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ABSTRACT This paper proposes an improved region-based active contour model for segmenting magnetic
resonance imaging (MRI) images of brain tuberculosis by combining a global energy fitting term and a
local energy fitting term. First, a global energy fitting term is utilized to extract global image information,
which guides the evolving curve globally and approximates the image intensity inside and outside the
contour. Second, a local energy fitting term is proposed to describe the intensity inhomogeneity based on
the local intensity variance and the adaptive image difference. Third, an improved Fuzzy C-Means (FCM)
clustering method is applied to pre-segment the MRI images to automatically track the approximate location
of brain tuberculosis and provide the initial contour for the hybrid model segmentation. By combining the
global and local weighting functions, a hybrid region-based model is defined. Experiments demonstrate that
the proposed model provides initialization of the contours automatically and offers superior segmentation
performance for brain tuberculosis MRI medical images with intensity inhomogeneity.

INDEX TERMS Active contour, image segmentation, intracranial tuberculosis, intensity inhomogeneity.

I. INTRODUCTION
Intracranial tuberculosis (TB) is a serious type of central ner-
vous system tuberculosis caused by the hematogenous spread
of mycobacterium tuberculosis and accounts for 1.5%-3.2%
of all tuberculosis-related deaths [1], [2], ranking 11th in its
disability rate and 13th in its fatality rate. The involvement
of the central nervous system (CNS) is the reason that this
is one of the most serious forms of this infection and is
responsible for its high mortality and morbidity [3], [4].
Additionally, the manifestations of tuberculoma and tubercu-
lous nodules in the brain have various forms that can be diffi-
cult to differentiate from other intracranial tumors [5]. Early
diagnosis of CNS TB is crucial to receiving appropriate treat-
ment, which can reduce the risk of morbidities and mortality.
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Routine diagnostic techniques are usually implemented on
the stage of early diagnosis. However, they usually require
cultures and immunological tests of tissue and biofluids,
which are time-consuming and may delay definitive
management [6].

As well as conventional MRIs, various MRI sequences
can not only provide additional insight into the disease but
also help to quantify the disease load and differentiate neuro
tuberculosis from other conditions with a similar imaging
appearance and presentation [7]. The varied radiological
appearances of tuberculosis in MRI images are shown
in Fig. 1. Parenchymal tuberculoma is the most common
form of intracranial tuberculosis, which tends to occur at the
location of the grey-white matter junction due to the con-
glomeration and coalescence of tubercular micro-granulomas
[8], [9]. Clinically, patients with this condition present with
headaches, seizures, and raised intracranial tension; therefore
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FIGURE 1. The varied radiological appearances of tuberculosis in MRI images.

it is necessary to extract the diseased tissues and obtain quan-
titative information that can be used for disease diagnosis.
In recent years, the development of medical image segmenta-
tion using deep learning techniques has achieved remarkable
progress [10]–[12]. Many deep learning-based models such
as U-net and Fully Convolutional Network (FCN) have been
applied in the field of medical image segmentation because
of their excellent semantic expression ability and feature
extraction which do not require manual participation in the
extraction of image features and excessive preprocessing of
medical images. However, it requires rich training samples to
achieve successful results using deep learning techniques that
remain the issues of overfitting and computation time. Since
there are also privacy and ethical issues involvedwithmedical
data, medical images cannot easily be outsourced for pro-
cessing by a large number of external personnel. Moreover,
intracranial tuberculosis mostly occurs in Western China and
underdeveloped areas where the medical image precision in
local radiology departments may be limited due to a lack of
human resources and poor MRI equipment conditions. This
increases the difficulty of applying deep learning network
segmentation due to the scarcity of tuberculosis MRI images.

Another method currently used to segment medical images
is level set segmentation, which is based on the active contour
model (ACM). Active contour models can be either edge-
based models [13]–[17] or region-based models [18]–[22].
Edge-basedmodels use image gradient information to control
the evolution of the closed contour curve towards the target
boundary. These models are generally applicable where there
is a strong target boundary. However, these models are sen-
sitive to high noise and weak boundaries. In contrast, region-
based models use regional image information to guide curve
evolution, thus overcoming any shortcomings due to high
noise and weak boundaries [23].

