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ABSTRACT In this article, the challenges of effective channel estimation for the lognormal-Rician
turbulence model are addressed. We present a novel maximum likelihood estimation algorithm involving
a saddlepoint approximation (SAP) method to estimate the shaping parameters of the lognormal-Rician
distribution. An additional parameter k needs to be estimated in addition to r and σ 2

z under the SAP
representation. The accuracy of the proposed estimator is investigated by using the mean square error and
normalized mean square error. The simulated results show that the proposed estimator exhibits satisfactory
performance over a wide range of turbulence conditions, and it can be easily applied to both noiseless and
noisy situations. The effect of the estimated shaping parameters errors on the bit error rate (BER) for the
on-off key (OOK) modulation is also investigated; it is shown that the BER performance derived with the
SAP estimator becomes closer to the system performance with perfect shaping parameters as r increases.
In particular, we present a qualitative comparison between the proposed SAP estimator and other algorithms
available in the literature.

INDEX TERMS Maximum likelihood estimation (MLE), SAPmethod, lognormal-Rician turbulence model,
OOK modulation, qualitative comparison.

I. INTRODUCTION
Free space optical (FSO) communication, also known as
outdoor optical wireless communication, has recently experi-
enced extraordinary advances. High-speed data transmission
can be provided by FSO communication in terms of its large
available bandwidth. In addition, there are additional advan-
tages of FSO communication over radio frequency (RF) com-
munication including easy deployment, greater security, and
unregulated spectrum resources [1]. Moreover, FSO commu-
nication has been intensively considered as a complementary
technology to the RF communication in many application
scenarios, which is known as hybrid (RF-FSO) communica-
tion [2]–[5]. Nevertheless, the performance of FSO links can
be severely degraded by environment effects such as aerosol
scattering, building-sway, and turbulence-induced scintilla-
tion. Hence, in order to improve the reliable operation of
FSO systems under a wide range of weather conditions,
various types of processing techniques have been proposed to
mitigate the adverse effects of the atmosphere (e.g., [6]–[9]).

Many statistical models have been proposed to characterize
FSO fading channels, and they are used with a specific range
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of turbulence conditions. For weak turbulence, the lognor-
mal distribution is generally accepted. It is derived from
the method of first Rytov approximation [10]. The negative
exponential distribution is used to characterize the limit-
ing case of saturated scintillation [11]. The K-distribution
provides a good fit with experimental results in the very
strong refractive turbulence region [12]. Furthermore, there
also exist several universal models for matching a broad
range of turbulence conditions, including the I-K, Gamma-
Gamma, and lognormal-Rician distributions. Among these
models, the lognormal-Rician distribution provides an excel-
lent agreement with experimental data [13] and is more accu-
rate than the Gamma-Gamma distribution, especially under
a spherical wave assumption [14]. The I-K distribution is a
generalized form of the K distribution to cover weak fluctua-
tion regimes, in which the K distribution is not theoretically
applicable [15], [16]. However, both the K and the I-Kmodels
have limitations as probability density function (PDF)models
for the irradiance in extended turbulence [17]. In this corre-
spondence, it is crucial to study some properties about the
lognormal-Rician distribution and the problem of estimating
the shaping parameters of the fading channel is considered.
Furthermore, we are interested in obtaining the bit error
rate (BER) performance of a wireless communication system
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under a specified set of channel conditions. The estimated
shaping parameters can be used to demodulate signals when
the noncoherent detection is employed at the receiver side.
Interested readers can refer to [18]–[20] for more details.

