
Received July 28, 2020, accepted August 9, 2020, date of publication August 14, 2020, date of current version August 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3016774

Vulnerability Prediction From Source Code
Using Machine Learning
ZEKI BILGIN , (Member, IEEE), MEHMET AKIF ERSOY, ELIF USTUNDAG SOYKAN,
EMRAH TOMUR, PINAR ÇOMAK, AND LEYLI KARAÇAY
Ericsson Research, 34367 İstanbul, Turkey

Corresponding author: Zeki Bilgin (zeki.bilgin@ericsson.com)

This work was supported by the Scientific and Technological Research Council of Turkey through the 1515 Frontier Research and
Development Laboratories Support Program under Project 5169902.

ABSTRACT As the role of information and communication technologies gradually increases in our lives,
software security becomes a major issue to provide protection against malicious attempts and to avoid
ending up with noncompensable damages to the system. With the advent of data-driven techniques, there
is now a growing interest in how to leverage machine learning (ML) as a software assurance method to
build trustworthy software systems. In this study, we examine how to predict software vulnerabilities from
source code by employing ML prior to their release. To this end, we develop a source code representation
method that enables us to perform intelligent analysis on the Abstract Syntax Tree (AST) form of source code
and then investigate whether ML can distinguish vulnerable and nonvulnerable code fragments. To make a
comprehensive performance evaluation, we use a public dataset that contains a large amount of function-level
real source code parts mined from open-source projects and carefully labeled according to the type of
vulnerability if they have any. We show the effectiveness of our proposed method for vulnerability prediction
from source code by carrying out exhaustive and realistic experiments under different regimes in comparison
with state-of-art methods.

INDEX TERMS AST, machine learning, source code, vulnerability prediction.

I. INTRODUCTION
Software vulnerabilities have widespread impact and cause
substantial economic and reputational damage to both
companies and people, developing or using software
products [1], [2]. Therefore, it is highly critical to detect and
eliminate potential vulnerabilities as early as possible. A vul-
nerability is defined as a weakness in an information system,
system security procedures, internal controls, or implementa-
tion that could be exploited by a threat source [3], whereas a
flaw or bug is a defect in a system that may (or may not) lead
to a vulnerability [4]. Thus, vulnerabilities are actually the
subclass of software bugs that can be exploited for malicious
purposes [5], [6]. Vulnerabilities require quite a different
identification process than defects because they are often not
realized by users or developers during the normal operation
of the system while defects are more easily and naturally
noticed [6]. These make the fighting against vulnerabilities
much more challenging than typical defects.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Yu .

There are two traditional approaches used for vulnera-
bility detection: (i) static analysis and (ii) dynamic analy-
sis. In static analysis, the code is examined for weaknesses
without executing it. Therefore, the potential impact of the
executable environment, such as the operating system and
hardware, is not taken into consideration during analysis [7].
On the other hand, in dynamic analysis, the code is executed
to check how the software will perform in a run-time environ-
ment, but this can only reason about the observed execution
paths and not all possible program paths [7]. Hence, both
static and dynamic code analyses have some problems on
their own. Some of the tools used as source code security
analyzer are listed1 along with their basic capabilities by
National Institute of Standards and Technology (NIST) in
the scope of Software Assurance Metrics And Tool Eval-
uation (SAMATE) project.2 Considering that both static
and dynamic analysis may be ineffective in detecting some

1https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.
html

2https://samate.nist.gov/Main_Page.html

150672 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8613-4071
https://orcid.org/0000-0003-4522-7340

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

vulnerabilities in certain situations [4], [8], the SAMATE
project provides very useful overview, evaluations and test
results about effectiveness of several static code analysis tools
based on a public dataset that includes real and synthetic test
cases with a set of known security flaws [4].

The recent advances in computing power, availability
of data, and new algorithms have led to major break-
throughs in artificial intelligence (AI) and machine learn-
ing (ML) in the last decade. Many applications of AI/ML
have become ubiquitous in everyday life, ranging from
automation and natural language processing to forecasting
and privacy issues [9], [10]. They are increasingly exploited
in the sectors as diverse as industry, government and com-
merce [11]. In this sense, yet another promising application
area for AI/ML is automated and intelligent software analysis
with various objectives such as vulnerability prediction [6],
code summarization [12], [13], code classification and clone
detection [14]. Employing ML for software security analysis
not only reduces the dependence on domain experts for the
hand-crafted pattern or feature extraction [15], but also helps
to simplify and automate processes that are required for the
current security analysis techniques [7].

