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ABSTRACT Skin cancer is one of the most common cancers in the world. However, the disease is curable
if detected in the beginning stage. Early detection of malignant lesions through accurate techniques and
innovative technologies has a significant impact on reducing skin cancer mortality rates. Recently, artificial
intelligence has come to the forefront to facilitate skin cancer diagnosis based onmedical images. Many deep
learning models have been studied and developed, but the imbalance of performance among classes in the
multi-class classification is still a challenging problem. This study proposes a hybrid method for handling
class imbalance of skin-disease classification. This method combines the data level method of balanced
mini-batch logic followed by real-time image augmentation with the algorithm level method of designing
new loss function. The training dataset includes 24,530 dermoscopic images of seven skin disease categories,
which is by far the largest dataset of skin cancer. The performance metrics of six proposed methods are
evaluated on a test dataset of 2,453 images. Our proposed EfficientNetB4-CLF model achieves the highest
accuracy of 89.97% and also the highest mean recall of 86.13%with the smallest recalls’ standard deviations
of 7.60%. Compared to the original methods, our proposed solution not only surpasses 4.65% (86.13%
vs 81.48%) of mean recalls but also reduces 4.24% of the recalls’ standard deviations (from ±11.84% to
±7.60%). This result indicates that our hybrid method is highly effective in training the Deep CNN network
on the skin-disease imbalanced dataset. It addresses the problem of slow learning of the minority classes in
the networks by combining the data level method of balanced mini-batch logic followed by the real-time
image augmentation with the algorithm level method of the newly designed loss function.

INDEX TERMS Skin disease, imbalanced dataset, deep neural networks, hybrid method, loss function,
balanced mini-batch logic.

I. INTRODUCTION
Skin cancer is one of the most common cancers in the
world [1]. About 5 million new cases are diagnosed every
year in the USA. There are several types of skin lesions
such as melanoma, melanocytic nevus, basal cell carcinoma,
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actinic keratosis, benign keratosis, dermatofibroma, vascu-
lar lesion, and squamous cell carcinoma. Among them,
melanoma is the type with the highest mortality rate [2], [3].
There were nearly 60,000 deaths out of a total of more
than 350,000 malignancies in 2015. Despite this high death
rate, 95% of melanoma cases can be cured if the cancer is
detected in its early stages [4]. Typically, skin cancer can
be detected by a dermatologist using visual inspection of
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skin lesions and then pathological analysis if there is a sus-
picion. Dermoscopy is an imaging technology to eliminate
skin surface reflection. The visualization of the extent of the
deeper skin lesion is enhanced when surface reflections are
removed. Numerous studies have demonstrated that, when
being used by dermatologists, this technique produces high
diagnostic performance compared to standard imaging [2],
[3], [5]. Soon, low-cost dermatoscopy devices will be avail-
able to operate on smartphones [6], and the opportunity for
automated dermatological diagnostic algorithms would make
a positive impact on health care.

Automatic skin lesion classification using skin lesion
images inspired the development of adaptive techniques
from computer vision based on artificial intelligence [4].
Celebi et al., 2007 [7], Barata et al., 2014 [8], and
Pham et al., 2019 [9] introduce skin lesion classification
from dermoscopy images using hand-crafted features. While
Celebi et al. uses SVM classifier; Barata et al. uses SVM,
k-Nearest Neighbor, AdaBoost and Bag of Features as clas-
sifiers; Pham et al. compares the performances of six classi-
fiers (SVM, Logistic Regression, Random Forest, AdaBoost,
Balanced Bagging, and Balanced Random Forest) in com-
bination with seven hand-crafted features methods and four
data preprocessing steps on the two datasets of skin can-
cer. Recently, deep convolutional neural networks (CNN)
have achieved excellent results in image recognition and
exceeded human accuracy in some problems with large
datasets [10]–[12]. Many recent studies have used Deep CNN
for the classification of skin lesions [13]–[19] but there are
still open challenges due to the data limitation and imbalance
problems [13], [15], [19]–[22].

There have been many studies using artificial intelligence
to classify popular diseases [23], [24] and skin-disease [7],
[8], [22], [25], [26], [9], [13]–[19]. Our analysis of the
state of the art reveals important remaining problems: 1) the
limited and imbalanced dataset and 2) the imbalance of
classification performance among disease classes (especially
between Melanoma and Nevus). Specifically, the study [7]
of Celebi et al., 2007 uses only 564 dermoscopy images,
and Barata et al., 2014 [8] uses a dataset of only 176
skin lesion images. Besides, many studies such as [9],
[13], [14], [17], [19], [25]–[28] are binary melanoma clas-
sification while multi-class classification is much more diffi-
cult. Recently, 2018 and 2019 ISIC challenges [4], [29] have
released the largest dermoscopy image datasets and received
results from 200 and 64 research teams respectively. These
challenges use balanced accuracy across categories to select
the winner. The major measure is the mean recall of all
categories. TOP 1-3 of both challenges use ensemblemethods
that combine many deep convolutional neural networks. The
best single model of ISIC 2018 is the TOP-7, which achieves
the mean recall of 78.9%. The performance of these two
methods is described in Table 6. TOP-1 has the mean recall
of 4.43% higher than the TOP-7 (83.36% vs 78.93%), how-
ever, the standard deviations of both methods are over 10%.
Moreover, when analyzing the performance on melanoma