Given the complicated integral form of the lognormal-
Rician distribution, one can expect that it is infeasible to
estimate the shaping parameters by the method of traditional
maximum likelihood estimation (MLE). To address this con-
cern, alternative approaches have been proposed. An estima-
tion of the shaping parameters for this distribution has first
been introduced by Churnside and Clifford [13]. They obtain
parameter values based on a physical model of the turbulence-
induced scattering. However, the accuracy of this approach
depends heavily on the scattering physical model, which may
not be readily available. In [21], the authors apply the Hansen
two-step generalized method of moments (GMM) method
to estimate the shaping parameters. However, this approach
requires 106 data samples to have satisfactory performance;
this indicates that the system would exhibit latency on the
order 106 milliseconds = 1000 seconds since quasi-static
turbulence is typical millisecond timescale, which is unac-
ceptable for practical FSO communication systems. More
recently, the authors use the expectation-maximization (EM)
algorithm to estimate the parameters of the lognormal-Rician
distribution [22]. This estimation approach is highly accurate
and it operates with relatively low quantities of data samples.
However, its success requires the computation of complicated
integrals, and this impedes its hardware implementation in
FSO communication. In this correspondence, one should con-
sider a more efficient estimator with a reasonable data size for
practical FSO communication.

In this article, we propose the use of the MLE with a
simple Newton-Raphson iterative method to estimate the
parameters of the lognormal-Rician distribution. It adopts
an alternative likelihood function derived from a saddlepoint
approximation (SAP). The performance of such an estimator
is investigated in terms of the NMSE (normalized mean
squared error) andMSE (mean squared error) byMonte Carlo
simulation. The simulation results show that the proposed
estimation approach provides satisfactory performance over
a wide range of turbulence conditions. A qualitative analysis
between the proposed SAP and other methods is also shown.
Also, the MSE and NMSE performance of the SAP estimator
in a noisy situation is studied.

II. PRELIMINARIES
Throughout this article, bold uppercase letters (e.g,X) denote
a random length-N sequence, and each element of this
sequence is noted as X [·]. The symbol ·̂ denotes an estimate
of a parameter.

A. LOGNORMAL-RICIAN PROBABILITY DENSITY
FUNCTION
For the resulting lognormal-Rician fading channel model,
the optical irradiance I can be obtained by [13]

I = |UC + UG|2exp(2χ ) (1)

where UC is a real deterministic quantity, UG is a circular
complex Gaussian random variable (RV), and χ is a real
Gaussian RV. Then, we can deduce that |UC+UG| is a Rician
RV, and |UC + UG|2 follows a noncentral chi-square RV
with a degree of freedom of two and exp(2χ ) is a lognormal
RV. Equation (1) can be partitioned into factors that behave
like a modulation process where the Rician and lognormal
aspects arise respectively from small-scale and large-scale
atmospheric effects. The PDF of the lognormal-Rician dis-
tribution is given by [13]

f (I ; r, σ 2
z ) =

(1+ r)e−r
√
2πσz

∫
∞

0

dz
z2
I0

(
2
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σ 2
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where z is a lognormal RV that represents exp(2χ ), r denotes
the coherence parameter defined as r = |UC |2/E[|UG|2], σ 2

z
is the variance of the logarithm of the irradiance modulation
factor z, and I0 is the zero-order modified Bessel function of
the first kind. The moments of the lognormal-Rician distribu-
tion are given by

E
[
In
]
=

(n!)2

(1+r)n
exp

[
n(n− 1)

2
σ 2
z

] n∑
k=0

rk

(n−k)!(k!)2
. (3)

The lognormal-Rician distribution is a universal model for
scintillation, and it comprises other well-known distribu-
tions. For example, when the coherence parameter r →
∞, the lognormal-Rician distribution becomes the lognormal
distribution, which is given by

f (I ; σ 2
z ) =

1√
2πσ 2

z I
exp

−
(
ln(I )+ 1

2σ
2
z

)2
2σ 2

z

 . (4)

In [22], the authors relate these two empirical parameters to
atmospheric conditions in terms of the Rytov variance σ 2

R
indirectly.

