(t),w2(t), . . . ,wn(t)]T ∈ Rn, we can write

wTETEw = wT (E∗ +1E∗)T (E∗ +1E∗)w
= wT (E∗)TE∗w+ wT (E∗)T1E∗w

+wTET
∗ 1

TE∗w+ wTET
∗ 1

T1E∗w
= wT (E∗)TE∗w+ 2wTET

∗ 1
TE∗w

+wTET
∗ 1

T1E∗w
≤ | wT || (E∗)TE∗ || w |
+2 | wT || ET

∗ 1
T
|| E∗ || w |

+ | wT || ET
∗ 1

T
|| 1E∗ || w | .

Since | 1E∗ | ≤ E∗, we have

| wT || ET
∗ 1

T
|| E∗ || w | ≤ | wT | ET

∗ | E∗ || w |

and

| wT || ET
∗ 1

T
|| 1E∗ || w | ≤ | wT | ET

∗ E∗ | w | .

Therefore,

wTETEw ≤ |wT ||(E∗)TE∗||w| + 2 | wT | ET
∗ | E∗ || w |

+ | wT | ET
∗ E∗ | w |

= | wT |
(
| (E∗)TE∗ |+2ET

∗ | E∗ |+ET
∗ E∗

)
| w |

≤ λmax(| (E∗)TE∗ | +2ET
∗ | E∗ | +ET

∗ E∗)wTw
|| E ||22 ≤ λmax(| (E

∗)TE∗ | +2ET
∗ | E∗ | +ET

∗ E∗)

|| E ||2 ≤
√
λmax(| (E∗)TE∗ | +2ET

∗ | E∗ | +ET
∗ E∗).

(or)

‖ E ‖2 ≤ T6(E).

Hence, the proof is completed. �
Remark 1 The results in Lemma 1-3 always hold for the

connection weight matrix D, i.e., ‖ D ‖2≤ Ti(D), i =
1, 2, 3, 4, 5, 6.
Lemma 4 For any matrix E ∈ EI , T5(E) ≤ T1(E) and

T6(E) ≤ T1(E).
Proof: Since

| (E∗)TE∗ | +ET
∗ | E∗ | + | (E∗)T | E∗ + ET

∗ E∗

=
1
2
[| (E∗)TE∗ | +2ET

∗ | E∗ | +ET
∗ E∗+ | (E∗)TE∗ |

+2 | (E∗)T | E∗ + ET
∗ E∗].

‖| (E∗)TE∗ | +ET
∗ | E∗ | + | (E∗)T | E∗ + ET

∗ E∗ ‖2

=
1
2
‖ [| (E∗)TE∗ | +2ET

∗ | E∗ | +ET
∗ E∗

+ | (E∗)TE∗ | +2 | (E∗)T | E∗ + ET
∗ E∗] ‖2

≤
1
2
‖| (E∗)TE∗ | +2ET

∗ | E∗ | +ET
∗ E∗ ‖2

+
1
2
‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET

∗ E∗ ‖2

= ‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET
∗ E∗ ‖2

‖| (E∗)TE∗ | +ET
∗ | E∗ | + | (E∗)T | E∗ + ET

∗ E∗ ‖2
≤ ‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET

∗ E∗ ‖2= T1(E).

Since, λmax(M ) ≤‖ M ‖2, for any square matrix M .
Hence from the above inequalities, we have

T5(E) ≤ T1(E).
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In addition,
λmax(| (E∗)TE∗ | +2ET

∗ | E∗ | +ET
∗ E∗)

≤‖ (| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET
∗ E∗) ‖ .