and nevus classes, we notice that although the average mea-
sure of TOP-7 is higher than TOP-1 (80.2% vs 77.45%), the
difference between melanoma and nevus recalls of TOP-7
is much higher than the TOP-1’s (30.6% vs 2.9%). This
indicates that the imbalance of performance among classes
(especially between melanoma and nevus) is still a challenge.

Thus, in this study, we propose a hybrid method for han-
dling class imbalance which combines a data level method
of balanced mini-batch logic followed by a real-time image
augmentation with an algorithm level method of designing
new loss function. This approach is combined, and together
with the optimized CNN architecture, becomes an optimal
solution for the multi-class skin-disease classification. The
key contributions of this research include:

1) Proposing a data level method of balanced mini-batch
logic followed by a real-time image augmentation for
handling class imbalance of skin-disease classification.
Our proposed mini-batch logic suggests to select num-
ber of images per class in a batch of an epoch (NIC)
randomly in a range of the predefined min and max
values. Although the NIC values vary among batches,
average of NIC of an epoch is fixed and balanced
among classes.

2) Proposing a hybrid method for handling class imbal-
ance that combines a data level method with an algo-
rithm method in the designed loss function. This
method is used with designed fully connected layers
with two hidden layers to increase the learning ability
of the neural networks. The batch normalization and
dropout techniques are also applied to improve perfor-
mance of the solution.

II. TRAINING NEURAL NETWORKS WITH IMBALANCED
DATA
In 1970, the backpropagation algorithm was proposed to
train neural networks and sixteen years later it was com-
pleted by David Rumelhart, Geoffrey Hinton, and Ronald
Williams [30]. The researched paper conducted in the 1990s
by Anand et al. [31] analyzes the impact of imbalanced data
on backpropagation algorithms in shallow neural networks.
The authors observe that the length of the gradient vectors of
the minority is much shorter than that of the majority ones.
This means that the net gradient responsible for updating
the model’s weights is impacted significantly by the majority
class. As a result, the loss of majority class decreases rapidly
during the early iterations, while the minority error raises,
which ended up causing the networks to be very difficult
to converge. Therefore, deep learning approaches for resolv-
ing imbalanced datasets have been applied, such as 1) Data
level methods, 2) Algorithm level methods, and 3) Hybrid
methods.

A. DATA LEVEL METHODS
1) OVERSAMPLING
this method randomly augments samples from minority
classes until their proportions are equal to the majority class.
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The augmentation is repeated until no class has smaller sam-
ples than the largest one. This is when the balance achieved.
The impact of imbalanced training datasets on CNN perfor-
mance in image classification is explored by Hensman and
Masko [32]. They train neural networks on the imbalanced
dataset created from the CIFAR-10 dataset and suggest that
oversampling is an effective approach to deal with the impact
of imbalances in the training data.

2) UNDER-SAMPLING
this method randomly removes samples frommajority classes
until they weigh equally to the minority class. Any class with
size larger than the smallest size is considered a majority
class. The removal is repeated until the sizes of majority
classes are equal to the smallest one. This is when the balance
achieved. Lee et al. [33] use random under-sampling of large-
sized class methods to reduce class imbalance for pre-training
a Deep CNN. The method proposed by them demonstrated
significant improvement in classification accuracy compared
to CNN with and without data augmentation techniques.

B. ALGORITHM LEVEL METHODS
Algorithm level methods modify deep learning algorithms
for handling class imbalance. These methods consist of new
loss functions [34], [35], cost-sensitive learning [36]–[38],
and threshold moving [39]. As they do not make changes
to the training data and do not require much data pre-
processing, algorithm-level methods make less impact on the
data compared to data level methods and therefore become
better suggestions for big data problems. Except for the mis-
classification cost definition, these methods require almost
no tuning. Fortunately, two approaches for automated cost-
learning parameters have been implemented. Methods capa-
ble of responding to various problems with limited tuning are
chosen because they can be adapted easily to new problems
and do not require extensive industry knowledge. The Focal
Loss [35] function and CoSen [37] CNN show this versatility,
and it suggests that they can generalize well to other different
problem domains.

C. HYBRID METHODS
Hybrid methods are combinations of algorithm level and data
level methods. In general, they are more complex and more
difficult to implement since both of the other methods are
combined to achieve the highest effectiveness of classifica-
tion. Learning becomes more complex, the flexibility of a
hybrid method decrease, which reduces their ability to adapt
to new problems.