B. SADDLEPOINT APPROXIMATION REPRESENTATION
The SAP method, initially proposed by Daniels (1954), is a
valuable tool for approximating a density or mass function
from its associated moment generating function or cumulant
generating function [23]. Due to the highly accurate approx-
imation it achieves, the SAP method has been widely used
with great success by many authors. In [24], the authors
employ the SAP to evaluate the outage probability of gen-
eralized wireless channels provided their moment generating
function (MGF) MX (t) = E(etX ) exists. Also, using the SAP
technique, [25] consider the outage probability performance
of maximum ratio combining (MRC) receiver in a variety
of fading scenarios. Another application of SAP is shown
in [26], where the bounds of the error probability in chan-
nel coding are derived. Here, we apply the SAP method to
approximate complicated integrals.
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According to the SAP theory described in [27], we can
approximate the positive function h(x) as

h(x) =
∫
m(x, t)dt

≈

∫
exp

{
κ(x, t̂(x))+

(t − t̂(x))2

2
∂2κ(x, t)
∂t2

∣∣∣∣
t̂(x)

}
dt

≈ exp
{
κ(x, t̂(x))

}− 2π
∂2κ(x,t)
∂t2

∣∣∣
t̂(x)


1/2

(5)

where m(s, t) is some positive function, κ(x, t) =

log (m(x, t)) is a cumulant generating function (CGF), and
t̂(x) is the saddle point. For each x, t̂(x) satisfies ∂κ(x,t)

∂t = 0

and ∂2κ(x,t)
∂t2

< 0. As can be seen, such an approximation is
exact if κ(x, t) is a quadratic function of t for each x, which
indicates that a more Gaussian-like distribution results in a
highly accurate approximation.

Using the representation in (5), the lognormal-Rician dis-
tribution (2) can be rewritten in the following way

f (I ; r, σ 2
z ) ≈ fappro(I ; r, σ 2

z )

≈
k(1+ r)e

(
−r+κ(z0,r,σ 2z ,I )

)
σz

√
−

d2κ(z,r,σ 2z ,I)
dz2

∣∣∣
z=z0

(6)

where k denotes a normalized factor and must also be esti-
mated. κ(z, r, σ 2

z , I ) is as follows

κ
(
z, r, σ 2

z , I
)
= −2 ln z+ ln I0

(
2

√
(1+ r)r

z
I

)

−
1+ r
z

I −
1

2σ 2
z

(
ln z+

1
2
σ 2
z

)2

. (7)

Given the CGF κ
(
z, r, σ 2

z , I
)
in (7), we then find the saddle

point z0 which solves the following saddle point equation
using the Newton-Raphson method:

∂κ (z, r, σz, I )
∂z

∣∣∣∣
z=z0

= 0. (8)

By combining (6), (7), and (8), a complicated integral is
transformed into an algebraic computation by saddlepoint
approximation. Note that the distribution of the saddle point
z0 derived from (8) does not follow the lognormal distribution
unless r →∞; this is shown in the appendix.
Furthermore, for the Gaussian noisy channel, the observed

data Y is then expressed as

Y = I + Ng (9)

when the all-one signals are transmitted, where I ,Ng rep-
resent the lognormal-Rician sample and additive zero-mean
Gaussian noise sample with variance σ 2

g . For convenience,
the signal-to-noise ratio (SNR) is defined as E[I ]2/E[N 2] =
1/σ 2

g . According to (9), the PDF of Y is derived in (10), as
shown at the bottom of the next page.

Correspondingly, we have

fY (y) ≈ fappro(y)

≈
k(1+ r)e(−r+κ(z,r,σz,I ,y))

√
2πσz

− 2π
d2κ(z,r,σz,I ,y)

dz2

∣∣∣
z=z0


1
2

(11)

with κ (z, r, σz, I , y) defined as

κ (z, r, σz, I , y) = −2 log(z)−
1

2σ 2
z

(
log(z)+

1
2
σ 2
z

)2

+ log (g) . (12)

C. EFFECT OF THE ESTIMATION ERRORS ON THE BER
Note that such all-one signals in (9) can be considered as
training symbols to estimate the shaping parameters of a
fading channel. For a noncoherent detection with perfect
shaping parameters, the maximal likelihood detector with on-
off keying (OOK) modulation scheme can be formulated as