Hence T6(E) ≤ T1(E). �
Lemma 5 [14]: Suppose w(t) = [w1(t),w2(t), . . . ,wn(t)]T

∈ Rn, and D ∈ DI is a matrix defined as in equation (3),
then the following inequalities holds for any positive diagonal
matrix M :
wT (MD + DTM )w ≤ wT (MD∗ + (D∗)TM

+ || MD∗ + DT
∗M ||2 I )w,

where D∗ and D∗ are defined as in equation (4).
Lemma 6 [9]: Suppose w(t) = [w1(t),w2(t), . . . ,wn(t)]T

∈ Rn, and D ∈ DI is a matrix defined as in equation (3),
then the following inequalities holds for any positive diagonal
matrix M :

wT (MD + DTM )w ≤ − | wT | Z | w |,

where Z = (zij)n×n with zii = −2mid ii and zij = −max(|
mid ij + mjd ji |, | mid ij + mjd ji |), for i 6= j.

III. STABILITY ANALYSIS
In this section, we find some new sufficient conditions with
respect to the global robust stability of our model (1) which
will be achieved with the help of Lemma 2 and 3 for the norm
of delayed connection weight matrices. Further, we denote
the equilibrium point of (1) by w∗ and use some proper
transformation say ui(·) = wi(·)− w∗, i = 1, 2, . . . , n. After
giving such transformation, the network model (1) can be put
in the following form:

u̇i(t) = −ciui(t)+
n∑
j=1

dijgj(uj(t))+
n∑
j=1

eijgj(uj(t − τ )), (6)

where gi(ui(·)) = fi(ui(·) + w∗i ) − fi(w∗i ), i = 1, 2, . . . , n.
Moreover the functions gi will satisfy the Definition 2 of
fi, i.e., f ∈ ķ implies that g ∈ ķ with gi(0) = 0, i =
1, 2, . . . , n. Also that this transformation shifts the equilib-
rium point w∗ of (1) to the origin of (6).
Now, our aim is to prove the stability of the origin of the

transformed model (6) instead of considering the stability
of w∗.

Thematrix form of neural networkmodel (6) can bewritten
in the form:

u̇(t) = −Cu(t)+ Dg(u(t))+ Eg(u(t − τ )), (7)

where u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Rn is the state
vector, g(u(t)) = (g1(u1(t)), g2(u2(t)), . . . , gn(un(t)))T

∈ Rn and g(u(t − τ )) = (g1(u1(t − τ )), g2(u2(t −
τ )), . . . , gn(un(t − τ )))T ∈ Rn.
Theorem 1: Let the activation function g ∈ ķ. Then, the

origin of NN model (7) with network parameters satisfying
equation (3) is GARS if there exist diagonal matrices M =

diag(mi > 0) and K = diag(ki > 0) such that

�6 = 2C MK−1−(MD∗ + (D∗)TM+|| MD∗ + DT
∗M ||2 I )

−2 || M ||2 T6(E)I > 0.

Proof: Consider the following positive definite
Lyapunov-functional:

V (u(t)) = uT (t)u(t)+ 2δ
n∑
i=1

ui(t)∫
0

migi(ξ )dξ

+(δµ+ η)
n∑
i=1

t∫
t−τ

g2i (ui(ζ ))dζ, (8)

where the mi, δ, η and µ are some positive constants
to be determined later. The time derivative of the above
Lyapunov-functional along the trajectories of the model (7)
is obtained as follows:

V̇ (u(t)) = −2uT (t)Cu(t)+ 2uT (t)Dg(u(t))
+2uT (t)Eg(u(t − τ ))− 2δgT (u(t))MCu(t)
+2δgT (u(t))MDg(u(t))
+2δgT (u(t))MEg(u(t − τ ))
+δµ ‖ g(u(t)) ‖22 −δµ ‖ g(u(t − τ )) ‖

2
2

+η ‖ g(u(t)) ‖22 −η ‖ g(u(t − τ )) ‖
2
2 . (9)

We write the following inequalities:

−uT (t)Cu(t)+ 2uT (t)Dg(u(t))
≤ gT (u(t))DT C−1Dg(u(t))
≤ ‖ D ‖22‖ C−1 ‖2‖ g(u(t)) ‖22, (10)

−uT (t)Cu(t)+ 2uT (t)Eg(u(t − τ ))
≤ gT (u(t))ET C−1Eg(u(t − τ ))
≤ ‖ E ‖22‖ C−1 ‖2‖ g(u(t − τ )) ‖22, (11)