III. METHODS
A. PROPOSED SKIN-DISEASE CLASSIFICATION SYSTEM
In this research, we propose a hybrid method for han-
dling class imbalance. Our dermoscopic multi-disease clas-
sification system includes four main components: Balanced
Mini-Batch Logic, Real-time Image Augmentation, CNN,

FIGURE 1. The proposed hybrid method for dermoscopic disease
classification combining the data level method of balanced mini-batch
logic followed by the real-time image augmentation and the algorithm
level method of designing new loss function.

and Custom fully connected layers as shown in Figure 1.
The training process includes 4 steps: 1) select images for
each mini-batch, 2) augment images, 3) train augmented
images through CNN to select features, and 4) train fully
connected layers with selected features from the previous
step (these fully connected layers act as the classifiers for
the seven classes). The proposed Balanced Mini-Batch Logic
component is different from normal balanced mini-batch
logic, which fixes the NIC in all mini-batches of all epochs.
Our logic randomly selects the images but still ensures the
distribution of the classes in a predefined range. After that,
the selected images are augmented by the Real-time Image
Augmentation component and then used in neural networks
training. In this system, we design fully connected layers
with two hidden layers to increase the learning ability of the
network for the skin-disease dataset. In these layers, we also
use batch normalization and dropout layers to improve the
efficiency of our solution. This network is trained with the
new custom loss function of the seven classes detailed below.
In addition, during network training, we do not fix the learn-
ing rate but update it with CyclicLR [40].

In this hybrid method, we combine an algorithm level
method of designing new loss function and a data level
method of balanced mini-batch logic integrated with a
real-time image augmentation for dealing with a class imbal-
ance of skin lesion dataset. The new loss function is enhanced
by the balancedmini-batch logic and the real-time image aug-
mentation to improve the learning ability of minority classes
in optimizing the neural networks on the imbalanced dataset.
Our optimized Deep CNN architecture has the following
main components.

B. CNN AND CUSTOM FULL CONNECTED LAYERS
1) CNN
Popular CNNs are used as feature extractors. We investi-
gate outstanding CNN architectures, such as InceptionV3
[41], ResNet50 [42], DenseNet169 [43], and Efficient-
NetB4 [44] and selected two best performance architec-
tures (DenseNet169 and EfficientNetB4) to evaluate and
analyze the efficiency of our multiple skin-disease classi-
fication system. DenseNet169 is also the architecture used
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by Pham et al. [13] to achieve excellent performance in
melanoma binary classification. In this study, the CNNs are
transferred from the network trained by ImageNet, and the
output of last layers (named relu with DenseNet169 and
top_conv with EfficientNetB4) is passed as input features of
fully connected layers. Because the skin-disease dataset has
distinctive features from ImageNet, we retrain all CNN layers
and our new custom fully connected layers.

2) CUSTOM FULLY CONNECTED LAYERS (CFCL)
This study focuses on optimizing fully connected layers to
avoid under-fitting caused by a network with a simple archi-
tecture. Our customized architecture has two hidden layers
that use activation function ReLU and contains 1,024 nodes.
In these layers, we also use batch normalization and Dropout
to improve the efficiency of our solution.

• Batch normalization: to overcome overfitting, we
applied batch normalization [45] before the activation
function of the hidden layers.

• Dropout: is a deep learning technique that randomly
drops units from the neural networks during training.
It reduces overfitting and improves the performance of
deep neural networks over other regularization meth-
ods [46]. In our CFCL, each hidden layer is followed by
a dropout block with a rate of 0.2 to avoid overfitting.
The output layer with activation function softmax is
applied for our seven classes of skin cancer.

3) OPTIMIZER
to train our network, we use Adam optimizer to opti-
mize our network with the following settings: beta_1=0.9,
beta_2=0.999, decay=0.0, epsilon=None, and amsgrad=
False. The lr parameter is dynamic from 0.000001 to 0.00005.
We use CyclicLR [40] to adjust lr in each step of every epoch.

C. CUSTOMIZED LOSS FUNCTION
In this study, we propose a hybrid method for handling the
skin-disease imbalance problem. As for the algorithm level
method, we design a customized loss function for the skin-
disease classification through deep learning. The optimizer
is implemented by the back-propagation algorithm to opti-
mize the weights and biases of a neural network. It aims
to minimize the difference between the predicted vector of
the network and the desired output vector by adjusting the
weights of the connections in the network [30]. The difference
between the predicted vector and the desired output vector is
named loss or cost. In order to optimize effectively the neural
network, the loss must be calculated properly by loss function
and in accordancewith the criteria performance of the system.
Specifically, when the loss decreases, the performance must
increase. In classification, performance is usually measured
with ACC, but for classification with an imbalanced dataset
and medical applications such as the multiple skin-cancer
classification problem, performance is evaluated by the mean
recall (mRecall). This classification is indeed an imbalance

