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ABSTRACT There have been many efforts to detect rumors using various machine learning (ML) models,
but there is still a lack of understanding of their performance against different rumor topics and available
features, resulting in a significant performance degrade against completely new and unseen (unknown)
rumors. To address this issue, we investigate the relationship between ML models, features, and rumor
topics to select the best rumor detection model under specific conditions using 13 different ML models. Our
experiment results demonstrate that there is no clear winner among the ML models in all different rumor
topics with respect to the detection performance. To overcome this problem, a possible way is to use an
ensemble of ML models. Although previous work presents an improved detection of rumors using ensemble
solutions (ES), their evaluation did not consider detecting unknown rumors. Further, they did not present
nor evaluate the configuration of the ES to ensure that it indeed performs better than using a single ML
model. Based on these observations, we propose to evaluate the use of an ES by examining their unknown
rumor detection performance compared with single ML models but as well as different configurations of the
ESes. Our experimental results using real-world datasets found that an ES of Random Forest, XGBoost and
Multilayer perceptron overall produced the best F1 score of 0.79 for detecting unknown rumors, a significant
improvement compared with a single best ML model which only achieved a 0.58 F1 score. We also showed
that not all ESes are the same, with significantly degraded detection and large variations in performance
when different ML models are used to construct the ES. Hence, it is infeasible to rely on any single ML
model-based rumor detector. Finally, our solution also performed better than other recent detectors, such
as eventAl and NileTMRG that performed similar to using a single ML model — making it a much more
attractive solution to detect unknown rumors in practice.

INDEX TERMS Feature analysis, machine learning, rumor detection, social media, ensemble solution,
Twitter.

I. INTRODUCTION

The spread of rumors is still prevalent today. To address
this issue, various machine learning (ML) models have been
proposed to detect rumors [1], [2]. The majority has focused
on improving the performance of ML models for specific
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rumor events (e.g., crime-related tweets from [3]), but mostly
they were applied in the post-analysis phase (i.e., after the
rumor has spread/collected). Consequently, many ML models
were able to achieve a competitive performance (in terms
of accuracy, F1 scores, etc.), but using them to detect new
and unseen (unknown) rumor events significantly degraded
their detection performance (which we demonstrate later in
Section IV). For example, there was a large number of rumors
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and fake news during the 2016 U.S. presidential election [4],
such as “Trump had won both the popular vote and the
Electoral College™. In particular, the term unknown rumors
in this paper refers to those rumors that have not been seen
previously nor fact-checked. In addition, available features
can also significantly affect the performance of rumor detec-
tion [5]. Consequently, retraining those ML models with a
new dataset every time to maintain the performance is imprac-
tical. Hence, it is crucial to develop a solution that maintains
high detection performance under various environmental con-
ditions, such as detecting unknown rumor events that yield
different features.

To address the aforementioned problems, a better rumor
detection solution is needed, which takes into account var-
ious environmental conditions. As a first step, we analyze
the relationship between the rumor topics, features and ML
models to understand the factors that affect their rumor
detection performances, particularly for new and previously
unforeseen rumors (here, a rumor event is an instance of
the rumor topic, and we will denote new and unforeseen
ones as unknown rumors). To achieve this goal, we conduct
several experiments using two publicly available datasets:
(1) PHEME [6], and (2) RumourEval2019 (RE2019)' [7].
Both datasets served as ground truth in previous studies
such as in [8] and [7], so that our results can be com-
pared easily with rumor detectors. Next, rumor features are
collected such as in [9], which are categorized into three
feature groups. Finally, we implement 13 ML models to
detect rumors with respect to feature groups and compare
their performances. The results indicate that there is no
clear winner, and the rumor detection performance differs
significantly when rumor events and available features are
changed.

To improve unknown rumor detection, we develop and
evaluate several ensemble solutions (ES) by combining mul-
tiple ML models in different ways. Although it is a widely
accepted fact that using ESes improves the performance over
single ML models, to the best of our knowledge, there are
no (or very limited number of) studies that evaluate the
detection of unknown rumors. Hence, although many frame-
works, including various ESes, have been used previously for
rumor detection [10], [11], they did not provide methods to
construct ESes that would be effective in detecting unknown
rumors, and they also lacked in systematic evaluation of the
performance factors with respect to rumor topics, ML models
and available features. Through experimental analysis using
real-world datasets, we show that indeed randomly construct-
ing the ES cannot detect unknown rumors (and even known
ones) sufficiently and often worse than using a single ML
model. Therefore, it is infeasible to assume that using any ML
models to construct the ES would improve rumor detection,
especially dealing with unknown rumors.

IRE2019 is mainly used for rumor verification, but this dataset still
contains annotated rumor data that can be used for the detection stage (i.e.,
ignore all annotations and use raw data for detection).
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In this paper, we propose an approach for optimizing
ES configurations to address the aforementioned problems.
In particular, we focus on detecting rumors, the first stage
in rumor classification [12].> Through our experimental
analysis, we found that using a well-formulated ES (e.g.,
ES combining Random Forest, XGBoost, and Multilayer
perceptron denoted as RXM-ES) achieved 0.79 Fl-score,
compared to 0.58 using a single ML model and 0.62 using
random ES model for detecting unknown rumors. Similarly,
the RXM-ES achieved an average F1 score of 0.62, com-
pared with 0.51 using a single ML model in our 10-fold
cross-validation using the RE2019 dataset. These results indi-
cate that not all ESes could detect unknown rumors the same,
and therefore requires a careful selection of ML models
to construct the ES (such as RXM-ES in our experiment).
Hence, appropriately selecting ML models to construct the
ES can significantly improve the detection of unknown
rumors compared to existing solutions (particularly single-
ML-based models), which is an essential step for stance and
veracity classifications to improve the analysis of chosen
rumors and their context [12]. The contributions of our paper
are summarized as follows.

o To segregate ML models based on the performance with
varying features and/or rumor topics;

o To rank ML models for detecting rumors with respect to
rumor topics and available features;

o To compare different configurations of the ensemble
solutions using different ML models to detect unknown
rumors;

o To perform experimental analysis to evaluate the perfor-
mance of different ML models, ESes, and existing rumor
detection tools (e.g., eventAl and NileTMRG) using two
public datasets.