2δgT (u(t))MEg(u(t − τ ))
≤ 2δ ‖ ME ‖2‖ g(u(t)) ‖2
‖ g(u(t − τ )) ‖2
≤ δ ‖ ME ‖2‖ g(u(t)) ‖22
+δ ‖ ME ‖2‖ g(u(t − τ )) ‖22
≤ δ ‖ M ‖2‖ E ‖2‖ g(u(t)) ‖22
+δ ‖ M ‖2‖ E ‖2‖ g(u(t − τ )) ‖22
≤ δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22
+δ ‖ M ‖2 T6(E) ‖ g(u(t − τ )) ‖22, (12)

−2δgT (u(t))MCu(t)
≤ −2δgT (u(t))M CK−1g(u(t)). (13)

By applying equations (10)-(13) in (9) results in:

V̇ (u(t)) ≤ ‖ D ‖22‖ C−1 ‖2‖ g(u(t)) ‖22
+ ‖ E ‖22‖ C−1 ‖2‖ g(u(t − τ )) ‖22
−2δgT (u(t))M CK−1g(u(t))
+δgT (u(t))(MD + DTM )g(u(t))

+δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22
+δ ‖ M ‖2 T6(E) ‖ g(u(t − τ )) ‖22
+δµ ‖ g(u(t)) ‖22 −δµ ‖ g(u(t − τ )) ‖

2
2

+η ‖ g(u(t)) ‖22 −η ‖ g(u(t − τ )) ‖
2
2 .
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Since ‖ C−1 ‖2≤‖ (C−1) ‖2, ‖ D ‖2≤ T6(D) and
‖ E ‖2≤ T6(E). V̇ (u(t)) can be written as follows:

V̇ (u(t)) ≤ T 2
6 (D) ‖ C−1 ‖2‖ g(u(t)) ‖22
+T 2

6 (E) ‖ C−1 ‖2‖ g(u(t − τ )) ‖22
−2δgT (u(t))M CK−1g(u(t))
+δgT (u(t))(MD + DTM )g(u(t))

+δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22
+δ ‖ M ‖2 T6(E) ‖ g(u(t − τ )) ‖22
+δµ ‖ g(u(t)) ‖22 −δµ ‖ g(u(t − τ )) ‖

2
2

+η ‖ g(u(t)) ‖22 −η ‖ g(u(t − τ )) ‖
2
2 .

By taking η = T 2
6 (E) ‖ C−1 ‖2 and µ =‖ M ‖2 T6(E),

we can write V̇ (u(t)) in the form

V̇ (u(t)) ≤ (T 2
6 (D)+ T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
−2δgT (u(t))M CK−1g(u(t))
+δgT (u(t))(MD + DTM )g(u(t))

+2δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22 . (14)

Using the result of Lemma 5, we write

gT (u(t))(MD + DTM )g(u(t)) ≤ gT (u(t))(MD∗

+(D∗)TM+ || MD∗ + DT
∗M ||2 I )g(u(t)).

Applying the above inequality in (14) yields

V̇ (u(t)) ≤ (T 2
6 (D)+ T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
−2δgT (u(t))M CK−1g(u(t))+ δgT (u(t))
(MD∗ + (D∗)TM+ || MD∗ + DT

∗M ||2 I )g(u(t))
+2δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22

= (T 2
6 (D)+ T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
−δgT (u(t))�6g(u(t)). (15)

Since �6 is a positive definite matrix, from (15) it follows
that

V̇ (u(t)) ≤ (T 2
6 (D)+ T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
−δλm(�6) ‖ g(u(t)) ‖22 . (16)

If we take δ >
(T 2

6 (D)+ T 2
6 (E)) ‖ C−1 ‖2

λmin(�6)
, then it follows

that V̇ (u(t)) is negative definite for all g(u(t)) 6= 0. Since
g(u(t)) 6= 0 implies that u(t) 6= 0. If g(u(t)) = 0 and u(t) 6= 0,
then V̇ (u(t)) can be written in the following form:

V̇ (u(t)) = −2uT (t) Cu(t)+ 2uT (t)Eg(t − τ )
−ηgT (u(t − τ ))g(u(t − τ ))

−δµgT (u(t − τ ))g(u(t − τ ))

≤ −2uT (t) Cu(t)+ 2uT (t)Eg(t − τ )
−ηgT (u(t − τ ))g(u(t − τ )).