problem between illness or not (for example, Table 4 NV
accounts for 52.22% while AK is only 3.47%). Thus, the
performance of a diagnosis is not the percentage of correctly
diagnosed people from the total number of people examined
but instead is the combination of the two ratios: a) the per-
centage of people correctly diagnosed as being ill and b) the
percentage of people correctly diagnosed as not being ill.
For a multi-class problem, the combination of these ratios
is mean recall. Therefore, the loss values should decrease
when performance improves. In [13], Pham et al. propose a
new custom loss function based on the errors of each class.
Their solution achieves the strongest result on a 100 images
test dataset and outperforms every dermatologists working in
German hospitals and universities. In this study, we design a
new loss function based on the mean squared error of each
class. A similar idea was proposed by author Wang et al. [34]
in 2018, evaluated with the CIFAR-100 dataset which con-
tains 60,000 images belonging to 100 classes. Unlike other
works, so as to adjust the balance of multi-class recall, we add
a coefficient ai to our loss function to adjust the accuracy
according to ith class. These below formulas explain this for:
(1) mean squared error (namely lMSE ); (2) loss on the subset
of the cth class of P samples (namely lc); and (3) our custom
loss function on the full dataset of C classes (namely lCLF ):

lMSE =
1
N

∑N

i=1
(yi − y∗i )

2 (1)

lc =
1
P

∑P

i=1
(yi,c − y∗i,c)

2
, with yi,c = 1 (2)

lCLF =
1
C

∑C

i=1
ail2i (3)

The mean squared error, as shown in formula (1), is com-
monly used for binary classification where yi is the actual
value of the ith sample and y∗i is the predicted value of the i

th

sample in the range of [0:1]. In the multi-class classification
problem of C classes, yi and y∗i are two vectors with size of C.
The cthelement of the vector yi (denoted by yi,c) represents
whether the ith sample belongs to the cth class subset, and
yi,c is always 0 or 1. With all samples of the cth class, the
actual vector of the ith sample is yi, and yi,c is 1 because this
sample is in the cth class subset, while the other elements of
yi have a value of 0. Corresponding to the true label yi,c, the
predicted value y∗i,c is a real number with a value in the range
[0: 1]. We demonstrate the loss function on the subset of the
cth class which has P samples in the formula (2) based on the
yi,c and y∗i,c. Finally, we propose the formula (3) as the lCLF
of the whole dataset which has C classes. In this formula, li is
the loss of the ith class which is calculated by the formula (2)
mentioned above, and coefficient ai is the adjusting value of
the ith class.
To understand better why we use this lCLF function,

we demonstrate three examples of a 100-images dataset
includes three classes of M, N, and A (26, 70, and 4 images
respectively). The value of lCLF is calculated with ai = 1 for
all three classes M, N, and A. The Accuracy (ACC), mean
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TABLE 1. Confusion matrices and loss values of three examples, the
highest mRecall is Example 3 and the worst mRecall is Example 1.

TABLE 2. CLF’s coefficients of the classes.

Recall (mRecall), lMSE , and lCLF of three examples are shown
in Table 1.

From Table 1, it can be seen that from Example 1 to
Example 3, mRecall of lCLF decreases accordingly, while
that of lMSE increases together with ACC. This indicates that
lCLF is the better function to optimize mean recall in multi-
class classification. To be more specific, Example 3 perfectly
reflects what we aim at since it has the lowest loss value
(0.0326) and the highest mRecall (84.3%).

In this study, we propose lCLF for seven classes of the skin-
disease dataset for handling class imbalance. This loss is cal-
culated by the formula (3). The ai coefficients are adjustable
parameters that must be tuned in order to obtain a model
with optimal performance. In this study with limited GPU
resources, we used the Trial and error method to find param-
eters for high performance in order to demonstrate that our
proposed loss function be able to increase the learning ability
of the network for the imbalanced skin diseases dataset. How-
ever, with a strong and high computing power server system,
we can adjust the ai coefficients automatically to find the
optimal values for the model to have the highest performance.
To select coefficients, we observe the performances of two
scenarios: 1) the systems do not use the CLF function, and
2) the systems use CLF with the same ai of 1.0. ai values of
the minority classes, which have the recall results significant
different from other classes, are increased depending on the
distribution of each class. The final selection of ai is shown
in Table 2 below.

D. BALANCED MINI-BATCH LOGIC
Deep learning requires a large training dataset to achieve
high performance, but the optimizer’s calculation over the
entire dataset is complex and resource consuming. Therefore,
to speed up the training process, Deep CNNs split the training

TABLE 3. Number of items per class when batch size is 32.

dataset into smaller subsets or batches. The splitting is done
by applying a specific logic called batch logic. Samples of
each batch are randomly selected resulting in a change in
the distribution of the classes in each batch, especially when
compared to their distribution in the training set. Normal
balanced mini-batch logic fixes the NIC and NIC is usually
the same in all mini-batches of all epochs. But there are
differences in our Mini-Batch Logic, which are:

1) The NIC varies between mini-batches and between
epochs.

