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ABSTRACT The spread of COVID-19 and similar viruses poses new challenges for our society. There is a
strong incentive towards safety measures that help to mitigate the outbreaks. Many countries have imposed
social distancing measures that require a minimum distance between people in given places, such as schools,
restaurants, shops, etc. This in turn creates complications for these places, as their function is to serve as
many people as they were originally designed for. In this article, we pose the problem of using the available
space in a given place, such that the social distancing measures are satisfied, as a p-dispersion problem.
We use recent algorithmic advancements, that were developed for the p-dispersion problem, and combine
them with discretization schemes to find computationally attainable solutions to the p-dispersion problem
and investigate the trade-off between the level of discretization and computational efforts on one side, and

the value of the optimal solution on the other.

INDEX TERMS Social distancing, p-dispersion problem, decremental clustering, COVID-19.

I. INTRODUCTION

The outbreak of the COVID-19 had an enormous impact
on the world at large. To mitigate the spread of the virus,
various technologies, such as Internet of Things, Unmanned
Aerial Vehicles, blockchain, Artificial Intelligence, and 5G
are already in use [1]. In this article, we take a look at the
problem of positioning people in a given area, such as in a
restaurant, school, office, etc., in order to minimize the spread
of viruses such as COVID-19. After the initial lockdown,
many countries imposed a set of social distancing measures
that should help to slow down the spread of the virus. These
measures impose a minimum distance between people in a
given area. This means that spaces that could previously serve
a large number people need to be adjusted for these new mea-
sures. As it seems unlikely that we will see the construction of
new places that will be designed to abide by these (hopefully
temporary) measures, it is only natural to try to find the best
use of the “facilities™ that are already available. However,
as the social distancing measures do not have to be stable
and can change over time, we will pose the problem of using
the available space to its full extent in the following way:
Given a fixed number p of people, fit them into a predefined
space in such a way, that the minimum distance between
any two persons is maximized. Afterwards, by varying p,
we can get the optimal (largest) distance that the people can
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be separated by, and, given a particular social distancing rule,
we can determine the maximum number (and placement) of
people that will fit into the predefined space. The problem
of selecting p points in order to maximize the minimum
distance between any pair is called the p-dispersion problem
[2] and it is one of the classical combinatorial optimization
problems. Although easy to formulate, effective and provably
optimal methods for solving this problem are quite a recent
development. Most notably, the state-of-the-art methods are
based on the formulation developed in 2017 in [3] and the
most successful method is the decremental clustering scheme
published in 2020 in [4]. It is these advancements that made
it possible to solve instances of the size sufficient for our
purpose. In this article, we devise a discretization scheme that
is build on top of the decremental clustering to find computa-
tionally attainable solutions to the p-dispersion problem and
investigate the trade-off between the level of discretization
and computational efforts on one side, and the value of the
optimal solution (the minimum distance between any two
points) on the other. The investigation is carried out on two
numerical examples, the first one is a place with a “general”
shape, the second one with an “auditorium-like” shape.

Il. THE p-DISPERSION PROBLEM

A. DEFINITION AND FORMULATIONS

In the p-dispersion problem (pDP), we are given a
set of n points, a dissimilarity (or distance) matrix
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D = {D(i,j): 1 <i,j<n)} satisfying D(i,j) > 0 for every
1 <i,j < nand D@,i) = O forevery 1 < i < n, and
an integer p > 2. The goal is to choose p points from the
set of n points in such a way, that the minimum pairwise
dissimilarity (the distance between any two points) within the
selected points is maximized. The pDP is an NP hard problem
[5]. We denote this problem for given input parameters D
and p as pDP (D, p). One of the standard applications of
the pDP is the location of nuclear power plants, where one
is interested in minimizing the risk of losing multiple plants
in the event that only one plant is subjected to an enemy
attack. To achieve this, the desired selection of plants is that
in which the interplant distances are as large as possible [3].
A more peaceful applications of the pDP can be found in
location analysis of services, e.g., schools, hospitals, electoral
districts, or waste collection plants. A comprehensive survey
of the location applications of pDP can be found in [6] and
[7]. Another application of the pDP is found in multiobjective
optimization — if the Pareto frontier of a problem contains
multiple solutions, one can solve a pDP to find p such
solutions with most distinct features [8]. In the same paper,
an application in portfolio optimization is presented — given
a set of potential investment opportunities, one wishes to
choose a subset that reduces the closeness in terms of features
between the different investment options, which reduces the
risk associated with the portfolio.