Since −uT (t) Cu(t) + 2uT (t)Eg(t − τ ) − ηgT (u(t −
τ ))g(u(t − τ )) ≤ 0, we have V̇ (u(t)) = −uT (t) Cu(t).

Therefore V̇ (u(t)) is negative definite for all u(t) 6= 0.
Finally, consider g(u(t)) = 0 and u(t) = 0. Then, V̇ (u(t)) =
−ηgT (u(t − τ ))g(u(t − τ ))− δµgT (u(t − τ ))g(u(t − τ )).
It is obvious that V̇ (u(t)) is negative definite for all g(u(t−

τ )) 6= 0. Hence, we have V̇ (u(t)) = 0 if and only if
u(t) = g(u(t) = g(u(t − τ )) = 0, otherwise V̇ (u(t)) < 0.
In addition, V (u(t)) is radially unbounded since V (u(t)) →
∞ as ‖ u ‖→ ∞. Hence, we conclude that the origin of
system (7), or equivalently the equilibrium point of the neural
system (2) is GARS. �
Theorem 2: Let the activation function g ∈ ķ. Then, the

origin of NN model (7) with network parameters satisfy-
ing equation (3) is GARS if there exist diagonal matrices
M = diag(mi > 0) and K = diag(ki > 0) such that

�5 = 2C MK−1 − (MD∗ + (D∗)TM
+ || MD∗ + DT

∗M ||2 I )− 2 || M ||2 T5(E)I > 0.
Proof: By utilizing the result in Lemma 2, we get similar

to the arguments discussed as in Theorem 1. �
Now,we apply the results of Lemma 2, 3 and 6we get some

new sufficient conditions for the GARS of model (7).
Theorem 3: Let the activation function g ∈ ķ. Then, the

origin of NN model (7) with network parameters satisfy-
ing equation (3) is GARS if there exist diagonal matrices
M = diag(mi > 0) and K = diag(ki > 0) satisfying the
following sufficient condition

26 = 2C MK−1 + Z − 2 || M ||2 T6(E)I > 0,

where Z = (zij)n×n with zii = −2mid ii and zij = −max(|
mid ‘ij+ mjd ji |, | mid ij + mjd ji |), for i 6= j.

Proof: From Lemma 6, we have

gT (u(t))(MD + DTM )g(u(t)) ≤ − | gT (u(t)) | Z | g(u(t)) | .

By applying the above inequality in (14) yields:

V̇ (u(t)) ≤ (T 2
6 (D)+ T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
−2δgT (u(t))M CK−1g(u(t))
−δ | gT (u(t)) | Z | g(u(t)) |
+2δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22

= (T 2
6 (D)+ T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
−δ | g(u(t)) | 26 | gT (u(t)) | . (17)

Since 26 is a positive definite matrix, (17) can be written
as

V̇ (u(t)) ≤ (T 2
6 (D)+ T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
−λmin(26) ‖ g(u(t)) ‖22 . (18)

Note that (18) is exactly in the same form as (16) other
than that �6 is replaced by 26. Hence, we conclude that
26 > 0 gives the sufficient condition for the GARS of the
neural network model (7). �
Theorem 4: Let the activation function g ∈ ķ. Then, the

origin of NN model (7) with network parameters satisfy-
ing equation (3) is GARS if there exist diagonal matrices
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M = diag(mi > 0) and K = diag(ki > 0) satisfying the
following sufficient condition

25 = 2C MK−1 + Z − 2 || M ||2 T5(E)I > 0,

where Z = (zij)n×n with zii = −2mid ii and zij = −max(|
mid ij + mjd ji |, | mid ij + mjd ji |), for i 6= j.