Leveraging data-driven techniques (e.g., AI/ML) for per-
forming automated intelligent analysis directly on source
code requires to solve some challenges such as representing
source code in a proper form to enable further analysis in ML
algorithms and localizing detected vulnerabilities on source
code. In this study, we first seek solutions to these challenges
and propose methods to tackle them. Then, we model vul-
nerability prediction task as a binary classification problem
for each targeted vulnerability class such that our ML model
takes a source code fragment as input and decides whether
it is vulnerable (i.e. containing the targeted vulnerability) or
non-vulnerable. For experimental analysis and performance
evaluation, we implement our methodology and conduct a set
of experiments on the different subsets of the public Draper
VDISC Dataset3 [16] that contains a large amount of labeled
real source code components mined from several open-source
projects such as Debian Linux distribution [17] and public
Git repositories on GitHub [18] and the codes from SATE
IV Juliet Test Suite [19]. To the best of our knowledge, this is
the first study performing AST-based vulnerability prediction
analysis on the Draper VDISC Dataset.

The main contributions of this article include:

• An ML-based vulnerability prediction method that is
implemented and experimentally evaluated with a pub-
licly available vulnerability dataset containing a great
number of real source code fragments, which were care-
fully labeled according to findings from several static
analyzers,

• A method for vectorial representation of source code
while preserving syntactic and semantic relations con-
tained in the source code fragments,

3https://osf.io/d45bw/

• The experimental analysis showing that even the partial
Abstract Syntax Tree (AST) representation of the source
code can be useful for vulnerability prediction when it
is not feasible to extract or process whole AST of the
corresponding source code, and

• Adapting a prior state-of-art source code representation
method [20] to the vulnerability prediction problem for
performance comparison.

The rest of the paper is organized as follows. In Section II,
we provide a review of some related noteworthy works. Then,
in Section III, we give background information of the pro-
posed source code representation technique that is explained
in the subsequent Section IV. Later on, in Section V,
we present our vulnerability prediction approach along
with a set of comparative experimental analysis. Afterward,
in Section VI, we discuss some additional examinations we
have done related to the proposed method. Section VII con-
cludes the paper.

II. RELATED WORK
One of the earliest studies in vulnerability prediction belongs
to Neuhaus and Zimmermann [21], who observed that the
software components that had similar imports or function
calls were likely to be vulnerable to the same vulnerability.
They developed their vulnerability prediction model based
on this observation and validated it in the Mozilla project.
Neuhaus et al. [22] later extended this idea to the analysis of
dependencies between packages in the Red Hat.

A. SOFTWARE METRICS
Some studies [2], [23], [24] investigate whether software
metrics obtained from source code and development history
are discriminative and predictive of vulnerable code loca-
tions. For example, Shin et al. [2] examined the applicability
of three types of software metrics (complexity, code churn,
and developer activity) to build vulnerability prediction mod-
els. They performed empirical analyses on two open-source
projects, the Mozilla Firefox and the Red Hat Enterprise
Linux kernel, and found that 24 of the 28metrics collected are
discriminative of vulnerabilities for both projects. Another
work [24] demonstrated that some trivial software metrics
such as character diversity, string entropy, function length
and nesting depth could be useful indicators for vulnerability
detection.

B. TEXT MINING
It is claimed [25] that the prediction techniques, in intelligent
software analysis, based on text mining perform better than
the prediction techniques based on software metrics. The
former approach treats the source code as regular text in
general and leverages the natural language processing (NLP)
techniques for code representation and feature extraction. The
naturalness hypothesis of software approaches the subject
in a similar way and asserts that although programming
languages, in theory, are complex, flexible and powerful,

VOLUME 8, 2020 150673

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

the code fragments that real people actually write are mostly
simple and rather repetitive, and thus they have usefully
predictable statistical properties that can be captured in
statistical language models and leveraged for software engi-
neering tasks [26]. For example, following the word embed-
dings concept in NLP, the authors of [27] generated a set
of general-purpose models pre-trained over large amounts of
code. Although the authors claimed that their models could
be used to assist a number of information retrieval tasks,
including identifying semantic errors, they did not provide
any experimental results for these tasks. Another noteworthy
study [16] adopting NLP based approaches for vulnerability
detection belongs to Russell et al., who used a method that
was initially developed for sentence sentiment classification
in NLP. They adapted this method to classify ‘‘vulnerable’’
and ‘‘not vulnerable’’ source code components by employing
deep feature representation learning over one-hot encoding
of the tokens obtained from the lexed source code. For per-
formance evaluation, they built their own dataset, called the
Draper VDISC Dataset, containing millions of function-level
C and C++ source code fragments mined from open-source
projects and labeled as ‘‘vulnerable’’ or ‘‘not vulnerable’’
according to findings from several static analyzers. In the
presented study, we use a subset of this Draper VDISC
Dataset for experimental analysis; however, our study differs
from [16] especially in the following aspects: (i) our analysis
is based on AST representation of source code rather than
identifiers in the source code, and (ii) we implement a cate-
gorical encoding for the identified tokens rather than one-hot
encoding.