Within the methodological contributions to the solution
of the pDP, several articles have dealt with the problem
of solving the pDP to proven optimality. A mixed-integer
quadratic formulation was introduced by [9], which can be
partially solved by a series of relaxations and reformulation-
linearization. A mixed-integer linear formulation of the prob-
lem using the “big M” constraints was defined in [6]. This
formulation can be retroactively thought of as a lineariza-
tion of the mixed integer quadratic model, that was devel-
oped 20 years afterward. Although the linear model is more
compact than the quadratic one, it provides much weaker
upper bounds.

Our attention will focus on a formulation introduced in [3],
which is a novel pure binary compact formulation. Using this
formulation, the authors reported substantial computational
advancements when compared with the other formulations.
Without loss of generality, we can assume that the dissim-
ilarity matrix D is symmetric. Let (I, E) be the complete
graph in which points I = {l,..., n} are the vertices and
E ={(@i,j) € I xI : i < j} are the edges. Given any distance
d, we define subsets of edges as

Ed)={G,j))e E : D(i,j) <d} CE.

The compact pure binary formulation exploits the fact that
the optimal distance is identical to at least one of the entries
in the dissimilarity matrix. Let D < D! < ... < Dkmax be
the different non-zero values in D. The associated index sets
are K = {1,2, ..., kyax} and Ky = {0} U K. This formula-
tion uses two types of binary variables: The binary location
variable x; indicates if the point i € I is selected. For k € K,
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the binary variable z; indicates if the location decisions (the
particular selection of p points) satisfy a minimum distance
of at least D¥. The pure binary program is the following:

max D + (D} — D"y (1
keK

s.t. Zx,- =p )
iel
% <zk—1, keK,k>1 3)
xi+x+zm <2, kek,(G,j)e EDVNED" @)
x;€{0,1}, iel (5)
% el0,1}, kek (6)

The formulation (1)-(6) can be further strengthen using
clique-like inequalities and computation can be sped-up by
exploiting valid lower and upper bounds [3].

B. DECREMENTAL CLUSTERING METHOD

The decremental clustering method introduced in [4] for the
pDP utilizes the formulation (1)-(6). The usage of clustering
techniques for finding feasible solutions for combinatorial
problems is hardly new. For example, in vehicle routing and
scheduling, the “cluster-first, route-second” (see [10], [11])
and “‘route-first, cluster-second” (see [12], [13]) paradigms
were used to ease the computational burden of the hard
combinatorial problem. What sets the decremental clustering
method apart is that it provides guarantees for optimality.
Decremental clustering was also proposed for the solution of
the vertex p-center problem in [14] and [15].

We present the decremental clustering method with the
same notation and vocabulary as it was developed in [4].
A clustering of the n nodes, denoted by C is a family
{C; : i =1,...,m}such that C; N C; = ¥ for every
l <i<j<mandU{C; : 1,...,m} = I. A clustering
C is said to be sufficiently refined if, for every set C; €
C,D(C;) := max{D(u,v) : u,v € Cj,u < v} < z*, where
Z* is the optimal value of pDP (D, p) . The correctness of the
decremental clustering method is supported by the following
result (proved in [4]).

Lemma 1: Let C be a sufficiently refined clustering of the
nodes of size m. Let D€ be a m x m dissimilarity matrix where
Dc(i,j) = max{D(u,v) : u € C;,v € C;}. The optimal value
¢* of the problem pDP (DS, p) provides an upper bound of
problem pDP (D, p) .