Many hybrid level set algorithms integrating the local
and global region intensity information have previously been
implemented in MRI image segmentation. In [20], by choos-
ing appropriate combination coefficients, Wang et al. pro-
posed a model combined with a local intensity fitting term
and an auxiliary global intensity fitting term to segment
images with intensity inhomogeneity. Additionally, the Local
Chan-Vese (LCV) model [24] proposed by Wang et al.

introduced a difference image fitting term based on the orig-
inal C-V model, which solved the problem of intensity inho-
mogeneity in medical images to a certain extent. However,
both methods use only a fixed weight coefficient to adjust the
contributions of the global and the local terms, which limits
their performance on medical images with intensity inhomo-
geneity. In [25], Fang et al. proposed a novel active contour
method that combines global and local region information to
handle ultrasound images with noise and fuzzy edges.

In our study, a new energy function is introduced into the
local and global combined fitting model. A global energy
fitting term is used to extract global image information which
guides the evolving curve globally, and then a local energy fit-
ting term is used to describe the intensity inhomogeneity with
local intensity variance and an adaptive difference image. The
rest of the paper is structured as follows: Section 2 briefly
introduces the relevant work. Section 3 presents the proposed
hybrid active contour model in detail. Section 4 provides the
experimental results and discussions. The conclusions of this
paper are given in Section 5.

II. RELATED WORK
A. C-V MODEL
Chan and Vese proposed the well-known Chan-Vese (C-V)
model [18] which replaces the piecewise smooth function
with a piecewise constant function to approximate the inten-
sity distribution inside and outside the initial contour by
simplifying theMumford-Shahmodel. Let I (x) represents the
original image. The energy function of the C-V model can be
constructed as:

Ecvε (c1, c2,C) = λ1

∫
inside(C)

|I (x)− c1|2Hε(φ(x))dx

+λ2

∫
outside(C)

|I (x)− c2|2(1− Hε(φ(x)))dx

+ν

∫
�

δε(φ(x))Hε(φ(x))dx (1)

where λ1, λ2 and ν are nonnegative constants, inside(C)
and outside(C) are different regions inside and outside
the contour C , respectively, φ(x) is the level set function.
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By minimizing the energy functional, the variational formu-
lation can be obtained as:
∂φ

∂t
=δε(φ)[νdiv(

∇φ

|φ|
)−λ1(I (x)−c1)2+λ2(I (x)−c2)2] (2)

where c1, c2 are two constants which approximate the image
intensity inside and outside the contour and are defined by the
Euler-Lagrange equation as:

c1 =

∫
I (x)Hε(φ(x))dx∫
Hε(φ(x))dx

c2 =

∫
I (x)(1− Hε(φ(x)))dx∫
(1− Hε(φ(x)))dx

(3)

where Hε is the Heaviside function, δε is the Dirac delta
function, and they are defined by:

Hε(φ(x)) =
1
2
(1+

2
π
arctan(

φ(x)
ε

)) (4)

δε(φ(x)) =
1
π
·

ε

ε2 + (φ(x))2
(5)

where ε is a positive constant. The first two terms in (1),
called the global intensity fitting energy, play a key role in
encouraging the contour to evolve to the edge of the target
image. The third term in (1) is the length regularizing term
which regularizes the evolution curve.

One of the most attractive properties of the C-V model
is that it is much less sensitive to the initialization.
However, since local image information is not taken into
account, the C-V model generally fails to segment images
with intensity inhomogeneity.