2) In each mini-batch, the NIC is not fixed and is selected
in the range of predefined MIN, MAX in Table 3.
By selecting MIN and MAX values, we ensure that the
image ratio between classes are not too skewed; in other
words, they are balanced.

3) The average NIC of all mini-batches of an epoch is
equal to the AVG (epoch balanced).

Based on the proportion of different skin-cancer image
categories as in Table 4, we calculate the average number
of samples for a class in each batch as described in Table 3.
We can see that the average number of samples for AK, DF,
and VASC in a batch around and less than 1, this means that
there are no samples of AK, DF and VASC in many iterations
of learning. This means that some steps have no samples of
AK, DF, and VASC for optimizing weights. This leads to
inefficiency in the optimization process. Therefore, in this
study, we propose balanced mini-batch logic to be proac-
tive in selecting elements and ensure a balanced distribution
between classes with the average (AVG), minimum (MIN)
andmaximum (MAX) number of samples as described below.

The average number of samples per batch of each epoch
is calculated to be 4.5 for most classes, except for the NV
with 5.0 samples. Our customized batch logic ensures that
the number of samples of each class at a training step is not
smaller than MIN and not larger than MAX. For example,
the MEL class has AVG of 4.5 images, MIN of 4 images, and
MAX of 5 images. This means in each iteration of learning
with a batch size of 32 samples, there are at least 4 and at
most 5MEL images, and the average number of MEL images
in each iteration of learning of every epoch is 4.5 images.
Unlike other methods [47]. It helps the image number of each
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class is dynamic in each iteration of learning but still balanced
in each epoch.

E. REAL-TIME IMAGE AUGMENTATION
The augmentation technique improves generalization and
prevents overfitting when training networks with limited or
imbalanced data. The augmentation process can be done
offline independently by a computer vision library before
training the neural networks or real-time in each iteration of
learning through functions of deep learning framework.

One of the disadvantages of offline augmentation is that
each mini-batch can have multiple images of the same orig-
inal image. This affects the optimization of the network,
especially when combined with the custom loss function.
In this study, in each iteration of learning, the images are
selected by balanced mini-batch logic to ensure flexibility
and balance, and then each image is directly augmented
by the deep learning framework’s functions. When training
the network with limited and imbalanced data, this process
not only prevents overfitting but also improves the learning
effectiveness of the minority classes when all three solutions
are combined.

IV. EXPERIMENTAL RESULTS
In this study, to evaluate the efficiency of the proposed
skin-disease classification system, after the training process,
we select the final model that has the highest mean recall on
the Validation-10 set. Then we evaluate the performance of
model on the Test-10 and compare it with the top 5 methods
of ISIC 2018. Our study proposes the new approach by com-
bination of a customized loss function and balanced batch
logic in CNN. Our approach achieves significant results in
the multiple skin-disease classification. The study tests and
analyzes the experimental results of two CNN architectures
(DenseNet169 and EfficientNetB4) with three scenarios as
follows: 1) unchanged batch logic and loss function (ORI);
2) changed only batch logic (BON); 3) changed both batch
logic and loss function (CLF). The architecture includes fully
connected layers are illustrated in Figure 1. After initializing
deep network architecture by transfer learning, we train the
classification model through 100 epochs with a batch size
of 32.

A. MATERIALS
In this study, we use theHAM10000 dataset of 10,000 images
belonging to 7 categories [29], [48]: Melanoma (MEL),
Melanocytic nevus (NV), Basal cell carcinoma (BCC),
Actinic keratosis (AK), Benign keratosis (BKL), Dermatofi-
broma (DF), and Vascular lesion (VASC). Additionally,
we addmore images of these seven categories from ISIC 2019
[4], [48]–[50] dataset, and remove duplicate content images.
Finally, there are 24,530 images [4], [29], [48]–[50] for this
study. These images are center cropped and resized to the size
of 256 × 192px. Then, they are randomly divided into train,
validation, and test sets (namely Train-80, Validation-10 and
Test-10 sets respectively) with the corresponding ratios of

TABLE 4. Skin disease image distribution in train, validation and test
datasets.

80%, 10%, and 10% of the total images. The splitting must
ensure randomness while keeping the same proportion of
classes as in the original dataset. The summary of all datasets
is shown in Table 4 below.

Although this dataset comes with a large number of images
(24,530), its distribution among classes is strongly skewed.
NV accounts for more than 52% of the data and is the most
popular skin lesion image. Meanwhile, the second most com-
mon MEL only accounts for 18% of total images, which is a
little over one-third of NV. VASC, DF and AK are the least
with only 1.03%, 0.97%, and 3.47% of images respectively.