The decremental clustering method works as follows.
A lower bound L < z* is computed using a k-means algo-
rithm [16], in a procedure named heuristicPDP (D, p, s)
whose pseudocode is described in Algorithm 1. Since the
k-means clustering is a stochastic method, it is repeated
multiple times as long as the value of the lower bound keeps
increasing (the authors of [4] stop after s = 10 iterations
without being able to improve its value). An initial upper
bound U is computed as the largest dissimilarity between any
two points. Using the lower bound L, we build an initial suffi-
ciently refined clustering C and a reduced dissimilarity matrix
DC, using the procedure initialClustering (D, p,L),
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Algorithm 1 heuristicPDP (D, p,s)
1: D,p,s < inputs

2. L <0

3: streak < 0

4: repeat

5. C <« k-means(D, p)

6: fori=1[1:p]do

7: ki < point in C; closest to its center
8 end for

9:  d < min(Dk;, k) : 1 <i<j=<p)
10: if L < d then

11: streak < streak + 1

12:  else

13: L «d

14: streak < 0

15:  end if

16: until streak = s

17: return L

Algorithm 2 initialClustering (D, p, L)
1: D,p, L < inputs

m<—p

C < k-means(D, p)

: compute D°

. while max(DC(i,i) : 1 <i<m)> Ldo

i* <« arg max(D€@i, i) : 1 <i<m)

m<«—m+1

Ci, Cf <« k—-means(Cy, 2)

Ci* < Ci

Cpn < C?

recompute De

: end while

: return C,DC

R A A T

—_— e = e
W N = O

whose pseudocode is described in Algorithm 2. The main
idea of the procedure is to find the clusters with the largest
inter-node distances and split them into two, until the inter-
node distance in all clusters is less than L (which implies
that it is less than z*). After these initial steps, the method
uses two auxiliary sets S and W (with S € W), where
S represents the set of optimal nonsingleton clusters (S =
{C; : |G| = 2,i = 1,...,m}), and W is the complete
optimal solution to the restricted pDP (w.r.t. DC). Iteratively,
the sets S and W are used to refine the current clustering,
resulting in a refined clustering C and dissimilarity matrix DF,
using the procedure splitAndAdd(S, W,C, DC), which is
described in Algorithm 3. The resulting reduced pDP is then
solved, yielding an upper bound U on the full problem, and
its optimal solution is used to update the sets S, W. The
solution procedure solvePDP(DC, p, U, W) has two parts —
a heuristic “preprocessing”” method and an exact solver. The
heuristic procedure is based on the observation that in a large
number of iterations, the optimal value of the pDP problem
does not decrease from one iteration to the next, which is
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Algorithm 3 splitAndAdd (S, W,C, D)

1. S,W,C, D¢ < inputs

2: if S = ¢ then

3 C<«C,D°«< D¢ (e.,do nothing)

4: else

55 m<« size DF

6 (s*, w*) < argmin(DC(s,w) : s €S, we W)
7. if w* € S then

8: i* <« arg max(D(u, u) : u € {s*, w*})
9: else

10 i* <« 5"

11:  endif

122 Cl,C? < k-means(C,2)

13: Cix < Ci

14: Cm+1 <~ Cf

15: recompute D°

16: end if

17: return C, DE

Algorithm 4 so1vepPDP (DS, p, U, W)

I: Dc,p, U, W <« inputs

2. fork=[1:p+1]do

3 Uplk) < min(DC(i,j) 1 <i,j<p+1li#k,j#
k)

4: end for

5: if max(Up(k) : 1 <k <p+1)=U then

6: k* «—argmax(Upk) : 1 <k <p+1)

7.

8

9

W {WO: :1<i<p+1,i #k*}
U<«~U
. else
10 U,W <« solve (1)-(6)
11: end if
12: return U, W

a common feature of decremental relaxation schemes [17].
Therefore, before executing the exact solver, the heuristic
procedure checks the best possible selection of p points out
of the p + 1 points obtained from the splitAndAdd pro-
cedure. If the value of this solution equals the upper bound
U from the previous iteration, the associated solution is then
optimal, and there is no need to execute the exact solver.
In our implementation, the exact solver comprise of solving
the model (1)-(6) using the modelling package JuMP [18] in
Julia [19], and the GUROBI solver [20]. The pseudocode
of the solvePDP procedure is described in Algorithm 4.
The whole decremental clustering algorithm is described in
Algorithm 5. It also incorporates a possible knowledge on a
lower bound L of the optimal value of (1)-(6), which will be
explained in the forthcoming section.

lIl. DISCRETIZATIONS
The continuous variant of the pDP is extremely difficult
to solve and the techniques for approaching it are usually
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FIGURE 1. Initial mesh (left) and mesh after one round of refinement (right), first example.