Proof: By utilizing the result in Lemma 2, we get similar
to the arguments discussed as in Theorem 3. �

IV. COMPARISONS
In this section, we compare our new sufficient conditions with
recent literature results. From Lemma 1 the different upper
bounds Tj(E), j = 1, 2, 3, 4 have been given. By using these
different upper bounds, we get different sufficient conditions
for the stability of equilibrium point which are discussed in
[7]– [10]. The next Theorem clarifies these results.
Theorem 5 ( [7]– [10]): Let the activation function g ∈ ķ.

Then, the origin of NN model (7) with network parameters
satisfying equation (3) is GARS if there exist diagonal matri-
ces M = diag(mi > 0) and K = diag(ki > 0) satisfying one
of the following sufficient conditions:

�j = 2C MK−1 − (MD∗ + (D∗)TM+ || MD∗
+DT
∗M ||2 I )− 2 || M ||2 Tj(E)I > 0,

where j = 1, 2, 3, 4, D∗, D∗ and E∗, E∗ are defined as in
equations (4) and (5) respectively.
Remark 2: From the result in Lemma 4, we have T6(E) ≤

T1(E) and T5(E) ≤ T1(E). Moreover, the sufficient condi-
tions �6, �5 and �1 are derived from the upper bounds of
T6(E), T5(E) and T1(E) respectively. The result T6(E) ≤
T1(E) implies that �6 ≤ �1 for all network parameters
satisfying (3), while the result T5(E) ≤ T1(E) implies that
�5 ≤ �1 for all network parameters satisfying (3). Hence,
the new sufficient conditions of �5 and �6 always give
the less conservative results than that of condition �1 in
Theorem 5.
Theorem 6 ( [7]– [10]): Let the activation function g ∈ ķ.

Then, the origin of NN model (7) with network parameters
satisfying equation (3) is GARS if there exist diagonal matri-
ces M = diag(mi > 0) and K = diag(ki > 0) satisfying one
of the following sufficient conditions:

2j = 2C MK−1 + Z − 2 || M ||2 Tj(E)I > 0,

where j = 1, 2, 3, 4, E∗, E∗ are taken as in equation (5), Z =
(zij)n×n with zii = −2mid ii and zij = −max(| mid ij + mjd ji |
, | mid ij + mjd ji |), for i 6= j.
Remark 3: From the result in Lemma 4, we have T6(E) ≤

T1(E) and T5(E) ≤ T1(E). Moreover, the sufficient condi-
tions 26, 25 and 21 are derived from the upper bounds of
T6(E), T5(E) and T1(E) respectively. The result T6(E) ≤
T1(E) implies that 26 ≤ 21 for all network parameters
satisfying (3), while the result T5(E) ≤ T1(E) implies that
25 ≤ 21 for all network parameters satisfying (3). Hence,
the new sufficient conditions of 25 and 26 always give less
conservative results than that of condition 21 in Theorem 6.

Remark 4: In this paper, the obtained sufficient conditions
are valid for the time-varying delay. Since the new sufficient
conditions of neural network model (2) are independent of
the time delay parameter. So the obtained results are valid
for time-varying delay.
The unified result of sufficient condition with respect to the
GARS of the NN model (2) is as follows.
Theorem 7: Let the activation function f ∈ ķ. For each

input J , the NN model (2) with network parameters satisfying
equation (3) is GARS if there exist diagonal matrices M =

diag(mi > 0) and K = diag(ki > 0) such that

Φ = 2C MK−1 − F − 2 || M ||2 Tm(E)I > 0,

where Tm(E) = min{Ti(E) :‖ E ‖2 ≤ Ti(E), ∀i =
1, 2, 3, . . . , n}, D∗, D∗ and E∗, E∗ are defined as in equa-
tions (4) and (5) respectively.
Remark 5: In this paper, the obtained sufficient conditions

are always valid for the uniqueness and existence of an
equilibrium point of the NN model (2). Moreover, the unified
result given in Theorem 7 is also valid for the uniqueness and
existence of an equilibrium point of the NN model (2).