The rest of the paper is organized as follows. Section II
presents the related work on rumor detection. Section III
presents the overall process of evaluating ML models for
rumor detection. Section IV presents the experimental results
with various ML models and discusses the results. Section V
presents the ES formulation, with experimental results in
Section VI. Section VII discusses our findings and limita-
tions, then finally, Section VIII concludes this paper.

Il. RELATED WORK

Various ML models have extensively been studied in the
past decade to enhance their rumor detection capabilities [7],
[12], [13]. For instance, Yang et al. [14] identified rumors
on Twitter using Logistic Regression (LR), Naive Bayes
(NB), and Random Forest (RF) based on hot topic detection.
Zhao et al. [15] presented enquiry-based rumor detection, but
their result reported the performance using precision only,
which only achieved 0.52. Further, the solution relies on the
existence of enquiries for the rumor event (i.e., if there are no
sufficient queries about the rumor, it may not be detected).

2Rumor tracking, stance classification, and veracity classification are out
of scope in this paper.
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Lin et al. [16] proposed early rumor detection based on user
attitude using convolutions neural network and BERT neural
network language model. Although results show effective
early detection, it requires legitimate users to comment about
the addressed topic, which can be targeted by bots [17].

Although performance improvement was observed,
the performance of existing ML techniques is significantly
degraded for unseen and unexpected rumor events (see
Section IV). Other approaches based on stances require
legitimate user interactions, which may not be practical for
all events shared in social media platforms. To overcome
these limitations, we analyze the relationships between rumor
topics, features and detection models, and suggest an ensem-
ble solution using multi-ML models to improve the detection
performance (see Section V).

A. ENSEMBLE SOLUTIONS FOR RUMOR DETECTION
Dietterich et al. [18] explained that when using an ensemble
method rather than looking for a single highest performing
algorithm model, it is more advantageous for statistical, com-
putational, and representative issues. In addition, empirical
studies in several previous papers have confirmed that the
use of the ensemble solution can reduce high variability,
variance, and bias [19]-[21]. To grasp these benefits, there
have been several approaches to use ensemble solutions to
detect rumors. Liu et al. [10] proposed an ensemble learn-
ing approach that combines different data sampling meth-
ods (i.e., random oversampling, random undersampling and
fuzzy-based oversampling). However, their main application
is spam detection, and does not consider the use of differ-
ent ML models. Nguyen et al. [11] presented an ensemble
solution based on features (i.e., the credibility of each tweet
and the credibility of overall events) for modeling tweet-level
credibility. They showed that the proposed model achieves
over 80% accuracy in the first hour, going up to over 90%
accuracy over time. However, they did not consider how
the performance changes when used against different rumor
topics and/or events. Geng et al. [22] approached through
a multi-view neural network model with respect to con-
tent, reply and sentiment. However, those existing ES-based
approaches do not comprehensively evaluate their rumor
detection performances with respect to varying rumor topics
and available features. Moreover, there is no suggestions or
discussion on how to construct the ES.

B. RUMOR DETECTION FEATURES

There are numerous features that can characterize rumors,
such as temporal [23], structural [24], message [25], net-
work [25], user [26], content [26], etc. However, using more
features does not necessarily improve the detection perfor-
mance [25]. Castillo et al. [9] identified classes of fea-
tures associated with rumors, and demonstrated that con-
text and propagation features are specifically effective for
rumor detection, indicating the importance of understand-
ing the context of the rumor and the graph patterns in the
social network. Kwon et al. [23] proposed a rumor detection
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method using temporal, linguistics, and structural features
on Twitter. Using their proposed features, they were able to
achieve up to 0.89 F1 score, indicating the importance of
using appropriate features. Kwon et al. [27] analyzed the
relative importance of user, structural, linguistic, and tempo-
ral features for rumor classification on Twitter. Based on the
results, they suggested a new rumor classification algorithm
that achieves competitive accuracy over both short and long
time windows. Ma et al. [28] used a time series model to
capture temporal characteristics of rumors, achieving up to
0.89 F1 score. However, other features are not compared
in their work. Giasemidis et al. [25] extracted 87 features
classified into three categories of message-based, user-based,
and network-based in a dataset containing 72 rumors on Twit-
ter, and conducted a study to identify rumors using various
machine learning algorithms. The best F1 score achieved was
using the Decision Tree (DT) with the value 0.97. Although
various features are explored to improve the performance
of rumor detection models, previous work did not take into
account how different features performed when they are used
for other rumor topics or events. In addition, the ability to
collect some of those features is not feasible until a certain
amount of rumor has spread, limiting their usage in rumor
detection.

C. DEEP LEARNING FOR RUMOR DETECTION

Another rising technique is to use deep learning (DL).
Guo et al. [29] presented a hierarchical LSTM network
with social attention, achieving an accuracy of 0.84 and
F1 score of 0.83 using a Twitter dataset. Chen er al. [30]
presented a deep attention model built on RNNs, which
selectively learns temporal representations of sequential posts
to identify rumors. Wang et al. [5S] presented a Neural
Model using Dynamic Propagation Structures. They also
presented the performance variation with different features,
which showed a significant difference with the highest
F1 score of 0.83 with content and structure features com-
bined. Ruchansky ez al. [31] presented a hybrid DL model CSI
using LSTM to capture the temporal pattern of user activity
and RNN to characterize the user behavior to detect fake news
on Twitter and Weibo. Ma et al. [32] presented generative
adversarial learning for rumor detection, which strengthened
the discriminator to learn stronger rumor indicative represen-
tations.