Algorithm 5 decrementalClustering (D, p, L)
1: D,p, L < inputs
L' < heuristicPDP(D, p, 10)
: L < max(L,L"), U <~ max(D(i,j) : 1 <i<j<n)
C,D¢ « initialClustering(D,p,L)
S« @, W<«0
repeat
C,DC « splitAndadd(S, W,C, DC)
U,W <« solvePDpP (D, p, U, W)
S« {weW:|C, =2}
cuntilS =@or L =U
: return U, X < {C,, :

R A A S

—_ =
—_ O

we W}

FIGURE 2. Initial mesh, second example.

bound to convex feasible spaces [21]. In order to apply the
pDP framework developed earlier for general spaces, such
as classrooms, restaurants, beaches, etc., the feasible space
of the problem — the possible locations of the points — is
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discretized. This discretization is carried out by triangulation
(or mesh generation) of the two dimensional feasible area,
with the vertices of the triangles being the possible feasible
points [22]. Naturally, a question arises about the relationship
between the granularity of the triangulation and the objective
value of the optimal solution of the associated pDP — the
finer the mesh, the better the solution (with higher smallest
distance between any two selected points). We address this
issue by devising a mesh refinement scheme and solving
a series of pDPs on a progressively finer mesh. The mesh
refinement works as follows: First, the area of each triangle in
the triangulation is computed. The triangles with larger than
average area are then split into 4 triangles by adding points is
the middle of their sides. The process is illustrated in Figure 1.
A side effect of the refinement scheme is that by solving the
pDP on a coarser mesh, we obtain a guaranteed lower bound
on the optimal value of the pDP on a finer mesh.

Another ‘““discretization” can be devised in the space
of possible values of the dissimilarity matrix D. As the
problem gets more difficult with more unique values in D,
with each unique value having a separate binary variable
in the model (1)-(6), we can greatly reduce the number
of these added variables by rounding the elements of D.
The trade-off between the optimal objective value and com-
putational efforts of these two discretization schemes are
investigated in the following section. The pseudocode of
the method used in the computational experiments, called
refinePDP(D,p,L,r,T), is described in Algorithm 6.
It supposes that an initial mesh with p and D is available.
The other inputs are a lower bound L (if there is no prior
knowledge about a possible lower bound, then L = 0),
a rounding factor r (with r = —1 being rounding to the
nearest tenths, r = 1 to nearest integers, r = 2 to nearest
tens, etc., and r = 0 no rounding) and a time limit for the
computation 7.

IV. COMPUTATIONAL EXPERIMENTS
We investigate the effect of discretization on two examples.
The first one is a general shape depicted in Figure 1 and
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FIGURE 3. Optimal placements, p =5, r = 1. Initial mesh with n = 102, z" = 1,273.88 (left). Final mesh with n = 8,745,

2" =1,338.09 (right).

FIGURE 4. Optimal placements, p = 10, r = 1. Initial mesh with n = 102, z" = 749.72 (left). Final mesh with n = 8,745,

z" = 805.25 (right).

g

FIGURE 5. Optimal placements, p = 15, r = 1. Initial mesh with n = 102, z" = 552.63 (left). Final mesh with n = 8,745,

2" = 622.75 (right).