B. PERFORMANCE EVALUATION
The performance of the models is then evaluated by four
evaluation measures: 1) Accuracy (ACC), 2) BalancedMulti-
class Accuracy – mean Recall (mRecall), 3) mean Precision
(mPrec), and 4) ± standard deviation (stdev).

Accuracy =
The number of correct samples
The number of all samples

(4)

Recall =
TP

TP+ FN
(5)

Precision =
TP

TP+ FP
(6)

stdev =

√∑N
i=1 (xi − x̄)

2

N
, with x̄ =

∑N
i=1 xi
N

(7)

In these formulas, recall and precision are metrics applied
at each output class. For example, with Class A, TP (true
positive) represents the number of cases correctly identified
as Class A; FP (false positive) represents the number of cases
incorrectly identified as Class A; and FN (false negative)
represents the number of cases incorrectly identified as Not
Class A.

Results are analyzed focusing on these criteria: 1) the trend
of ACC and mRecall during training and 2) the performance
over the Test-10 dataset and compare with TOP-1 and TOP-7
in terms of mRecall and standard deviation.

C. THE TREND OF ACC AND MRECALL DURING TRAINING
In the research of Anand et al. [31] in the 1990s, it is indicated
that when training with imbalanced data, the minority classes
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FIGURE 2. The trend of accuracy and mRecall of ORI, BON and CLF combined with DenseNet169 and EfficientNetB4 during training.

learn much slower than the majority ones. In this study,
we analyze mRecall and ACC values during training instead
of the loss values. As described in formula (1) and (2) in the
previous section, ACC is the rate of correct samples out of
all samples, while mRecall is the mean of recalls over classes
in our dataset. In the most ideal and balanced case, the recall
of each class is the same, mRecall will be equal to ACC. For
detail, we can conclude that:

• When mRecall equals to ACC, the training achieves the
best optimization, or the minority classes are learned
faster than the majority classes by the networks.

• WhenmRecall is much smaller than ACC, the recall per-
formance on each class has amuch difference and imbal-
ance, or the minority classes are still learned slower than
the majority classes by the networks.

To define whether the proposed solution resolves the problem
of training Deep CNN on imbalanced data, we analyze the
trend of ACC and mRecall during the model training process.
We built a custommetric in Keras to calculate mRecall during
training and validating at the end of each epoch. The maxi-
mum mRecall on the Validation-10 dataset model is saved as
the best final model. The trend of ACC and mRecall of the
six methods are demonstrated in Figure 2, DenseNet169’s,
and EfficientNetB4’s methods are shown on the left and right,
respectively.

The left graph demonstrates the models’ performance in
the training dataset. In general, during training, both BON’s
and CLF’s ACC and mRecall are almost the same and there
is no deviation. This is because the two ACC’s and mRe-
call’s lines of DenseNet169 and EfficientNetB4 are almost
identical in all epochs from 1 to 100 in both left and right
figures. In contrast, with ORI, these two architectures have
ACC greater than mRecall at the initial epochs, right from
the epoch of 20th (with DenseNet169) and 40th (with Effi-
cientNetB4), these two measures are similar. This demon-
strates that BON (customized balanced batch logic) and CLF

(customized balanced batch logic combined with custom loss
function) are very effective in training the network for optimal
mRecall, better than ORI with both architectures.

The right graph displays the performance of the valida-
tion dataset. We can see that in both architectures combined
with three scenarios, ACC tends to be higher than mRecall.
Besides, the difference between ACC and mRecall of Effi-
cientNetB4 is smaller than that of DenseNet169 except for
ORI of EfficientNetB4. This proves that EfficientNetB4’s
combined with BON and CLFmethods achieve more balance
on the validation dataset than that of DenseNet169.

Of both DenseNet169 and EfficieneNetB4 architectures,
ACC and mRecall of BON and CLF are almost equal, while
ORI’s is different in the initial epochs of training. This proves
that BON and CLF methods help the networks learn minority
classes faster on the imbalanced skin dataset.

About mRecall on the validation dataset, with
DenseNet169 architecture, Figure 2 shows that from
epoch 1 to 55, CLF’s mRecall is the best, and ORI’s is the
worst. While from epoch 56 to 100, this value of BON is
better than that of CLF, and ORI’s is still the worst. As for
EfficientNetB4, among all epochs, BON’s mRecall is the
best and ORI’s is still the worst. This suggests that the two
proposed solutions, BON and CLF, improve the mRecall
efficiency of the deep neural network significantly.

Finally, to compare DenseNet169 with EfficientNetB4
architectures, both provide good results when trained with
BON and CLF, meanwhile, DenseNet169 outperforms Effi-
cientNetB64 in the ORI scenario. However, on the validation
dataset, EfficientNetB4 is not only more efficient in terms of
ACC and mRecall values, but also has a better deviation of
ACC and mRecall (the smaller the better).