D. DEEP LEARNING LIMITATIONS

Although DL-based models showed a performance improve-
ment in rumor detection, previous work did not evaluate
their model’s performance when used for detecting unknown
rumors [13], [30].> Further, DL requires a large dataset
for training [33], as well as LSTM-based models requir-
ing sequential data. Hence, these approaches may not be

3There are many works on unknown rumor veracity such as in [6], but
the focus of this paper is on rumor detection, the first step when raw input
is provided, whereas rumor veracity handles already identified rumors to
confirm whether the rumor is true, debunked as false, or unverified.
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FIGURE 1. Proposed rumor detection framework for unknown rumors.

suitable when rumor features do not exhibit sequential prop-
erties (e.g., structural and user features). This is not ideal for
early detection of unknown rumors where those topics may
not be well represented as sequences of past rumor topics.
To validate, we implemented an equivalent DS-based rumor
detection model” presented in [31]. Using this model, the best
results we obtained were accuracy of 0.56 and F1 score
of 0.50 for detecting unknown rumor events (i.e., inputting
rumor event data not used previously in training). Therefore,
we conclude that the performance of all existing rumor detec-
tion models, including DL-based models, are significantly
worse when used for detecting unknown rumors, which is a
huge constraint in practice.

Ill. EVALUATION FRAMEWORK OF ML-BASED RUMOR
DETECTION MODELS

Rumor detection is the first component in the rumor clas-
sification system as described by Zubiaga et al. [12]. The
rumor detection component identifies whether a piece of
information constitutes a rumor. The remaining components
(i.e., rumor tracking, stance classification, and veracity clas-
sification) rely on correctly detected rumors from the rumor
detection component. Therefore, it is of paramount impor-
tance to ensure the performance and accuracy of the rumor
detection component are high. Rumor detection using ML
models normally has four main steps: (1) data collection, (2)
feature extraction, (3) ML model training, and (4) perfor-
mance evaluation, as depicted in Figure 1. Further details of
each step are described as follows.

Step 1 (Data Collection): Raw data can be collected
from social media, such as Twitter, using various APIs,
which are then preprocessed to extract features. In this
paper, the data collection step is simplified using a publicly
available dataset named PHEME [6] and RumourEval2019
(denoted as RE2019) [7]. PHEME is a large-sized dataset

4The implementation of the CSIl-equivalent model can be found at
https://github.com/hksecurity/RumorDetection-with-Multi-ML-Models.
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TABLE 1. Classifying PHEME dataset rumor topics [6] (R: Rumor, NR:
Non-Rumor).

Rumor Topic | Event R NR Total

Sydney Siege 522 699 1,221

. Ottawa Shooting 470 420 890
Crime

Ferguson 284 859 1,143

Charlie Hebdo 458 1,621 2,079

Politic Putin Missing 126 112 238

Entertainment | Prince 229 4 233

Impact Germanwings Crash 238 231 469

Mixed Ebola & Gurlitt 75 77 152

Total 2,402 4,023 6,425

containing nine distinctive events across five rumor topics
from Twitter with 6,425 tweets. Due to the size of the dataset
being small for “Ebola” (Medical) and “Gurlitt” (Political)
events, we combined them to create a new dataset Mixed
with multiple rumor topics. Table 1 shows the statistics of
the labeled tweets for each event in the PHEME dataset.
RE2019 is a smaller sized dataset containing 27 distinctive
events across two rumor topics (Political and Impact) from
Twitter with 112 tweets (duplicates with PHEME removed,
which was originally 381 tweets) and 52 individual Reddit
posts across two rumor topics (Political and Impact). Exist-
ing rumor detection techniques can also be used to collect
and classify rumor data. However, as we find out later in
Section IV, using existing techniques, especially single ML
model-based ones, may not be accurate to produce correctly
labeled data due to their lack of performance against unknown
rumor events.

Step 2 (Feature Extraction): Rumor features are catego-
rized into three groups similar to the work in [25]: Con-
tent (C), Propagation (P), and User (U). There are many

SRumor topics are populated from https://www.kaggle.com/sfarooqi/news-
classification.
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TABLE 2. Rumor feature groups with selected features.

Features

has question mark
has exclamation mark
has URL

has hashtag
unigram bow vector
POS tagging

time span

retweet count
favorite count

is verified

has description
followers count
friends count
statuses count

Group

Content (C)

Propagation (P)

User (U)

other features, but not all of them are useful for detecting
rumors. For example, Castillo ef al. [9] showed useful fea-
tures for detecting rumors on Twitter. Based on their findings,
we selected the top 14 features to be used in this paper. Table 2
summarizes the rumor features into three feature groups.

Step 3 (ML Models and Training): ML models can be cate-
gorized into five classes [34]: (1) logic-based (e.g., Decision
Tree), (2) perceptron-based (e.g., Multilayer Perceptron), (3)
Statistical learning (e.g., Naive Bayes), (4) instance-based
(e.g., K-Nearest Neighbor), and (5) support vector machines
(e.g., Linear and RBF SVM). We selected 13 most pop-
ular ML models covering all ML categories, and imple-
mented them for comparisons using scikit-learn library [35].
They are (of no particular order): Logistic Regression (LR),
Decision Tree (DT), K-Nearest Neighbor (KNN), Support
Vector Machine (SVM), Gaussian Process (GP), Random
Forest (RF), Naive Bayes (NB), Linear Discriminant Analy-
sis (LDA), Quadratic Discriminant Analysis (QDA), Gradient
Boosting (GBM), Adaptive Boost (AdaBoost), XGBoost, and
Multilayer perceptron (MLP). Accuracy, Precision, Recall,
and F1 score are used to measure the performance (see their
definitions in [36]). In the context of rumor detection, they
are represented as follows.

o Accuracy: the proportion of correctly classified tweets;

« Precision: the proportion of tweets classified as rumors

that actually are rumors;
o Recall: the proportion of rumors that were accurately
classified;

o F-measure: the harmonic mean of precision and recall.