the second one an auditorium-like shape shown in Figure 2.
In both examples, we examine the computational efforts to
solve the pDP problem for progressively finer mesh gran-
ularity and for different values of p € {5, 10, 15, 30} and
r € {0,1,2}. In both examples, the time limit 7 was
set to 24 hours. For the first example, the maximal dis-
tance between any two points (“‘the problem diameter’’) was
max(D) = 3240.8, for the second example, it was max(D) =
2180. For each problem instance, we report: n the number of
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points, A the square root of the area of the largest triangle
in the mesh (a useful measure of the granularity of the grid),
r the rounding factor, k4 the number of distinct elements
in D/, Z’* the optimal objective value of the problem with
D', 7" the “real” objective value (without rounding), and ¢
the time it took to find the optimum. If the computations
were not finished (the time limit was reached), the best upper
bound U is reported in square brackets. If the computation
of the instance was terminated prematurely, because during
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FIGURE 6. Optimal placements, p = 30, r = 2. Initial mesh with n = 102, z" = 325.77 (left). Final mesh with n = 1,891,

z" = 395.42 (right).

FIGURE 7. Optimal placements, p = 5, r = 1. Initial mesh with n = 150, z" = 1,139.49 (left). Final

mesh with n = 9,313, z" = 1,183.01 (right).

FIGURE 8. Optimal placements, p = 10, r = 1. Initial mesh with n = 150, z" = 694.62 (left). Final

mesh with n = 9,313, z" = 747.72 (right).

the computation, the upper bound U was equal to the lower
bound L from the solution of coarser discretization (i.e., the
finer discretization did not improve on the optimal value of
the solution) the instance is marked with a “*’. The instances
that were not computed, because the time limit was already
reached, are marked by a ‘-’. The computations were carried
out on an ordinary computer with 3.2 GHz i5-4460 CPU
and 16 GB RAM.

The numerical results of the computations are reported
in Table 1 for the first example and Table 2 for the second
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one. The optimal placements (the ones with the best value
of ") are shown in Figures 3-6 for the first example and
in Figures 7-10 for the second one. The first general obser-
vations is that in order to decrease A by half, the number
of points n needs to be roughly quadrupled (which follows
from the way the mesh gets refined). The second general
observation can be made about the impact of the rounding
factor r: Apart from a single instance, there was no differ-
ence in the ““real” objective value between instances with
r = 0 and r = 1, while there was a huge difference
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between the computational time ¢. From these computational
experiments, there is no doubt that the rounding procedure
presents a substantial benefit, as the instances with rounding
were computed around an order of magnitude faster than the
instances without rounding, and some large instances could
not be computed within the time limit without the use of
rounding.

The difference between » = 1 and r = 2 is much
more nuanced. In 83 % of the instances, the computations
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with r =2 were faster. On the other hand, using r = 2
instead of r = 1 results on average in 0.43 % worse value
of 7”. Premature termination is also more prevalent in the
r = 2 case. Of the 48 successfully computed instances it
occurred 14 times for r = 2, compared to 8 times for r = 1.

The coarseness of the mesh naturally plays a crucial role in
both the objective value 7" and the computational time ¢, with
finer meshes having higher objective value 7", but because
of the increase in the number of variables, take progressively
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TABLE 1. Results of the computation, first example, max(D) = 3,240.8.