ŝ = arg max
s∈{0,1}

f (Y |s)

= arg max
s∈{0,1}

∫
f (Y , I |s)f (I ; r, σ 2

z )dI . (13)

Accordingly, the maximal likelihood detector for the imper-
fect estimates of shaping parameters can be defined as follows

s̃ = arg max
s∈{0,1}

∫
f (Y , I |s)f (I ; r̂m, σ̂ 2

z m)dI (14)

where r̂m, σ̂ 2
z m represent the estimated shaping parameters

of r and σ 2
z for the m-th trial, respectively. In such cases,

the corresponding BER averaged the number of trials M is

P̃b =
1
M

M∑
m=1

Pb
(̂
rm, σ̂ 2

z m

)
. (15)

In the next section, we give a detailed description
of parameters estimation using SAP under noiseless
conditions.

III. SAP FOR THE LOGNORMAL-RICIAN PARAMETER
ESTIMATION
Based on the above information, three types of parame-
ters need to be estimated under SAP representation: the
normalized factor k , coherence parameter r , and variance
of the lognormal distribution σ 2

z . Assuming we have N
independent and identically distributed data samples of the
lognormal-Rician distribution, I = [I [0], . . . , I [N − 1]]T

and denote C = [C[0], . . . ,C[N − 1]]T as a discrete
sequence after sorting the sequence I in ascending order. Z =
[Z [0], . . . ,Z [N − 1]]T denotes the saddle point sequence,
where Z [n] can subsequently be derived by solving (8) with
respect to I [n] and the current estimated parameters (̂r and
σ̂ 2
z ). Therefore, the MLE of the unknown parameter vector
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θ = (k, r, σ 2
z )
T is then obtained by maximizing the approxi-

mate log-likelihood function as

L(I; r, σ 2)

≈ Lapprox(I; θ ) = ln fapprox(I; θ )

≈ N
{
ln(k)+ ln(1+ r)− r −

1
2
ln(2πσ 2

z )

+
1
N

N−1∑
l=0

κ(z, r, σ 2
z , I [l])

∣∣∣
z=Z [n]

+
1
2N

N−1∑
l=0

ln(2π )

−
1
2N

N−1∑
l=0

ln
(
−

d2κ
(
z, r, σ 2

z , I [n]
)

dz2

∣∣∣∣∣
z=Z [l]

)}
. (16)

The right-hand side of (16) can be solved by the multi-
variate Newton-Raphson algorithm or BFGS Quasi-Newton
algorithm [28]. However, the iteration of parameters can be
carried out due to the independence of r and σ 2

z . Furthermore,
the first (second) derivative of Lapprox(I; θ ) with respect to
r or σ 2

z can be individually approximated by the finite differ-
ence.

The initial value of the coherence parameter r can be
obtained by solving the polynomial equation [13, (9)]

[̂r0 + 4̂r0 + 2]3

[(1+ r̂30 )(̂r
3
0 + 9̂r20 + 18̂r0 + 6)]

=

(
1
N

∑l=N−1
l=0 I2[l]

)3
1
N

∑N−1
l=0 I3[l]

.

(17)

The initial value of σ 2
z can be given by [13, (10)]

(σ̂ 2
z )0 = log

[
(̂r0 + 1)2

r̂02 + 4̂r0 + 2

1
N

N−1∑
l=0

I2[l]

]
. (18)

Recalling that f (I ) is actually a density function, we can
renormalize the approximation by calculating the constant
of the right side of (6) so that

∫
f (I )dI = 1. By doing

this, the normalized factor k is theoretically carried out by
computing

k =

∫
f (I ; r, σ 2

z )dI∫
fappro(I ; r, σ 2

z )dI

≈
1∫ C[N−1]

C[0] Interpolation
(
fappro(C)

)
dC

(19)

FIGURE 1. Theoretical values of normalized factor k and AbsMaxDiffCDF
for the lognormal-Rician parameters r and three kinds of σ2

z (0.51,
0.25 and 0.1).