In our experiment, we divide the dataset into three cat-
egories; train:validate:test for the train set, validation set,
and test set, respectively with the ratio 2 : 2 : 6 (further
details in Section VI). The training set is used to optimize
the ML models’ configurations. The validation set is used for
the ensemble solutions to assign appropriate weight values
to different ML models in the set (details are given later
in Section V). Lastly, the test set is used to measure the
performance for all ML models and the ensemble solutions.
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TABLE 3. Best ML model for detecting known rumors.

Rumors Features

All C P U
Crime
Sydney Siege NBO0.84] NB0.84/MLP0.75] RF0.72
Ottawa Shooting| GBM 0.92|GBM 0.92| DT 0.70, RF0.73
Ferguson NB0.85| RF0.87[XGB0.59] RF0.59
Charlie Hebdo |MLP0.86| RF0.86/XGB0.73| RF0.70
Politic
Putin Missing | RF0.85|MLP 0.88] DT 0.78] LR0.73
Entertainment
Prince | RF0.83[QDA0.57] All0.50] All0.50
Impact
German Wings | RF0.96] RF 0.97[MLP 0.69|GBM 0.62
Mixed
Ebola & Gurlitt | LR 0.94 MLP 0.94]MLP0.71] DT0.74

For testing the detection of known rumor events, we train
the models using the rumor event data. This approach is
the same as previous work [12], [13]. To test the detection
of unknown rumor events, we train the models using other
rumor event data (i.e., to test unknown rumor event Ferguson,
the training data will consist of all other events but excluding
Ferguson dataset), which in effect treats the testing rumor
dataset as previously unseen.

Further, the Hyperopt-sklearn package utilizes a TPE
(Tree-Parzen Estimator) algorithm to find parameter values
that are likely to derive high performance in a prede-
fined hyperparameter space. Therefore, we perform hyper-
parameter optimization for each ML model using the
hyperopt-sklearn package [37], [38].

Step 4 (Performance Evaluation): To evaluate the perfor-
mance of ML models under real-world conditions, we test
detecting unknown rumors by separating training and vali-
dation datasets from the test datasets (i.e., they use differ-
ent rumor events). To observe the performance difference,
two types of tests are conducted: (1) cross validation using
k-fold (e.g., k = 10) evaluation for known rumors, and (2)
using other rumor event datasets for unknown rumor events.
The rumor detection performances are discussed in the next
section.

IV. SINGLE ML MODEL RUMOR DETECTION

This section evaluates the performance of ML models using
10-fold cross validation for detecting known rumor events,
and training the models with other rumor event datasets for
detecting unknown rumor events. In this section, we only used
PHEME dataset, and use 80% of the dataset for training and
20% for testing. The results are shown in Figure 2. 2a and 2b
show that knowing the rumor event can increase the accuracy
and F1 score. Here, each ML model (total 13) is used for
each rumor event (total 8) treating them as known, and then
unknown. So in total, there are 104 results counted (i.e., the
y-axis). Top-performing ML models are also shown
in Tables 3 and 4 for known and unknown rumors,

150713
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FIGURE 2. Histogram measurement of rumor detection performances w.r.t. known vs. unknown detection, rumor
events, ML models, and features. The x-axis is the F1-score values as bins and y-axis is count. (a) and

(b) compare F1 score and accuracy of detecting known and unknown rumors, respectively. (c) and (d) compare
F1 scores for detecting events as known and unknown rumors. (e) and (f) compare F1 scores for ML models to
detect known and unknown rumors. (g) and (h) compare F1 scores to detect known and unknown rumors w.r.t.

feature groups.
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TABLE 4. Best ML model for detecting unknown rumors.

Rumors Features

Al T ¢ [ P | U
Crime
Sydney Siege LDA 0.87\MLP 0.86) RFO0.72| RFO0.73
Ottawa Shooting| GBM 0.85 MLP 0.86) RF0.70| RF0.74
Ferguson LR0.86/ LR0.87\GBM0.73] RF0.71
Charlie Hebdo |GBM 0.86/GBM 0.85/GBM 0.68] RF0.72
Politic
Putin Missing | MLP 0.89]MLP 0.91] RF 0.68] MLP 0.68
Entertainment
Prince | RF0.84] RF0.84] RF0.68] RF0.72
Impact
German Wings | MLP 0.85[MLP 0.87] RF 0.69]GBM 0.62
Mixed

Ebola & Gurlitt [ NB0.83[ NB0.85] RF0.70]AdaB 0.69

respectively (The best model and its F1 score are highlighted
in bold font style). We further evaluate the performance of
rumor detection models with respect to statistics, events,
models, and features in this section.

A. BASIC STATISTICS

To better understand each of the rumor events, we show some
key basic statistics in Table 5. In general, the non-rumor
(NR) tweets have a higher favorite, retweet and friends counts
(average 1.84, 1.09 and 1.12 times higher, respectively, with-
out “Ebola & Gurlitt” event), as well as the number of
keywords used and the number of unique keywords (labeled
Unique in the table) across all tweets. Although we cannot
make any conclusions based on these values, we can observe
that non-rumors are more likely to be seen and spread by users
in social media. However, looking at the individual event,
the ratio differs significantly. For example, events “Prince”
and “Ebola & Gurlitt” have a significantly lower ratio than
other events.

B. EFFECTS OF RUMOR EVENTS AND TOPICS

Figures 2¢ and 2d compares the ML models detecting rumors
when they are treated as known or unknown. Here, the y-axis
represents the number of ML models in the F1-score ranges
on the x-axis. From this, we observe that the order of
best F1 scores for different events vary significantly, and it
changes when we treat them as unknown rumors.