p=>5 p=10
n A r kmax z* 2" t [s] z* 2" t [s]
0 5,043 1,273.88 1,273.88 0.25 749.72 749.72 10.9
102 198.4 1 2,060 1,274 1,273.88 0.42 750 749.72 1.96
2 293 1,270  1,273.88 0.95 750 749.72 2.57
0 27,919 1,294.33  1,294.33 1.58 781.46 781.46 107
239 141.0 1 2,688 1,294 1,294.33 1.59 781 781.46 46.8
2 304 1,290 1,287.46 0.62 780 781.46 7.07
0 83,555 1,303.45  1,303.45 1.84 | 781.46% 781.46 475%
413 92.7 1 2,918 1,303 1,303.45 1.61 T81* 781.46 35.4%
2 314 1,300  1,303.45 0.50 780%* 781.46 19.3*
0 459,211 1,327.51  1,327.51 5.25 795.95 795.95 991
970 66.8 1 3,029 1,328 1,327.51 1.31 796 795.95 198
2 317 1,330 1,327.51 1.00 800 795.95 66.6
0 1,749,744 1,327.51 1,327.51 31.4 800.01 800.01 4,061
1,891 432 1 3,113 1,328*%  1,327.51 2.51% 800 800.01 407
2 322 1,330* 1,327.51 2.95% 800* 795.95 242%
0 9,220,027 1,338.09  1,338.09 41.2 | [802.98] [802.98] T =24h
4,349 302 1 3,157 1,338 1,338.09 16.7 801 800.81 1,426
2 324 1,340  1,336.61 15.2 800%* 795.95 1,170*
0 37,239,029 | 1,338.09*  1,338.09 4,134 - - -
8,745 195 1 3,202 1,338%  1,338.09 43.5% 805 805.25 2,546
2 325 1,340%  1,336.61 54.3% 810 805.07 1,922
p=15 p=230
n A r Emazx z* 2" t[s] z* 2" t[s]
0 5,043 552.63 552.63 50.6 325.77 325.77 12.6
102 1984 1 2,060 553 552.63 6.73 326 325.77 323
2 293 550 546.54 4.41 330 325.77 233
0 27,919 585.37 585.37 195 370.06 370.06 256
239 1410 1 2,688 585 585.37 69 370 370.06 56.7
2 304 590 585.37 229 370 365.37 332
0 83,555 589.65 589.65 1,162 375.00 375.00 4,707
413 927 1 2,918 590 589.65 135 375 375.00 415
2 314 590%* 585.37 66.1* 380 375.00 206
0 459,211 601.68 601.68 26,771 | [390.82] [390.82] T =24h
970 66.8 1 3,029 602 601.65 1,153 386 386.41 4,635
2 317 600 595.33 791.8 390 385.07 3,334
0 1,749,744 [614.82] [614.82] T =24h - - -
1,891 432 1 3,113 609 608.55 4,051 395 395.42 36,017
2 322 610 606.28 2,837 400 395.42 24,706
0 9,220,027 - - - - - -
4,349 302 1 3,157 617 616.77 15,699 [413] [413] T =24h
2 324 620 615.21 16,695 [420] [420] T =24h
0 37,239,029 - - - - - -
8,745 195 1 3,202 623 622.75 21,044 - - -
2 325 620%* 61521  18,185% - - -

longer to compute. The improvement of the objective value
7" based on the mesh refinement is captured in Figure 11,
which shows the percentage improvements caused by the
increases in the number of mesh points n. Additionally, the
value of p also has an extensive impact on the computational
time. Similar to the findings in [4], we also find that the
decremental clustering scheme works very well for smaller
values of p, but the computations become progressively more
costly as p increases. The value of p = 30 seems to be close
to the limit of applicability of the method. On the one hand,
it means that in the context of social distancing it is well
applicable for use in situations, when the available space does
not allow for more than 30 persons, such as in classrooms,
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restaurants, or offices. On the other hand, it still can be used
to compute valid upper bounds on the objective value even for
larger problems, which can be explored by various heuristics.

There is also a significant difference in the “difficulty”
between the two examples. Although the number of points
n and unique values k;,,, were similar for both examples
in the individual mesh refinement steps, the computational
times differ quite a lot, mainly for larger values of p. This can
be attributed to the *“‘dual degeneracy” [4] occurring when a
larger number of clusters can be rearranged from one iteration
to the next to find solutions of the same cost. The second
example is more symmetric than the first one, meaning that it
has a larger number of the possible rearrangements. Naturally,
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TABLE 2. Results of the computation, second example, max(D) = 2,180.