B. LBF MODEL
To segment medical images with intensity inhomogeneity,
Li et al. proposed the Local Binary Fitting (LBF) model [19]
to efficiently utilize local intensity information. In contrast
with the C-V model, its energy function is defined as:

E lbfε (f1, f2,C) =
∫
�

εdx + ν
∫
�

δε(φ(x))Hε(φ(x))dx

+µ
1
2

∫
�

(|∇φ| − 1)2dx (6)

where ν andµ are nonnegative constants. The first term in (6)
is the local intensity fitting energy. The second term in (6) is
the length regularizing term which adjusts the length of the
zero-level set to derive a smooth contour and the last term
in (6) is the distance regularizing term which ensures that the
contours evolve steadily. The local intensity fitting energy is
obtained by:

ε(φ, f1, f2) =
2∑
i=1

λi

∫
�

Kσ (x−y)|I (y)− fi(x)|2Mi(φ)dy (7)

where λi(i = 1, 2) are nonnegative constants, M1(φ) =
Hε(φ), M2(φ) = 1 − Hε(φ), Kσ is a Gaussian kernel with
standard deviation σ , I (y) represents the original image,

fi(x)(i = 1, 2) are the two local fitting functions that locally
approximate the intensities inside and outside the contour.
They are defined by the Euler-Lagrange equation as:

f1(x) =
Kσ (x) ∗ (Hε(φ(x))I (x))
Kσ (x) ∗ Hε(φ(x))

f2(x) =
Kσ (x) ∗ ((1− Hε(φ(x)))I (x))
Kσ (x) ∗ (1− Hε(φ(x)))

(8)

Due to the introduction of the kernel function, the LBF
model can effectively handle medical images with intensity
inhomogeneity. However, this model is sensitive to the con-
tour initialization since its localization property may lead to
the model becoming trapped in local minima.

C. LGGIF MODEL
To integrate the local and global intensity information of
the medical images effectively, an improved active con-
tour model was proposed in [22]. The energy functional
based on the local and global Gaussian intensity fitting
energy (LGGIF) is defined as:

FLGGIF (φ, d1, d2, f1, f2) = wFGGIF (φ, d1, d2)

+ (1− w)FLIF (φ, f1, f2)

+ v
∫
|∇H (φ(x))|dx

+µ
1
2

∫
�

(|∇φ| − 1)2dx (9)

where ν and µ are nonnegative constants, w is the scaling
factor that determined the proportion in the local fitting
energy FLIF and the global fitting energy FGGIF . The last
two terms in (9) are length regularizing term and distance
regularizing term which are equivalent to the last two terms
in (6). The local fitting term FLIF can attract the contour
to stop at the true image edges, which is the same as (7).
However, the global Gaussian fitting term FGGIF is based on
the statistical numerical function and level set method, which
is defined as:

FGGIF (φ, d1, d2)=
2∑
i=1

λi

∫
�

|I (x) ∗ Kσ−I (x)− di|Mi(φ)dy

(10)

where Kσ is Gaussian kernel operator, λi(i = 1, 2) are
nonnegative constants, Mi(φ)(i = 1, 2) are the same as those
in (7), I (x) represents the original image, di(i = 1, 2) are the
average intensities of (I (x) ∗Kσ − I (x)) inside and outside of
the contour.

The original image was replaced with the difference image
which was obtained by the Gaussian convolution image in
the evolution equation. In addition, the average intensity of
the difference image inside and outside the contour was also
replaced with the average intensity of the original image
during the level set evolutionary process. However, it is not
enough to segment tuberculosis MRI images just by using the
global Gaussian fitting energy.
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III. MATERIALS AND METHODS
A. MATERIALS
A total of 396 tuberculosis medical images from 22 clinical
subjects were acquired using a Signa HDxt 1.5T supercon-
ducting magnetic resonance scanner equipped with a stan-
dard 8-channel combined head-and-neck coil from the 4th
People’s Hospital of Qinghai Province, China. All images
were acquired using conventional pulse sequences and axial
scanning, and spanned the area between the parietal skull to
the foramen magnum, with voxel resolutions of 0.45 mm ×
0.45 mm in the axial plane and 5.00 mm in the z-direction.
The contrast-enhanced T1-weighted images with slices of
size 512 × 512 pixels were extracted for the experimental
data, which were injected with contrast agent Gd-DTPA tar-
geting angiograph. The distribution of the entire dataset is
illustrated in Table 1.

TABLE 1. The distribution of the entire dataset.