For detecting known rumors (Table 3), we observe that
MLP achieved the highest F1 score for the “Charlie Hebdo™
event, but LR was best for the “Ebola & Gurlitt” event, and
GBM for “Ottawa Shooting’’ event. This indicates that even
if the rumor events are from the same topic, such as “Crime”’
for the above examples, the best performing model varies.
However, there is a group of models that appear more than
others, which are NB, GBM, and RF for “Crime”’, RF for
“Entertainment” and “Impact”, and MLP for “Politic”” and
“Mixed” topics. Similarly, there is a group of models that
appear more than others when detecting unknown rumors,
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TABLE 5. Statistics on rumor events.

Event type | Favorite | Retweet | Friends | Keywords | Unique

o NR 526 490| 3820 2509] 1855

Siye r:fy R 225 341 4912 1566 912

g Ratio| 2.34| 144 0.78 1.60| 2.03

o NR 243 353| 4273 1580| 1133

awa IR 105 325| 2041 1286 839
Shooting .

Ratio| 2.32|  1.09] 2.09 123 135

NR 193 453| 5176 3003| 2498

Ferguson |R 113 294 | 4513 1173 578

Ratio| 171 154 115 264 432

Charli NR 233 455| 4362 5183 4539

atie /R 103 355| 1626 1347|703
Hebdo .

Ratio| 2.26| 128| 2.68 385 6.46

Put NR 9 16| 1384 706| 575

utin R 6 15| 4022 632|501
Missing .

Ratio| 1.56| 1.04| 034 112|115

NR 3 20 746 24 15

Prince R 6 11 1598 794 785

Ratio| 053] 021| 047 0.03| 0.02

Gorm: NR 109 238 2172 996| 764

“;?rm““ R 50| 226] 6730 784 552
ings .

Ratio| 2.17| 1.06| 032 127 138

NR 1 2] 1766 376 309

Ebola & 93| 262] 5523 305 238
Gurlitt .

Ratio| 0.01| 001| 032 123 130

which are MLP, LR, GBM for “Crime” topic, MLP for
“Politic” and “Impact” topics, RF for “Entertainment”
topic, and NB for “Mixed” topic. Although there are over-
laps, the best model largely differs across the rumor topics.

C. EFFECTS OF USING DIFFERENT ML MODELS

Figures 2e and 2f show the variations in performance to detect
known and unknown rumors using different ML models,
respectively. Similarly, we observe large variations of the best
ML model to use (see the rank changes from Table 3 and 4.°)
That is, it is not necessarily that the best performing model
for known rumor detection would also be the best when used
for unknown detection. Here, the y-axis count represents the
number of rumor events.

D. EFFECTS OF RUMOR FEATURES

Figures 2g and 2h show performance variations with respect
to different feature groups. Here, the y-axis represents the
number of ML models and their performance against each
rumor event, a total of 104 counts. Unlike other variables,
we observe that either using all features or content-only fea-
ture group significantly improves the detection performance.
Furthermore, using content-only features for some rumor
events achieved a higher F1 score than using all features (i.e.,
in the cases of Ferguson, German Wings, Putin Missing, and
Sydney Siege in Table 3). Interestingly, a similar observation
was made for unknown rumor detection (i.e., even if we do
not know what rumor we are looking for, the emerging rumor
event may have similar characteristics). On the other hand,

61n Figure 2f, GBM is the best performer, but in Table 4, the best performer
differs as it provides a better insight into individual rumor events.
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using the user-based feature performed the worst. Looking
at within each feature group, there is no one particular ML
model that could be selected as the best performing one due
to a large variation (as shown in Table 4). Hence, no one
particular ML model is more sensitive to different feature
groups than the others. In conclusion, our results show that
regardless of detecting known or unknown rumors, using
content-based features influenced the performance most sig-
nificantly (unless the dataset used is skewed for known rumor
detection, such as “Prince” event).

E. VERDICT

We compared the performance of rumor detection with
respect to basic statistics, events and topics, different ML
models, and rumor features. From those results, four main
observations are made:

1) Basic statistics cannot predict the performance of
ML models: We cannot estimate the performance of
unknown rumor detection based on the R-to-NR ratio,
which was somewhat possible for known rumor events.

2) Degraded performance in general (Figures 2a and
2b): Unknown rumor detection performed poorly as
shown by F1 scores achieved. For example with
the “German Wings” event, the best F1 score is
0.867 using MLP as an unknown rumor, while the best
F1 score is 0.968 using RF as a known rumor.

3) The best performing ML model has changed
(Figures 2c to 2f): The best performance achieved
between known and unknown rumor detection has
changed significantly. In fact, only the ‘“Politic”
topic achieved the best performance using the same
model (i.e., MLP), and all other topics used a differ-
ent ML model to achieve the best performance (see
Table 3 and 4).

4) Use content-based features or use all features (Fig-
ures 2g and 2h): Using content-based features and/or
all features outperformed user and propagation features
significantly in both known and unknown rumor detec-
tion.

Due to those limitations, a better approach is needed
to improve the unknown rumor detection. To achieve this,
we propose to use ES formed with well-performing ML
models in the next section.

V. ENSEMBLE SOLUTION: MULTI-ML MODELS

To improve unknown rumor detection, we grasp the best
properties of different ML models found in Section IV, and
construct an ensemble solution (ES) by combining multi-ML
models.