p=>5 p=10
n A 7 kmaz z* 2" t [s] z* 2" t [s]
0 10,901 1,139.49  1139.49 21.9 694.62 694.62 87.1
150 1434 1 1,846 1,139  1139.49 4.05 695 694.62 37.0
2 205 1,140  1139.49 0.59 690 687.56 5.28
0 71,690 1,161.70 1161.70 61.4 727.68 727.68 26.3
382 107.2 1 2,010 1,162 1161.70 5.65 728 727.68 12.7
2 212 1,160  1161.70 6.63 730 727.68 10.3
0 163,067 | 1,161.70* 1161.70 36.4% 730.36 730.36 202
575 69.7 1 2,062 1,162* 1161.70 47.59* 730 730.36 100
2 215 1,160%* 1161.70 5.65% 730* 727.68 18.4
0 983,031 1,168.8  1168.82 374 738.54 738.54 3,741
1,411 530 1 2,120 1,169  1168.82 169 739 738.54 312
2 217 1,170 1168.82 26.3 740 737.39 240
0 2,258,704 1,168.8* 1168.82 104 | 738.54%* 738.54 2,342%
2,273 345 1 2,144 1,169* 1168.82 170%* 739% 738.54 460%*
2 218 1,170* 1168.82 21.9% 740* 727.68 138*
0 15,805,824 1,183.01 1183.01 2,272 | [767.81] [767.81] T =24h
5,655 262 1 2,159 1,183 1183.01 263 748 747.72 1,185
2 218 1,180 1177.31 227 750 746.81 1,215
0 42,931,260 | 1,183.01%* 1183.01 1,541 - - -
9,313 16.7 1 2,168 1,183 1183.01 252% 748%* 747.72 3,818*
2 219 1,180% 1177.31 178%* 750% 746.81 2,720%
p=15 p=230
n A r kmax z* P t [s] z* P t [s]
0 10,901 518.40 518.40 84.2 323.69 323.69 96.0
150 1434 1 1,846 518 518.40 47.4 324 323.69 65.2
2 205 520 518.40 8.93 320 315.65 35.9
0 71,690 535.89 535.89 3,754 346.88 346.88 5,231
382 1072 1 2,010 536 535.89 415 347 346.88 439
2 212 540 535.04 155 350 345.76 284
0 163,067 [562.73] [562.73] T =24h | [361.08] [361.08] T =24h
575 69.7 1 2,062 545 544.59 793 353 352.96 2,763
2 215 540%* 535.04 611%* 350 345.76 1,577*
0 983,031 - - - - - -
1,411 530 1 2,120 552 551.72 12,203 [366] [366] T =24h
2 217 550 546.01 9,190 [360] [366] T =24h
0 2,258,704 - - - - - -
2,273 345 1 2,144 556 555.93 51,344 - - -
2 218 560 555.21 55,682 - - -
0 15,805,824 - - - - -
5,655 262 1 2,159 [572] [572] T =24h - - -
2 218 [570] [570] T =24h - - -

Algorithm 6 refinePDP (D,p,L,r,T)

1: D,p,L,r,t < inputs
: D' < round(D, r)
: U,X < decrementalClustering(D’,p, L)
L<«<U
repeat
D,p < refineMesh(D, p)
D' < round(D, r)
U,X < decrementalClustering(D/,p, L)
L<U
- until runTime > T
: return U, X

R A A T

—_ =
—_ O

the optimal placements in Figures 7-10 have a straightforward
“symmetric” counterpart with the same objective value.

149410

Lastly, the hexagonal pattern, that seems to emerge in
Figures 6 and 10 (both with p = 30) is no accident — the
hexagonal pattern is optimal for many location problems
(including the p-dispersion problem) with numerous facilities
covering a large area [23].

V. CONCLUSION

In this article we have studied the problem of locating persons
in a given area, that should abide to social distancing mea-
sures such as those arising in the time of COVID-19 and sim-
ilar viruses. We have argued that the p—dispersion problem
can be used to efficiently model these situations. We devised a
discretization scheme that was build on top of the decremental
clustering method to get computationally attainable solutions,
which worked very well in the computational study on the
two artificial examples, especially for smaller values of p.
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We have investigated the effect of rounding of the dissimi-
larity matrix D on the computational effort and conclude that
it is an indispensable part of the discretization scheme that
has virtually no disadvantages in terms of the quality of the
obtained solution. We have also seen the substantial increase
in computational efforts for higher values of p, which can
be contributed to the ‘“dual degeneracy” of the clustering
scheme.

For future research, fast heuristics that run parallel to the
decremental clustering scheme might further improve on the
computational time and the size of the problems that are
solvable by the presented method. Also, a mesh refinement
scheme based on the current optimal placement (instead of
the triangle size as presented here) could lead to improve-
ments in the objective value.
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