D. EVALUATION PERFORMANCE OVER THE TEST-10
DATASET
In this study, we evaluate the proposed multiple skin-
disease classification system by using the Test-10 dataset of
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FIGURE 3. Confusion matrices of the six combined methods.

2,453 skin lesion images (448 melanoma, 1,281 melanocytic
nevus, 331 basal cell carcinoma, 85 actinic keratosis,
259 benign keratosis, 24 dermatofibroma, and 25 vascular
images). This Test-10 dataset is bigger than the ISIC 2018 test
dataset of 1,512 medical images. The performances of six
combined proposed methods are shown in Figure 3.

Overall, we observe a considerable increase of mean recall
from both architectures in models that applied batch logic
and loss function changes. With the ORI scenario, the mean
recalls achieve 81.22% (DenseNet169) and 81.48% (Effi-
cientNetB4), whereas with CLF, this metric reaches 84.45%
(DenseNet169) and 86.13% (EfficientNetB4). Among mod-
els of two architectures, AK and DF are categories that
come with the lowest recalls, especially in the ORI scenario.
However, these values are raised in both BON and CLF.
Specifically, AK and DF’s recall values grow from 67.1%
and 62.5% in ORI models to 65.9% and 79.2% in BON,
then reach 75.3% and 75% in CLF. A similar trend is also
noticed in models with EfficientNetB4 architecture, in which
AK’s recalls raise 4.7% (from ORI to BON) and 7% (from
ORI to CLF). DF’s recalls also raise 16.6% from ORI to the
other scenarios. At this point, it can be concluded that the
CLF models perform better in balancing recall values among
categories and more importantly, achieve the highest level of
mean recall.

Medically, the above subtypes can be classified into two
main groups: malignant and benign. MEL, BCC, and AK

subtypes belong to the malignant group, the rest are benign.
It is particularly important not to misclassify the malignant
classes into benign because this can cause patients to suffer
from the lack of required treatment. Misclassification within
the same group, on the other hand, has a lesser impact. Thus,
in the EfficientNetB4-CLF model, although the VASC’s
recall goes down from 100% to 96%, the misclassification
still lies within the benign group, thus the benign-malign
accuracy equivalently lies at 100%. Similarly, two out of
three common misclassified subtypes of AK (BCC, MEL)
are in the same malignant group. Therefore, AK’s accuracy
is medically equivalent to 85.9% (only 14.1% was classified
as benign). Another important subtype is MEL, one of the
malignant types with a very high mortality rate, which is
often confused with NV, a benign type. As can be seen in
EfficientNetB4-CLF model, the total percentage of misclas-
sified ML and NV is 17.7% (15.2% + 2.5%), while in the
EffcientNetB4-ORI, this number is 20.9% (17.6% + 3.3%).
This indicates that our proposed solution has greatly reduced
confusion between the two subtypes. In addition, our solution
has halved the number of MEL that is misclassified to BKL,
another benign type. To summarize, our proposed system
contributes a medically meaningful solution to multiple skin-
disease classification.

Another important summary of the six models we should
look at is presented in Table 5. It compares the performance of
models in terms of accuracy, mean recall and mean precision.
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TABLE 5. Accuracy, mean recall and a mean precision with standard
deviation of six combined methods.

TABLE 6. Performances of ISIC 2018 top methods.

In general, mRecall and mPrecision are increased from ORI,
BON to CLF methods, except for the DenseNet169 architec-
ture mPrecs. It is noticed that mRecalls produced by CLF
are the highest in both DenseNet169 (84.45%) and Effi-
cientNetB4 (86.13%) architectures. The table also includes
standard deviation values (stdev), which represent how spread
out the values are in the data set. The higher the standard
deviation, the wider its values spread out from the mean.
Therefore, we expect the standard deviation or stdev to be
low. Looking at the table, we can see that stdev of mean
recall reduce in both BON and CLF scenarios, with the
lowest value generated by CLF (7.91% in DenseNet169 and
7.60% in EfficientNetB4). We also notice the same pattern
in stdev of mPrec, with the smallest stdev value at 4.23%
(EfficieneNetB4-CLF). This means architecture with CLF
method predicts with most balance results among classes.
Therefore, at this viewpoint, it is safe to conclude that the CLF
method provides the best performance among three proposed
methods.

Furthermore, one of the critical problems of the disease
classification is that the recall of the classes is usually imbal-
anced, especially that of MEL is often low, while that of
NV is very high. Table 6 describes in detail the recall metric
for each class of two solutions (TOP-1 and TOP-7) of the
ISIC 2018 challenge.