A. ENSEMBLE SOLUTION SETUP

There are many techniques to construct ensemble solutions,
including weighting, voting, bagging, vogging, entropy,
etc. [39], [40]. However, users must be aware of the lim-
itations of each technique and the limitations of the way

150716

Algorithm 1 ES Configuration Using Soft Voting

input : Dataset D = {(x1, y1), (X2, ¥2), - - - (k> Yim)}
input : Learning algorithms Ly, ... Lt
input : Weights for each L;, Wy, ... Wr
input : Threshold T4
output: (D)
for (i=1;i<=m; i++) {
for(I=1;1 <=T;1l++){
hi = Li(D;) = (P(" NR” |X;), P(" R" |X}))
i = ZzT=1 Wi hy;
if P(" R’ |X;) < Thoiq then
| s(Di) =R
else
L s(Di) = NR

r;turnf(D) =TT, s(D))

different classifiers can be used as part of the ensemble
solution. In this paper, we implemented an ES by applying
a weighted soft voting strategy. Because each classifier is
making its own prediction rather than cooperating, a voting
strategy is more feasible than other ensemble techniques.
Further, soft voting allows the confidence of each classifier
into account rather than making a binary decision as in hard
voting. However, other ensemble techniques will be com-
pared in our future work to determine the optimal rumor
detection strategy using ESes. The process is captured in
Algorithm 1, which shows the soft voting procedure used to
make a decision in our developed ES. Later in the experiment
(Section VI), we demonstrate that without a proper selection
of classifiers and weight selection, not all ESes can detect the
rumors the same. Here, function f describes our ES, where
it is used to determine whether a given input dataset, D of
size m, is either rumor or non-rumor. Also, a weight value W
(0 < W < 1) is individually assigned to each ML model L7,
which represents the relative contribution of Ly because all
models do not contribute equally (as shown in Section IV).
Because the final result is not always 0 or 1, but in between,
a threshold value Tj,,4 is used to determine the agreed con-
sensus of the votes (0.5 is used by default). This threshold
value provides flexibility in adjusting the level of measured
score to be in order to determine the rumor/non-rumor clas-
sification of the input data. P(R|x;) means the probability
that the ith data from the dataset D is a rumor. This value
can be obtained by calculating the prediction probability for
each machine learning model. %; is an array that stores the
probability value of the ith data predicted by the algorithm
L;. z; represents the final value accumulated by applying the
weights W for each &, of ith data.

o Model Selection —

— All: No prior knowledge of ML models and their
rumor detection performance.

— Top N: Has each ML model performance measured
and be able to rank them.
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FIGURE 3. Proposed ES vs. others (known rumors).

o Weight Values —

— Equal: User does not have access to evaluate and
configure ML models for rumor detection.

— Optimized: User can pre-train and evaluate ML
models using different rumor events.

Top N: We can select the top N models to form the ES,
because some models perform poorly for all rumor events
and features, as seen in Section IV (i.e., there is always
another model that performs better). Hence, incorporating
those under-performing ones may not necessarily improve
rumor detection, and possibly negatively impact the perfor-
mance. The top N models are selected based on the per-
formance observed in the past (i.e., we must evaluate their
performance prior to assembling them into the ES). As such,
this approach will add the overhead for pre-evaluating the ML,
models for selection.

Weight Optimization: The weight values can be opti-
mized to improve the performance as demonstrated in [41],
[42]. In this paper, this is achieved through hyper-parameter
optimization using 25% of the dataset (as mentioned in
Section III). Because some models may perform better than
others (as shown in Section IV, and further demonstrated
later in Section VI), they can be given higher weight values
proportional to their relative rumor detection performance.
Based on the results shown in Section IV, their F1 score
performance used to determine the weight value ratio (e.g.,
if we use model A and B with F1 cores 0.8 and 0.6 respec-
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tively, then their weights are assigned 0.8:0.6 ratio in the
ES), suggesting a linear relationship between the weights and
F1 scores. Note that, this will require further training using
the existing dataset,” and also if the training set is biased,
the end result may not enhance the performance. Hence,
different weight assignment strategies should be explored in
future work. But as we observe later in Section VI, using a
large-sized dataset such as PHEME can lead to reasonably
good performance.

VI. EXPERIMENTAL ANALYSIS

In our experiment, we compare our proposed ES strategies
against both classical methods (i.e., single ML model-based
solutions) and recent ES solutions (e.g., evenAl) using real
data sets (i.e., PHEME and RE2019): (1) the proposed ES
strategies consist of ALL(equal), ALL(opt), TOP3(equal)
and TOP3(opt) as described in Section V-A, (2) single ML
models including NileTMRG as described in Section III,
and (3) eventAl (a recent ES implementation consisting of
LR, RF and SVM, achieving the best performance as shown
in [7]). To provide a fair comparison, all models used base ML
models without any fine-tuning, which is true for our imple-
mented ESes as well. Next, we examine their performance
when we use a smaller RE2019 dataset in Section VI-B.
Finally, we compare different ES constructions (our proposed

7A ML model may be trained and optimized already, but if there is no
available dataset, we cannot optimize weights.
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FIGURE 4. Proposed ES vs. others (unknown rumors).

strategies versus random and worst classifier selections) in
Section VI-C.

A. EXPERIMENT WITH PHEME DATASET

In this experiment, we set training, validation and testing
dataset ratio at 60%, 20% and 20%, respectively. The results
are shown in Figures 3 and 4 for known and unknown rumor
detection, respectively.

Known rumor detection: When the rumor is known,
the ES (regardless of the strategies) has no significant dif-
ference as shown in Figure 3. This is also the same for
eventAl.