The results were obtained via Matlab2018a on a PC with
an Intel Core CPU 2.50 and 8 GB of RAM. The study was
performed in accordance with the Declaration of Helsinki and
was approved by the institutional review board of the Fourth
People’s Hospital of Qinghai Province (QSYL2019:04).
Written informed consent was obtained from all subjects.

B. PRIOR TUBERCULOSIS SEGMENTATION
Since medical images can be disturbed by random noise dur-
ing the acquisition process, noise should be removed from the
brain tuberculosis MRIs before segmentation. A non-linear
diffusion filter [26] was adopted to remove unwanted noise,
which can enhance the uniformity of the image intensity
while preserving the textural detail and boundaries. Addition-
ally, the extra-cerebral tissues in the brain contain fat, skull,
and other epidermal tissues which have an intensity that is
similar to a tumor. Therefore, a region growing algorithm
based on morphology is required to remove the extra-cerebral
tissues.

To automatically track the approximate location of the
brain tuberculosis and provide the initial contour that can
be used for the subsequent segmentation, a Fuzzy C-Means
(FCM) clustering method based on a 2-D histogram [27] was
used to pre-segment the images. This method utilizes con-
strained attributes between pixel neighborhoods to establish
the clustering objective function containing the neighborhood
information and then iteratively updates the clustering center
matrix by calculating the probability of occurrence of the
diagonal elements in the 2-D histogram. The new objective

FIGURE 2. Influence of the three fitting forces F1, F2 and F3 during the
curve evolution.

function is defined as:

Jf =
c∑

k=1

L−1∑
i=0

h(i)[µki]m ‖xi − vk‖2 (11)

where h(i) is the occurrence probability of the diagonal ele-
ments in the 2-D histogram which is composed of pixels
and their eight neighborhood pixels on the images, c and L
represent the number of clusters and grayscale levels, respec-
tively, µki represents the membership degree of the ith pixel
belonging to the kth cluster. ‖‖ denotes the Euclidean norm.
The parameter m(m > 1) is a weighting exponent for each
fuzzy membership that determines the amount of fuzziness
of the resulting partition. xi represents the gray value of
the ith pixel and vk denotes the center of the kth cluster.
So ‖xi − vk‖2 represents the Euclidean distance between the
ith pixel and the kth cluster. Equation (11) can be minimized
using the Lagrange multiplier method which updates the
cluster center v(b)k and the membership function µ(b)

ki as:

ν
(b)
k =

L−1∑
i=0

h(i)(µ(b)
ki )

mxi

L−1∑
i=0

h(i)(µ(b)
ki )

m

(1 ≤ k ≤ c) (12)

µ
(b)
ki =

1
c∑
l=1

( dikdil )
2/(m−1)

(13)

where dik = ‖xi − vk‖.
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FIGURE 3. The block diagram of the proposed model.

C. HYBRID ACTIVE CONTOUR MODEL
As discussed in Section II, the C-Vmodel and the LBFmodel
have both advantages and disadvantages when segmenting
medical images. Therefore, inspired by the LGGIF model,
we propose a novel hybrid active contour model that uses
both global and local fitting energy. Unlike the LGGIFmodel,
the local intensity fitting variance and adaptive difference
image are introduced into the energy function to describe the
intensity variation of the target region. The energy function
used in our proposed model can be computed as:

Eε(f1, f2,C) = α · εgif + εlif

+ ν

∫
�

δε(φ(x))Hε(φ(x))dx

+µ
1
2

∫
�

(|∇φ| − 1)2dx (14)

where α is a positive constant (0 ≤ α ≤ 1) referred to as the
fitting energy weight factor.