V. NUMERICAL EXAMPLE
In this section, we demonstrate the advantages of our results
with an example as follows.
Example 8: Consider the following network parameters of

the NN model (2).

D = a


−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

 ,

D = a


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

E = =


−1 0 −2 1
0 −1 −2 1
−2 0 −1 1
1 −2 1 −1

 ,

E = a


1 0 −2 1
0 1 −2 1
−2 0 1 1
1 −2 1 −1

 .
Let k1 = k2 = k3 = k4 = 1 and c1 = c2 = c3 = c4 =

13.76. From the above matrices, we get

D∗ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , D∗ = a


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

E∗ = a


0 0 −2 1
0 0 −2 1
−2 0 0 1
1 −2 1 −1

 ,
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E∗ = a


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , Ê = a


1 0 2 1
0 1 2 1
2 0 1 1
1 2 1 1

 .
Using the above parameters, we calculate the following

upper bounds for matrix E:

T1(E)

=

√
‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET

∗ E∗ ‖2 = 4.4232a,

T2(E)

= ‖ E∗ ‖2 + ‖ E∗ ‖2= 4.7362a,

T3(E)

=

√
‖ E∗ ‖22 + ‖ E∗ ‖22 +2 ‖ ET

∗ | E∗ |‖2 = 4.6260a,

T4(E)

= ‖ Ê ‖2= 4.3918a.

T5(E)

=

√
λmax(| (E∗)TE∗ | +ET

∗ | E∗ |+| (E∗)T | E∗+ET
∗ E∗)

= 4.3918a,

T6(E)

=

√
λmax(| (E∗)TE∗ | +2ET

∗ | E∗ | +ET
∗ E∗) = 4.3536a.

Here, T6(E) ≤ T1(E) and T5(E) ≤ T1(E). Moreover,
based on the network parameters specified in the example,
we have Tm(E) = min(Ti(E)), where i = 1, 2, 3, 4, 5, 6., ie.,
Tm(E) = 4.3536a = T6(E).
The results of �5 and �6 are compared with those of

�1, �2, �3, �4 in Theorem 2 by taking M as an identity
matrix. As such, �6 and �5 are calculated as follows.

�6 = 2C MK−1 − (MD∗ + (D∗)TM
+ || MD∗ + DT

∗M ||2 I )− 2 || M ||2 T6(E)I

= (27.52− 16.7072a)I .

�6 > 0, provided a ≤ 1.6471. For the sufficient condition
�6 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.6471. Now, �5 is calculated as follows:

�5 = 2C MK−1 − (MD∗ + (D∗)TM
+ || MD∗ + DT

∗M ||2 I )− 2 || M ||2 T5(E)I

= (27.52− 16.7836a)I .

�5 > 0, provided a ≤ 1.6396. For the sufficient condition
�5 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.6396. The computations of �1, �2, �3 and �4 are as
follows:

�1 = 2C MK−1 − (MD∗ + (D∗)TM
+ || MD∗ + DT

∗M ||2 I )− 2 || M ||2 T1(E)I

= (27.52− 16.8464a)I .

�1 > 0, provided a ≤ 1.6335. For the sufficient condition
�1 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.6335

�2 = 2C MK−1 − (MD∗ + (D∗)TM

+ || MD∗ + DT
∗M ||2 I )− 2 || M ||2 T2(E)I

= (27.52− 17.4724a)I .

�2 > 0, provided a ≤ 1.5750. For the sufficient condition
�2 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.5750.

�3 = 2C MK−1 − (MD∗ + (D∗)TM
+ || MD∗ + DT

∗M ||2 I )− 2 || M ||2 T3(E)I .

= (27.52− 17.252a)I .

�3 > 0, provided a ≤ 1.5951. For the sufficient condition
�3 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.5951.

�4 = 2C MK−1 − (MD∗ + (D∗)TM
+ || MD∗ + DT

∗M ||2 I )− 2 || M ||2 T4(E)I .

= (27.52− 16.7836a)I .