in each iteration, where the Interpolation function is adopted
for any two adjacent discrete values of C, and (19) can be
easily solved by Mathematica software. In Fig. 1, we present
the simulated normalized factor k , the absolute maximal
difference between empirical cumulative distribution func-
tion (AbsMaxDiffCDF) of the random variable I ,FI (·),
the approximate distribution fappro(I ),Fappro(·)) of r , and
three kinds of σ 2

z . As can be seen in the figure, the parameter
normalized factor k is around the constant 1 over a wide range
channel conditions. It converges to 1 as r goes to infinity by
the following theorem
Theorem 1: The normalized factor k converges to 1 as r

goes to infinity regardless of σ 2
z .

Proof: A proof is given in the appendix.
Thus, it is reasonable to set k0 = 1 as the initial value of k .

Also, we employ the Kolmogorov-Smirnov (KS) goodness-
of-fit statistical tests to investigate the validity of the proposed
approximation. According to [29, (8.320)], the KS test statis-
tic is defined as

T , max
∣∣∣F(I ; r, σ 2

z )− Fappro(I ; r, σ
2
z )
∣∣∣ . (20)
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∫
∞

0
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z )fY |I (y|I )dI

=

∫
∞

0

dz
z2

(1+ r)e−r
√
2πσz

exp

(
−

1
2σ 2

z

(
log z+

1
2
σ 2
z

)2
)

×

∫
∞

0

1
√
2πσg

exp
(
−
1+ r
z

I
)
exp

(
−

1
2σ 2

g
(y− I )2

)
I0

(
2

√
(1+ r)r

z
I

)
dI︸ ︷︷ ︸

g . (10)
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FIGURE 2. Theoretical values of normalized factor k and AbsMaxDiffCDF
for the lognormal-Rician parameters r , three kinds of σ2

z (0.51, 0.25 and
0.1) and SNR = -5dB.

FIGURE 3. Theoretical values of normalized factor k and AbsMaxDiffCDF
for the lognormal-Rician parameters r , three kinds of σ2

z (0.51, 0.25 and
0.1) and SNR = 0dB.

For a given significance level α = 5% and sample size
N = 104, the critical value Tmax = 0.0136 is derived [29,
(8.322)] and is also included (dash-dotted line) in Fig. 1 as a
benchmark. It can be observed in the figure that the approxi-
mate distribution fappro(I ) is a highly efficient approximation
of the distribution of f (I ) over a wide range of turbulence
conditions. The same conclusion can also be drawn based
on Fig. 2, Fig. 3 and Fig. 4, which shows the approximation
accuracy in noisy situations that the SNR ranges from low to
high. However, by comparing the AbsMaxDiffCDF curves
in these figures, we find a higher approximation accuracy
can be provided in the situation of low SNR because a more
Gaussian-like shaped PDF is achieved in this case. Further-
more, we show a qualitative comparison of the three types of

FIGURE 4. Theoretical values of normalized factor k and AbsMaxDiffCDF
for the lognormal-Rician parameters r , three kinds of σ2

z (0.51, 0.25 and
0.1) and SNR = 10dB.

TABLE 1. Qualitative comparison of three algorithms.

estimation algorithms for the noiseless situation in Table 1.
Note that evaluating moments also involves the computa-
tion of the complicated integrals that are time-consuming to
accomplish for hardware implementation [30], [31].

IV. NUMERICAL SIMULATION AND ANALYSIS
We investigate the estimator performance of using the sad-
dlepoint approximation by using the MSE and NMSE of
the estimated θ̂ , where MSE[̂θ ] = var[̂θ ] + (E [̂θ ] − θ )2

and NMSE = MSE[̂θ ]
E[θ ]2

[32] are defined for the component-
wise operation. The size of the data samples for estimating
the lognormal-Rician parameters in both noiseless and noisy
situations are N = 104 and N = 103, respectively. M = 100
trials are employed to calculate the MSE and NMSE of the
estimator.