The last two terms in (14) are the length regularizing term
and the distance regularizing term, where ν and µ are both
nonnegative constants which are equivalent to the last two
terms in (6). Additionally, the energy function εgif which is
the same as the first two terms in (1), referred to as the global
fitting energy term, is constructed as:

εgif (φ, c1, c2) = λ1

∫
�

|I (x)− c1|2Hε(φ(x))dx

+ λ2

∫
�

|I (x)−c2|2(1−Hε(φ(x)))dx (15)

The second term in (14) is referred to as the local fitting
energy term and represents the local region-based intensity
information. Its energy function is defined as:

εlif (φ, f1, f2) = ω
∫
�

(I ′ − I )2dx

+ (1− 2ω)
∫
�

σ 2
1 (x)Hε(φ(x))dx

+ (1− 2ω)
∫
�

σ 2
2 (x)(1− Hε(φ(x)))dx (16)

where ω ∈ [0, 0.5] is the adaptive weighting function. The
first term of (16) estimates the similarity between the local
adaptive image I ′ and the original image I . In the second
term, σ 2

i (x)(i = 1, 2) are two local fitting functions that
approximate the local intensity variance in the field of the
Gaussian kernel inside and outside the contour. The local
adaptive image I ′ and the local intensity variance σ 2

i (x)
(i = 1, 2) can be expressed as:

I ′ = f1(x)Hε(φ(x))+ f2(x)(1− Hε(φ(x))) (17)
σ 2
1 (x) =

Kσ (x) ∗ ((I − f1(x))2Hε(φ(x)))
Kσ (x) ∗ Hε(φ(x))

σ 2
2 (x) =

Kσ (x) ∗ ((I − f2(x))2(1− Hε(φ(x))))
Kσ (x) ∗ (1− Hε(φ(x)))

(18)

where Kσ is a Gaussian kernel with standard deviation σ ,
fi(x)(i = 1, 2) are the two local fitting functions that locally
approximate the intensities inside and outside the contour,
which have been defined in (8). For a given level set func-
tion, the energy function can be optimized by calculating
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FIGURE 4. Pre-segmentation results. (a) Original brain tuberculosis medical images. (b) After de-noising and removal of extra-cerebral tissues.
(c) The results of the improved FCM clustering method. (d) After tracking the approximate location of the brain tuberculosis.

c1, c2, f1, f2 and σ 2
1 , σ

2
2 and solving the gradient descent flow

equation:

∂φ

∂t
= δε(φ)(F1 + F2 + F3)

+ νδε(φ)div(
∇φ

|∇φ|
)

+µ(∇2φ − div(
∇φ

|∇φ|
)) (19)

where F1,F2 and F3 are the three fitting forces which are
defined as:

F1 = (1− 2ω)(σ 2
1 (x)− σ

2
2 (x))

F2 = 2ω(I ′ − I )(f1(x)− f2(x))
F3 = α(−λ1|I (x)− c1|2 + λ2|I (x)− c2|2)

(20)

These three forces each play different roles on the curve
evolution as illustrated by example in Fig. 2. At the begin-
ning of the evolution, the evolving curve is far away from
the object boundary. As a result, force F3 is dominant
which accelerates the contour convergence towards the target
boundary. As the curve propagates, the distance between the
evolving curve and the object boundary narrows so force
F2 becomes dominant. The adaptive weighting function ω
in (16) also plays an important role in the curve evolu-
tion while the contour continues to converge stably based
on image similarity. When the evolving curve reaches the
object boundary, force F1 dominates, which attracts the curve
towards the object boundary based on the local intensity
variance information. The adaptive weighting function ω is

given as:

ω =
1

2(1+ exp[−
∫
�
(f1(x)− f2(x))2dx])

(21)

where exp denotes the exponential function. As a matter
of convenience, the fixed parameters and parameters to be
solved during optimization are illustrated in Table 2. The
block diagram of our method is illustrated in Fig. 3 which
shows the whole process pipeline and intermediate result.

IV. RESULTS AND ANALYSIS
A. EVALUATION METRICS
To evaluate the performance of the proposed model, the seg-
mentation results for the brain tuberculosis MRI images
were objectively evaluated using three metrics to measure
the accuracy of the segmentation results: the Dice Similarity
Coefficient (DSC), the Jaccard Similarity Coefficient (JSC)
and the Conformity Similarity Coefficient (CSC). The closer
the value of each of these metrics is to 1, the more accurate
the segmentation. The three metrics are defined as:

DSC =
2 |�1 ∩�2|

|�1| + |�2|
× 100%

JSC =
|�1 ∩�2|

|�1 ∪�2|
× 100%

CSC = (3−
|�1| + |�2|

|�1 ∩�2|
)× 100%

(22)

where �1 and �2 represent the segmentation results of
the different active contour models and the ground truth,
respectively.
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FIGURE 5. Segmentation results for image A using different active contour models compared with the ground truth. (a) The input image with the
initial curve provided by the improved FCM method for each model; (b) C-V; (c) LBF; (d) ORACM; (e) ACM_LPF; (f) LGGIF; (g) LG_US; (h) Our method;
(i) Ground truth.