�4 > 0, provided a ≤ 1.6396. For the sufficient condition
�4 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.6396.
Again we compare our results 25 and 26 with

21,22,23,24 in Theorem (3) by taking M as an identity
matrix and Z as in the form:

Z = a


−2 −2 −2 −2
−2 −2 −2 −2
−2 −2 −2 −2
−2 −2 −2 −2


Now, 26 and 25 are calculated as follows:

26 = 2C MK−1 + Z − 2 || M ||2 T6(E)I

= (27.52− 8.7072a)I + Z.

Here 26 > 0, provided a ≤ 1.6471. For the sufficient
condition 26 > 0, the NN model (2) is robust and stable
whenever a ≤ 1.6471.

25 = 2C MK−1 + Z − 2 || M ||2 T5(E)I

= (27.52− 8.7836a)I + Z.

Here 25 > 0, provided a ≤ 1.6396. For the sufficient
condition 25 > 0, the NN model (2) is robust and stable
whenever a ≤ 1.6396.

21 = 2C MK−1 + Z − 2 || M ||2 T1(E)I .

= (27.52− 8.8464a)I + Z.

Here 21 > 0, provided a ≤ 1.6335. For the sufficient
condition 21 > 0, the NN model (2) is robust and stable
whenever a ≤ 1.6335.

22 = 2C MK−1 + Z − 2 || M ||2 T2(E)I ,

= (27.52− 9.4724a)I + Z.

Here 22 > 0, provided a ≤ 1.5750. For the sufficient
condition 22 > 0, the NN model (2) is robust and stable
whenever a ≤ 1.5750.

23 = 2C MK−1 + Z − 2 || M ||2 T3(E)I ,

= (27.52− 9.2520a)I + Z.
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Here 23 > 0, provided a ≤ 1.5951. For the sufficient
condition 23 > 0, the NN model (2) is robust and stable
whenever a ≤ 1.5951.

24 = 2C MK−1 + Z − 2 || M ||2 T4(E)I ,

= (27.52− 8.7836a)I + Z.

Here 24 > 0, provided a ≤ 1.6369. For the sufficient
condition 24 > 0, the NN model (2) is robust and stable
whenever a ≤ 1.6369.

We will give simulation figure to verify the utilization of
our results. For this, we consider the following fixed NN
parameters:

C =


15 0 0 0
0 15 0 0
0 0 15 0
0 0 0 15

 , D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

E =


1 0 −2 1
0 1 −2 1
−2 0 1 1
1 −2 1 −1

 .
Let the activation function g(u(t)) = e−u(t)−1

e−u(t)+1
, and constant

time delay τ = 0.5, the state response is given in Figure 1.

FIGURE 1. System solution for the initial states
u(0) = [−0.2, 0.42, 0.2, 0.5].

From this example, our sufficient conditions �5, �6 and
25,26 are less conservative than those imposed by the earlier
results of �i and 2i, where i = 1, 2, 3, 4, respectively.
We have proved that the obtained upper bound T5(E) is the
minimum as compared with T1(E) and also the upper bound
T6(E) is the minimum as compared with T1(E). Based on
this illustrative example, it is evident that our results are
more beneficial as compared with those in previous studies.
While our sufficient conditions may have less advantage than
the existing stability conditions for different sets of network
parameters, all such results provide the required sufficient
conditions. Therefore, a unified condition is given in Theo-
rem 7 which is less conservative than the previous results.

VI. CONCLUSION
A new upper bound has been derived with respect to the
norm of interval connection weight matrices of dynamical

delayed NN models in this study. We have shown that our
upper bound gives the minimum result as compared with
those of some existing upper bounds with respect to the norm
of interval connection weight matrices. Based on the result,
we are able to derive the new sufficient conditions pertaining
to the GARS of the NN model (2). The unification of our
current result as compared with the previous robust stability
results has clearly demonstrated that it is a generalization of
robust stability results. Finally, we have presented a numeri-
cal example satisfying our requirements, which clearly ascer-
tains the advantages of our finding. In future, this work can
be extended to stochastic NN under parameter uncertainties.
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