In Fig. 5, we present the simulated MSE and NMSE per-
formance of r̂ and σ̂ 2

z when σ 2
z = 0.25 and r ranges from

2 to 9. It can be seen that the MSE of r increases with the
value of r while the MSE of σ 2

z is not sensitive. In other
words, changes to the value of r have minimal effects on
the estimation performance of σ 2

z . These results are consis-
tent with the observation shown in [21] and [22]. The same
conclusion can be drawn for the NMSE of r̂ and σ̂ 2

z as they
both stay relatively flat as r increases; this conclusion is also
drawn in [21]. In addition, we find that the MSE and NMSE
performance of the normalized factor k both decrease with
increasing values of r .
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FIGURE 5. MSE and NMSE performance of the SAP estimator for the
lognormal-Rician r and σ2

z parameters with σ2
z = 0.25.

FIGURE 6. MSE and NMSE performance of the SAP estimator for the
lognormal-Rician r and σ2

z parameters with r = 4.

In Fig. 6, we present the simulatedMSE and NMSE perfor-
mance of r̂ and σ̂ 2

z when r = 4 and σ 2
z ranges from 0.1 to 0.8.

From this figure, we observe that the MSE of σ̂ 2
z increases

dramatically as the value of σ 2
z > 0.3 while the MSE of r̂

increases slightly. We can also draw the conclusion that the
MLE performance of the lognormal-Rician parameter σ 2

z is
insensitive to the value of r , but it is sensitive to the value
when comparing the curves in Fig. 5 with those in Fig. 6.
However, for the NMSE performance of r and σ 2

z , there is
a slight increasing trend for both of them when σ 2

z > 0.3.

FIGURE 7. MSE and NMSE performance of the SAP estimator for the
lognormal-Rician r and σ2

z parameters with σ2
z = 0.25 and SNR = 10dB.

TABLE 2. Effect of the imperfect parameters estimation on the BER with
OOK modulation using noncoherent detection (SNR = 10dB, σ2

z = 0.25).

As for the MSE and NMSE performance of the normalized
factor k̂ , they both decrease gradually as σ 2

z approaches 0.3,
and then tend to increase gradually.

Fig. 7 presents the simulatedMSE andNMSE performance
for σ 2

z = 0.25 and SNR = 10 dB. It can be observed that as
r increases, the performance behavior of the parameters r ,
σ 2
z , and k are consistent with the results shown for noiseless

situations.
Table. 2 compares the BER performance with OOK mod-

ulation under the perfect and imperfect shaping parameters.
We demonstrate that the relative error decreases slightly with
increasing r ; this indicates that the BER performance derived
with the SAP estimator becomes closer to the system perfor-
mance with perfect shaping parameters as r increases.
In conclusion, using the Monte Carlo simulation,

the derived results for the MSE and NMSE in Fig. 5 and
Fig. 6 are indicative of accurate estimations of r and σ 2

z .
To see the benefits of our proposed method in noiseless
situation, the performance of theMLEwith the EM algorithm
is included as a benchmark in both figures. As can be seen,
the performance of the estimation method proposed here is
comparable with the EM algorithm. Fig. 7 confirms that it is
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feasible to use the SAP estimator for lognormal-Rician r and
σ 2
z parameters in a noisy environment.

V. CONCLUSION
In this article, we present a novel method for the estimation
of the parameters of the lognormal-Rician distribution. With
the help of the SAP method, the proposed technique used the
MLE to estimate the shaping parameters of the lognormal-
Rician distribution in both noiseless and noisy conditions.
The performance has been simulated in terms of the MSE
and NMSE. The numerical results show that the SAP esti-
mator can achieve satisfactory estimates over a wide range of
turbulence conditions even though an additional parameter k
needs to be estimated. A qualitative comparison between the
SAP estimator and other algorithms is also presented which
shows that the proposed estimator outperforms the others in
terms of the hardware implementation.