To evaluate the universality of the proposed model,
a hypothesis testing was performed by using the two-sample
t-test which is defined as:

T = (X̄ − Ȳ )/

√
(n1 + n2)[(n1 − 1)S21 + (n2 − 1)S22 ]

n1n2(n1 + n2 − 2)
(23)

where X̄ , Ȳ represent the two sample means, S21 , S
2
2 represent

the two sample variances, and n1, n2 denote the two sample
sizes.

B. PRE-SEGMENTATION RESULTS
The pre-segmentation results for two tuberculoma samples
are presented in Fig. 4 and can provide a better understanding
of the image preprocessing. The original brainMRI images of
tuberculosis containing random noise are displayed in Fig. 4a.
Fig. 4b shows the results after de-noising and removing extra-
cerebral tissues. There were five clusters chosen since the
tuberculosis MRI sample images include background, gray
matter, white matter, cerebrospinal fluid, and brain tuber-
culosis. The results of clustering and tracking the approx-
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FIGURE 6. Segmentation results for image B using different active contour models compared with the ground truth. (a) The input image with the initial
curve provided by the improved FCM method for each model; (b) C-V; (c) LBF; (d) ORACM; (e) ACM_LPF; (f) LGGIF; (g) LG_US; (h) Our method; (i) Ground
truth.

imate location of the brain tuberculosis are illustrated in
Fig. 4c and 4d, after using the FCM clustering method based
on a 2-D histogram. Since the method utilizes constrained
attributes between pixel neighborhoods to establish the clus-
tering objective function containing the neighborhood infor-
mation, the occurrence probability of the diagonal elements

on the area close to the occipital lobe is indeed significantly
lower 0.3±0.04 than that of tuberculosis. Besides, we use
the morphological operation to remove meaningless pixels
and fill holes. These experimental results demonstrate the
ease of selection of the initial contour for the level set
segmentation.
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FIGURE 7. Segmentation results for image C using different active contour models compared with the ground truth. (a) The input image with the initial
curve provided by the improved FCM method for each model; (b) C-V; (c) LBF; (d) ORACM; (e) ACM_LPF; (f) LGGIF; (g) LG_US; (h) Our method; (i) Ground
truth.

C. COMPARATIVE EVALUATION RESULTS
For comparison with other segmentation models, the default
parameters were set as follows: λ1 = λ2 = 1.0, fitting energy
weight α = 0.3, time step 1t = 0.1, ν = 0.001 × 2552,
µ = 1.0, ε = 1 and standard deviation σ = 3.0. The
value of the weighting function ω was adaptively tuned

during the curve evolution. Fig. 5-8 demonstrate the seg-
mentation results for four brain tuberculosis medical images
A-D from four clinical subjects using different active con-
tour models compared with the ground truth. The input
images with the initial curve provided by the improved FCM
method for each model are shown in Fig. 5-8a. The results
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FIGURE 8. Segmentation results for image D using different active contour models compared with the ground truth. (a) The input image with the initial
curve provided by the improved FCM method for each model; (b) C-V; (c) LBF; (d) ORACM; (e) ACM_LPF; (f) LGGIF; (g) LG_US; (h) Our method; (i) Ground
truth.

of the C-V model, the LBF model, the online region-based
ACM (ORACM) [28], the ACM driven by local pre-fitting
energy (ACM_LPF) [29], the LGGIF model, the ACM
by local and global intensity information for ultrasound
image (LG_US) [25] and the proposed model are shown in
Fig. 5-8b, 5-8c, 5-8d, 5-8e, 5-8f, 5-8g and 5-8h, respectively.