Although the mean recalls of ISIC 2018 top models are
considerably high (83.36% of TOP-1 and 78.93% of TOP-7)
and the stdev of mRecalls are acceptable (approximately 10%
for both methods), there is still a big imbalance between
MEL and NV classes in TOP-7 method (64.9% and 95.5%
respectively). Also, the recall values of these two categories

are only 76.0% and 78.9% with the TOP-1 method. Since the
TOP-1 method is an ensemble convolutional neural networks
while TOP-7 is a single convolutional neural network based
on DenseNet, this result indicates that the most critical prob-
lem of single CNN is the imbalanced performance between
MEL and NV.

Compared to our results in Figure 3 and Table 5, our solu-
tions have proved to outperform the ISIC 2018 topmethods in
providing higher mean recalls (86.13% vs 83.36% of TOP-1
and 78.93% of TOP-7) and with smaller stdev (7.60% vs
9.76% of TOP-1 and 9.35% of TOP-7).

In addition, to evaluate the effectiveness of the solutions,
we compare the recall of the two majority classes (MEL
and NV have 70.05% images in all Train-10, Validation-10,
and Test-10 datasets) in two criteria: 1) the average recall
of MEL and NV (namely AVG-MEL-NV), and 2) deviation
recall between MEL and NV (namely DEV-MEL-NV). The
higher the AVG-MEL-NV, the better the solution, whereas
the smaller DEV-MEL-NV the better the solution. Our best
solution of EfficieneNetB4-CLF has an AVG-MEL-NV of
88.4%, which is the highest and is greater than TOP-1 and
TOP-7 of 10.95% and 8.2% respectively. The CLF solution is
alsomore balanced. Its DEV-MEL-NV is only 13.8%, smaller
16.8% than that of TOP-7, which bases on a single CNN. The
two criteria of EfficieneNetB4-CLF are also better than the
original EfficieneNetB4-ORI model, with AVG-MEL-NV
increased by 2.95% and DEV-MEL-NV decreased by 3.5%.

This means that the proposed hybrid method not only
increases the average recall of MEL and NV classes but also
has more balanced recalls than the original method and the
TOP-7.

V. CONCLUSION
In this study, we have proposed a new approach for multiple
skin-disease classification by proposing a hybrid method,
which combines designing new loss function with a data level
method of balanced mini-batch logic followed by a real-time
image augmentation. The major results of this research are
listed below.

1) Our proposed hybrid method, which combines the
algorithm level method of new designed loss func-
tion and the data level method of balanced mini-batch
logic integratedwith the real-time image augmentation,
is effective in handling class effectiveness of networks
optimization on the imbalanced dataset because it helps
the networks learn the minority classes faster. Our solu-
tion is superior to improve the balance of recalls among
classes and improve the overall performance signif-
icantly. The proposed Deep CNN system is suitable
for multiple skin-disease classification and with the
combination of EfficientNetB4-CLF achieved highest
ACC at 89.97% and mRecall at 86.13% on Test-10
dataset of 2,453 dermoscopic images.

2) The combination of balanced mini-batch logic and
real-time image augmentation is effective in train-
ing the networks with imbalanced skin dataset, which

VOLUME 8, 2020 150733



T.-C. Pham et al.: Improving Skin-Disease Classification Based on Customized Loss Function

FIGURE 4. The trend of accuracy and mRecall of ORI, BON and CLF combined with InceptionV3 and ResNet50 during training. On training
dataset, Both BON’s and CLF’s ACC and mRecall are almost the same and there is no deviation. In contrast, with ORI, these two
architectures have ACC greater than mRecall at the initial epochs, right from the epoch of 30th (with InceptionV3) and 16th (with
ResNet50).

FIGURE 5. Confusion matrices of six combined methods when InceptionV3 and ResNet50 architectures. Overall, there is an increasing mean recall
from both architectures in models that applied batch logic and loss function changes. The mean recall of the CLF scenario is always the best of
three CLF, BON, and ORI scenarios.

increases the performance on both of these networks:
DenseNet169 and EfficieneNetB4.

3) Compared toORI andBON, CLF is efficient in increas-
ing mRecall when applied in both CNN architectures.
In addition, by reducing stdev, CLF has proved to
improve the learning effectiveness of the minority
classes on an imbalanced dataset.

4) Our best EfficientNetB4-CLF solution not only
increased mRecall by 4.65% (86.13% vs 81.48%) but
also reduced 4.24% on the standard deviation of recalls
(from 11.84% to ±7.60%) compared to the original
method.

This study shows that our hybrid method is a very impor-
tant direction for high-performance Deep CNN architectures
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TABLE 7. Accuracy, mean recall, and mean precision with standard
deviations of six combined methods when combined with
InceptionV3 and ResNet50 architectures.

to classify imbalancedmedical images.We plan to investigate
more intensively on the loss function of this solution so that
it could apply not only to multiple skin-disease classification
but also to other medical image analysis and common imbal-
anced datasets.

APPENDIX
See Figures 4, 5 and Table 7.
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