Unknown rumor detection: When detecting unknown
rumors, however, the proposed ES strategies performed sig-
nificantly better than others including eventAl as shown
in Figure 4. Another observation is that the performances
across different strategies of the ES are relatively the same.
This indicates that if we have a large dataset available, such
as PHEME, it seems feasible to combine already trained
ML models into an ES without requiring further tuning
for weights or ranking them. However, selecting a few,
such as eventAl, the user has to be careful to choose the
best-performing ones such as selecting optimally performing
ones. As shown in Table 4, we anticipate the ES performs
better than single ML models as different models in the ES
pick up different characteristics of rumors to give a combined
assessment, improving the overall classification.
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1) STATISTICAL ANALYSIS

The Kruskal-Wallis (KW) test was used to conduct statisti-
cal analysis. The KW test is a non-parametric method that
responds to the one-way analysis of variance (ANOVA). The
KW test allows us to compare the distributions of multi-
ple groups (i.e., ML models and the ES) on a dependent
variable that is measured (i.e., rumor detection perfor-
mance). Hence, this test validates that results observed
in Figure 4 are statistically different (i.e., the proposed ES
is better than the others). To adjust p-values in multiple
comparison procedures, we used the Bonferroni correction
method [43].

First, our proposed ES is compared with single ML models
as shown in Figure 5.8 This test confirms our results shown
in Figure 4 such that the performance of our proposed ES is
significantly different (better) than ALL single ML models
in terms of accuracy, and a similar result was also observed
for F1 scores as well.

Second, we compare our proposed ES against eventAl as
shown in Figure 6. It also clearly shows that our proposed
ESes, regardless of the strategies used, are better perform-
ers than eventAl. As the eventAl solution was used with a

8NileTMRG is presented as SVM, it’s underlying model. Also, the prop-
agation and user feature groups are omitted, as well as precision and recall
data, as not many differences are observed. Full details can be retrieved from
our technical paper from https://github.com/hksecurity/RumorDetection-
with-Multi-ML-Models.
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different set of data, the performance has changed signifi-
cantly, showing that not all ensemble solutions can improve
the unknown rumor detection performance.
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2) SOFT VOTING CONFIGURATION
In addition to the proposed ES strategies, performance may
vary depending on the way we determine the outcomes using
our selected soft voting approach (i.e., the impact of threshold
or weight values). To evaluate this, we performed the follow-
ing experiment setups using the Top3 ML models.

« Optimized threshold —

— the global optimized threshold means the opti-
mized threshold for all experiments, and the local
optimized threshold means the optimized threshold
for each event experiment.

— Based on our findings from the global /local opti-
mized threshold calculations above (i.e., the best
performance through validation set by increasing
the threshold value from O to 1 by 0.01), we exper-
iment using the global/local optimized threshold.

« Randomized weights —
— We experimented with 100 random weight values.
The results are shown in Figures 7 and 8 for global and
local threshold values, respectively. As a result of the exper-
iment, optimized thresholds performed better in the known
event test than in the unknown event test. Also, both global
and local optimized thresholds performed better than the
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default thresholds in the known event test. And the optimized
weights performed similarly or better than equal weights or
randomized weights. These results indicate that it is important
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to ensure that soft voting weights are optimized to improve
rumor detection.

B. EXPERIMENT WITH RE2019 DATASET

In this experiment, we trained our ES using the PHEME
dataset, removed any overlapping events between the
PHEME and RE2019 Twitter datasets and tested for unknown
rumor detection. The parameters for the setup remained the
same as before. The results are shown in Figures 9 and 10 for
RE2019 dataset using Twitter and Reddit posts, respectively.
Due to the small-sized dataset, we could not conclude any
statistical difference (i.e., the variance is too large).

1) TWITTER FROM RE2019

Our result shows that our proposed ES still performs better
than single ML models, as well as eventAl. Further, improve-
ments are only significant using ES TOP3 strategies (for both
opt or equal weighting). We suspect that since the dataset
size is small, some models perform very poorly and therefore
reduces the performance when all models are used.

2) REDDIT FROM RE2019

To evaluate the Reddit data from RE2019, we first extracted
features from each Reddit post. We mapped the following
features from Reddit posts:

o Title: has_question_mark, has_exclamation_mark, uni-
gram_bow_vector, and pos_tagging.

« URL: has_URL.

o Subreddit_subscribers: followers_count.

« Num_comments: statuses_count.

As we can see, not all features used for Twitter are present.
However, better performance was still observed using ES
TOP3 in comparison to single ML models and eventAl,
as shown in Figure 10. We suspect that the top three best
performing ML models when used for ES can compliment
and identify rumors that were otherwise would have been
undetected.

C. COMPARING ES CONFIGURATIONS
We examine the performance of ESes when their configura-
tions vary. In our previous experiments, we used optimized
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FIGURE 9. Proposed ES vs. others (RE2019 Twitter).

values for the best results. However, users may believe that
regardless of the ES configuration, using any combinations
of the ML models (classifiers) as an ensemble could still be
better at detecting unknown rumors. So, we carried out ES
configuration comparisons as shown in Figure 11 using both
PHEME and RE2019 datasets together. We setup three ES
configurations: (1) Worst, (2) Random, and (3) Best. Worst
refers to the collection of worst-performing ML models to
construct the ES, Random refers to randomly selected ML
models to construct the ES, and Best refers to our previously
described approach (as shown in Section V). For the threshold
values, we have two modes of the same (i.e., equal weights)
or optimized (as described in Section V). We vary the number
of combined models from two to six, because if the number
of models increases, the computational overhead (as well as
configurations) increases. Therefore, to minimize the compu-
tation overhead, we assume that using the minimal number of
ML models for the ES is the user’s goal.

Figures 11a and 11b shows their comparisons in the context
of detecting known rumors. Since detecting known rumors
has similar results, Random and Best perform similarly. How-
ever, if the user somehow selected the worst-performing mod-
els, then both accuracy and F1 score are significantly reduced.
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FIGURE 10. Proposed ES vs. others (RE2019 Reddit).

Regardless, using the optimized ES outperforms both worst
and randomly configured ESes. We also notice that as the
number of models used increases (along the x-axis), their
rumor detection performance becomes similar. This is the
same observation we made in our previous experiment when
using all models performed relatively better than any of the
single models. This also minimizes the noise created by not
so well performing models as well.