The ground truth results are shown in Fig. 5-8i which were
obtained through repeated delineation during three weeks by
a well-trained radiologist with 15 years of experience. The
diagnostic criteria was that only the whole tumor was covered
for segmentation, avoiding adjacent vessels and the average
duration between reviews of slides was one week. The mean
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TABLE 2. Parameters in the proposed model.

FIGURE 9. The values of the weighting function ω for images A-D using the proposed model.

K-value [30] was 0.83 to evaluate the intraobserver agree-
ment which was considered very good when K-values range
from 0.8 to 1. As can be seen from the segmentation results
in Fig. 5-8, the C-V, LBF, ORACM, ACM_LPF, LGGIF,
and LG_US provide poor segmentation of brain tuberculosis
medical images since the C-V model and the ORACMmodel
cannot handle the weak boundaries and strong noise on brain
tuberculosis medical images with intensity inhomogeneity.
With the LBF and ACM_LPF, it is difficult to distinguish
the brain tuberculosis characteristics of the target region and
their energy functions can easily become trapped in local
minima. In addition, without considering the local inten-
sity fitting variance, the LGGIF and LG_US both achieved
unsatisfactory results. Compared with the above models, our
method achieves better results due to the introduction of
the adaptive difference image and the local intensity fitting
variance. It also shows good segmentation of the inner holes

in the brain tuberculoma. As the evolving curve propagates
towards the boundary, the values of the weighting func-
tion ω for images A-D using our method vary as illustrated
in Fig. 9 which shows that it has a downward tendency as the
iteration increases. According to (22), the mean DSC, JSC,
and CSC of images A-D using our method compared with
the other models are presented in Fig. 10 which illustrates
that the three coefficients of the proposed model are higher
than the others. Furthermore, the iterations and computation
time of images A-D and the average iterations and time of
the entire dataset using our method compared with the other
models are summarized in Table 3 which also demonstrates
the efficiency of the proposed model.

Additionally, the universality of the proposed model is
analyzed and evaluated by selecting all brain tuberculosis
medical images and undertaking statistical analysis to obtain
the mean and variance of the three coefficients which are
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FIGURE 10. The mean DSC, JSC, and CSC of the images A-D using the proposed model compared with the other models.

TABLE 3. The iterations (Iter.) and computation time (in seconds) of the images A-D and the average iter and time of the entire dataset using our method
compared with the other models.

FIGURE 11. DSC box plots of the proposed model compared with the other models for different tuberculoma segmentation tasks. (a) Segmentation task
for caseating granulomas; (b) Segmentation task for caseating granulomas with central liquefaction; (c) Segmentation task for caseating granulomas with
central solidification.

summarized in Table 4. The mean values of DSC, JSC, and
CSC using the proposed model are the highest of all ACMs.
These results indicate that the segmentation results of the
proposed model are more accurate than the other models.

Furthermore, to evaluate the universality of the proposed
model, we perform a hypothesis testing on the three met-
rics to identify the significance of the coefficients using the
two-sample t-test method. According to (23), for a signif-
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FIGURE 12. The segmentation results without the initial curve provided by the improved FCM method. (a) Initial curve outside tuberculosis; (b) Initial
curve inside tuberculosis; (c) Proposed model; (d) Ground truth.

icance level α = 0.05, the results demonstrate that our
method shows statistically significant improvement (p <

0.05) compared with the other models, which means the
proposed model has strong feasibility and efficiency in real
clinical application.

Fig. 11 shows the DSC box plots of the proposed model
compared with the other models for different tuberculoma

segmentation tasks, categorized as caseating granulomas,
caseating granulomas with central liquefaction, and caseating
granulomas with central solidification. As shown in Fig. 11,
the proposed model has the highest DSC values with the
most concentrated distribution of all ACMs. Additionally,
the caseating granuloma has the greatest DSC median of the
three DSC box plots using the proposed model, which may
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FIGURE 13. Comparison of the proposed model using different parameters α. (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.

be due to the homogeneity of the annular center and the
surrounding tissues on the contrast-enhanced T1-weighted
images.