APPENDIX
Before proving the Theorem 1, we first provide some lemmas.
In the analysis, the following approximation is used [33,
(8.451.5)]

κ
(
z, r, σ 2

z , I
)
≈ −2 ln (z)+ 2r

√
I
z
−

1
2
ln

[
2π2r

√
I
z

]

−
r
z
I −

1
2σ 2

(
ln (z)+

1
2
σ 2
)2

. (21)

Lemma 1: The saddle point Z [n] derived from (8) satisfies

lim
r→∞

Z [n] = I [n] (22)

where l = 1, 2, . . . ,K .
Proof: As r → ∞, the first derivative of κ

(
z, r, σ 2

z , I
)

with respect to z can be approximated as

dκ
(
z, r, σ 2

z , I
)

dz
≈
Ir
z2
−

Ir√
I
z z

2
−

9
4z
−

ln (z)
σ 2z

(23)

using algebra. Then, it is easy to see that the saddle point
Z [n] = I [n] is the root of (23) when r →∞.

In addition, the above Lemma 1 indicates that the saddle
point z0 follows the lognormal distribution when r →∞.
Lemma 2: The coherence parameter r and 1(√

I
z−1

) are

infinitesimals of the same order as r →∞, i.e.,

lim
r→∞

r

(√
I
z
− 1

)
= A A 6= 0. (24)

Proof: We prove this lemma by contradiction. In other
words, we show there is a contradiction when A = 0 and
A = ∞. When A = 0, (23) can be reduced to

dκ
(
z, r, σ 2

z , I
)

dz
≈

1
z

(
−
9
4
−

ln (z)
σ 2

)
(25)

with saddle point z0 given as

z0 = e−
9
4σ

2
. (26)

The above equation indicates that all of the saddle points are
equal and independent of r , which violates the principles of
the saddlepoint approximation method [34]. Then, it can be
observed that the first derivative of κ

(
z, r, σ 2

z , I
)
approxi-

mates ∞ when A = ∞, which means that there is no root
to the (23).
Corollary 1: The coherence parameter r is an infinitesimal

of higher order than 1(√
I
z−1

)2 , namely

lim
r→∞

r

(√
I
z
− 1

)2

= 0. (27)

Proof: As can be seen, the Corollary 1 can be obtained
easily according to Lemma 1 and Lemma 2.

Proof of Theorem 1: As r → ∞, the second derivative
of κ

(
z, r, σ 2

z , I
)
with respect to z can be derived as

d2κ
(
z, r, σ 2

z , I
)

dz2
≈ 2r

− I2

4
(
I
z

) 3
2
z4
+

I√
I
z z

3

− 2Ir
z3

−
1

σ 2z2
+

9
4z2
+

ln (z)
σ 2z2

. (28)

By combining (23) and (28), the second derivative of
κ
(
z, r, σ 2

z , I
)
can be rewritten as

d2κ
(
z, r, σ 2

z , I
)

dz2
≈

Ir
z4

− I

2
(
I
z

) 3
2

+
z√
I
z

− z


≈ −

I2r
2z4
+ O (z− I )

Lemma 1
≈ −

r
2z2

. (29)

As r →∞, we have

−2πr2I2eγ
(
z,r,σ 2z ,I

)
≈ −e

−2r
(√

I
z−1

)2
I2r
2z4

Corollary 1
≈ −

I2r
2z4

Lemma 1
≈ −

r
2z2

(30)

using algebra, where

γ
(
z, r, σ 2

z , I
)
= −2r + 2κ

(
z, r, σ 2

z , I
)

+

(
ln (I )+ 1

2σ
2
)2

σ 2 . (31)

Thus, by combining (29), (30) and (31), we have

lim
r→∞

d2κ
(
z, r, σ 2

z , I
)

dz2
= −2πr2I2e

(
γ
(
z,r,σ 2z ,I

))
. (32)

Now, substituting (32) into (6), we find the normalized factor
k = 1. This completes the proof.
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