Figures 11c and 11d shows their comparisons in the con-
text of detecting unknown rumors. Similarly, with detecting
known rumors, Worst and Random configurations had poor
detection performance. This indicates that depending on how
the ES is configured (i.e., the selection of ML models and the
threshold value), the rumor detection particularly unknown
ones can be affected severely.

VII. DISCUSSION

A. RUMOR DATASET

Gathering the dataset for rumors is a challenging task due to
the lack of automated processes to annotate them. Because
existing rumor detectors are not reliable to detect unknown
rumor events, they cannot be used to annotate rumors.
Although the proposed ES is able to improve the detection
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FIGURE 11. Comparing ESes (worst, random and optimized). (a) and (b) compare accuracy and F1-scores for known rumor detection, respectively. (c) and

(d) compare accuracy and F1-scores for unknown rumor detection, respectively.

of rumors for unknown rumor events, it still requires training
using known rumor data. To address this problem, techniques
such as rumor generation using GAN [32] can be used to
enhance the classification of unknown rumor events further.
This limitation affects the use of certain models and tech-
niques, as well. For example, neural network algorithms (e.g.,
RNN, LSTM, GRU, etc.) require parsing the rumor dataset
into a sequence, which is not presented in some datasets.
Hence, rumor generation and collection are still challenging
tasks, which will be investigated in our future work.

Although we used some correlated datasets based on rumor
topics (as shown in Table 1), rumor detection performance
varied significantly across the events we examined, as shown
in Table 4. This implies that rumor events themselves do not
necessarily share features that are correlated within the same
rumor topic. Hence, other correlation amongst rumor topics
needs to be investigated.

B. RUMOR FEATURE

Our experimental results showed that content-based features
enhanced the performance of all models significantly com-
pared to other features. However, in many cases combining
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all features did not necessarily improve the performance over
the content-based feature (they are not statistically different in
performance). We suspect that because using other features,
P and U, did not improve the detection performance, adding
those features to a classifier may introduce noise in detection
rather than improving the performance. This indicates the
importance of understanding the context of the rumor. To fur-
ther enhance the detection performance, the content-based
feature can be enriched by incorporating contextual informa-
tion (e.g., context-aware rumor detection using sentimental
information). Zubiaga et al. [6] incorporated natural language
processing (NLP) to predict the veracity of the rumor, which
performed better when compared to without using the NLP.
Similarly, we can enhance content-based features by incorpo-
rating context-aware analysis of the rumor.

Propagation and user-based features were not sufficiently
effective in rumor detection in our experiments. As shown
in Table 5, rumor events had quite different base metrics that
contribute towards the propagation and user-based features.
However, the rumor detection performance by ML models
was not affected by them. It could be due to rumor spread hav-
ing similar properties as non-rumor spread (for propagation).
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Although rumor spreading users had much less metric values
(e.g., fewer friends, retweets, and favorite counts), the overall
characteristics may not be significant for the tested models to
identify them. A further look into the usefulness of features
will be examined in our future work.

C. BEST PERFORMING ML MODELS

Using the ES (regardless of any strategies to combine them)
is the suggested solution when detecting unknown rumors,
as it outperforms all other single model-based detectors as
shown in Section V. This clearly demonstrates that using
the ES overcomes the limitations of using single ML models
only, which exhibits biased detection for a subset of rumor
features when used, reducing the performance when used
against unknown rumors. If limited features are given (e.g.,
User only, or Propagation only), then many of the tested
models will perform relatively the same. If only user-based
features are given, a few models to avoid using are DT, LDA,
QDA, and MLP. If only propagation-based features are given,
then NB, LDA, and SVM are not recommended.

Although we did not find any strong relationship between
rumor topics and single ML models in rumor detection per-
formance, the following models could be suggested based on
our statistical test shown in Figure 5: NB, RF, GBM, and
XGBoost. Although those model’s accuracy is significantly
less than using the ES, their F1 score achieved relatively the
same with the ES. Other models not listed above are not
recommended as their performance is significantly less than
the ES.

D. CONFIGURING THE ENSEMBLE SOLUTION

In this paper, we discussed the four ES strategies
(ALL(equal), ALL(opt), TOP3(equal) and TOP3(opt)), but
found that using any of them generated similar performance.
Hence, the weight assignment and choosing N best ML
models do not necessarily improve the performance. That
is, even if N is a small number, it can be helpful to reduce
training and testing times. However, we assumed that the
selected models are already optimized to detect rumors. If we
are given off-the-shelf ML models only, then hyper-parameter
configuration could impact the performance significantly.
Moreover, because the detection performance varies when
rumor topics change, it may also be possible to dynamically
adjust the weights between ML models in the ES based on
empirical studies. To investigate further to formulate the most
effective ES, we will investigate the use of other ML models
with and without optimization, as well as in conjunction with
other rumor topic-related features in our future work.

VIil. CONCLUSION

Many different ML models have been proposed to detect
rumors. But using those models to detect new and emerg-
ing rumor topics is still a challenging task today. We have
validated this in our experimental analysis, which showed
that there is no one ML model that can outperform others,
especially when various rumor topics are considered. We also
discovered that using content-based features only might be a
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better strategy than using all features for using an ML model
to detect unseen rumors specifically.

To address the aforementioned problems, we proposed
ensemble solutions (ESes) combining multi-ML models
together to work cooperatively to detect rumors of various
topics with different features given. The experimental results
showed that there is a significant improvement in the per-
formance when using the ES to detect rumors that are pre-
viously unknown, achieving up to 0.79 average F1 score,
compared to 0.58 using a single ML model (i.e., an increase
of 0.21 average F1 score). With the enhanced rumor detection
performance, the ES would be suitable and practical for early
rumor detection without needing any of the unknown rumor
data, which can take a significant time to identify and collect,
while the caused damage increases.
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