To further validate the effectiveness of the pre-
segmentation, the segmentation results without the initial
curve provided by the improved FCM method are illustrated
in Fig. 12. Compared with the results of the proposed model
in Fig. 12c, the results of initial curves outside and inside

tuberculosis can not converge to the object boundaries accu-
rately, which are shown in Fig. 12a and 12b, respectively.

In recent years, the development of medical image seg-
mentation using deep learning techniques has achieved
remarkable progress. Convolutional Neural Networks (CNN)
are able to learn from examples and demonstrate state-of-
the-art segmentation accuracy in medical images. However,
it requires rich training samples to achieve successful results

149582 VOLUME 8, 2020



Y. Cao et al.: Novel Hybrid ACM for Intracranial TB MRI Segmentation Applications

FIGURE 14. DSC, JSC, and CSC of the proposed model using different parameters α for images A-D.

TABLE 4. The means and standard deviations (SD) of DSC, JSC, and CSC of the entire dataset using our method compared with the other models.

using deep learning techniques which still remain the issues
of overfitting and computation time. Xue et al. [31] pro-
posed a cascaded 3D fully convolution network (FCN) to
segment brain metastases (BM) by collecting 1652 patients
from three hospitals and achieved the dice ratio of 0.85±0.08.
It required approximately 23 hours to train the model,
whereas labeling a single input image using the trained model
required approximately 24 s. Additionally, Myronenko [32]
proposed a semantic segmentation network for tumor

subregion segmentation from 3D MRIs based on encoder-
decoder architecture by using 542 cases BraTS 2018 dataset
and achieved the average dice 0.86±0.04. It required approx-
imately 2 days to train the model and the inference time is
0.4 s for a single model. Compared with the results of the
above research, our method has two main advantages. Firstly,
our method achieved the average dice of 0.93±0.03 and
average computation time of 3.265 s, which has sig-
nificant improvement in the comprehensive performance.

VOLUME 8, 2020 149583



Y. Cao et al.: Novel Hybrid ACM for Intracranial TB MRI Segmentation Applications

Secondly, our method only required six parameters to be
solved during optimization which did not require time-
consuming training while CNN models usually require
millions of parameters and thousands of samples which
sometimes need data augmentation to maintain the stability
of the models.

D. PARAMETER SELECTION RESULTS
In the following, we discuss the parameter selection of α
which referred to as the fitting energy weight factor. Usually,
a smaller value of the parameter α should be chosen if the
medical image has strong intensity inhomogeneity. As can be
seen from Fig. 13, the desired segmentation can be obtained
when we set α = 0.3 as shown in Fig. 13b. On the contrary,
the segmentation results by setting the parameter α = 0.1,
0.5, and 0.7 achieve unsatisfactory performances, which are
presented in Fig. 13a, 13c, and 13d, respectively. Moreover,
Fig. 14 illustrates the quantitative DSC, JSC, and CSC using
different parameters α for images in Fig. 13. It can be seen
that the highest DSC, JSC, and CSC for each image are
obtained when α = 0.3.

V. CONCLUSION
In this paper, an active contour model segmentation algorithm
based on the global and the local ACMs has been proposed
to segment brain tuberculosis medical MRI images. The
proposed model introduces local intensity fitting variance
and adaptive difference images into the energy function. The
experimental results show that the proposed model can effec-
tively segment brain tuberculosis medical MRI images with
intensity inhomogeneity. Another advantage of the proposed
model is that it is fully automatic, in contrast with most other
current contour segmentation approaches that require some
level of user interaction. This is highly significant when there
is a large volume of data to be processed.

Additionally, this model is limited as it cannot automat-
ically segment miliary tuberculoma since it contains innu-
merable small noncaseating granulomas. Currently, manual
delineation of the region of interest is required before the
proposedmodel can be used to segment the local smaller nod-
ules. This will be further studied and improved in the future.
Another extension of our study is investigating methods that
can be used to improve the segmentation accuracy for 3D
image segmentation.
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