C. AST-BASED ANALYSIS
Treating the source code as natural language has some lim-
itations in capturing comprehensive program semantics to
characterize vulnerabilities of high diversity and complexity
in real source code, because source code is actually more
structural and logical than natural languages and has various
aspects of representation such as AST, data flow and control
flow [14], [15]. For this reason, some studies [12]–[14],
[20] seek to investigate alternative approaches for a more
efficient representation of source code in ML-based software
analysis. Aiming to reduce information loss in the process
of representation learning, Zhou et al. [15] presented a vul-
nerability identification model that encodes a function-level
source-code fragment into a joint graph structure from mul-
tiple syntax and semantic representations and then leverage
the composite graph representation to learn how to discover
vulnerable code. Another noteworthy study in this category
belongs to Alon et al. [20], who presented a neural model
for representing snippets of code as continuous distributed
vectors (i.e. ‘‘code embeddings’’), based on collection of
paths in its AST. The authors demonstrated the effectiveness
of their approach by using it to predict a method’s name from
the vector representation of its body. We make performance
comparison of our proposed method with [20] and provide
detailed comparative analysis in Section V-E3.

D. CHALLENGES
A recent thesis [6] evaluates the effectiveness of vulnerability
prediction methods and mentions the challenges in vulnera-
bility prediction research, such as having a lack of reliable
vulnerability dataset and lack of replication framework for
comparative analysis of existing methods. In complying with
this, it is shown in [28] that sufficient and accurately labeled
data has a great impact on the performance of ML-based vul-
nerability prediction methods. Another difficulty in vulnera-
bility prediction is the class imbalance problem, arising from
the fact that the number of vulnerable code samples is far less
than the number of healthy code samples, whichmakes it hard
to perform good prediction performance without giving too
many false alarms. In this sense, the study [29] deals with the
class imbalance problem inML-based vulnerability detection
approaches, and proposes a fuzzy oversampling method to
balance the training data by generating synthetic samples for
the minority class (i.e. vulnerable code samples). However,
notice that an effective and realistic vulnerability detection
model should be able to perform well even against the highly
imbalanced cases because original distribution of the data in
nature will remain same. Therefore, in our presented work,
we evaluated the performance of our proposed vulnerability
prediction method against the original distribution of vul-
nerable and not vulnerable code fragments, which is highly
imbalanced.

III. PRELIMINARIES
Source code is mostly written in high-level programming
languages such as C/C++, Java and Python, which comprise
text-based words and phrases from natural language. Some
compilers or interpreters process and translate the source
code into low-level programming languages (e.g., assem-
bly language, object code, or machine code) that are more
appropriate to be executed by the instructions in computer
architecture. In this process of compiling source codes, there
are several intermediate steps where source codes are subject
to different procedures, such as lexical analysis, parsing, AST
representation, etc. [30].

In the lexical analysis, the source code is transformed into a
series of tokens, by discarding any whitespace or comments
included in the code. For example, in C language, a line of
code given below:

int a = 5; // This is a comment!

which produces the following sequence of tokens:

int (keyword), a (identifier),
= (operator), 5 (constant),; (symbol)

In the parsing process, the tokens generated in the lex-
ical analysis are converted into a data structure – mostly
a kind of parse tree or other hierarchical structure, giving
a structural representation of the input while checking for
correct syntax based on the rules of a context-free grammar
(CFG). This step usually yields AST representation of the
given source code, which is a tree type data structure based

150674 VOLUME 8, 2020

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

FIGURE 1. AST of the code ‘‘int a = 5; // This is a comment!’’.

on the tokens extracted in lexical analysis. In the context of
the same example, AST of the code given above is depicted
in Figure 1.

The fact that AST contains both structural and seman-
tic information related to the code gives rise to the trend
of developing AST-based intelligent analysis of source
code [13].

IV. SOURCE CODE REPRESENTATION
In this study, we aim to develop an ML model for vul-
nerability prediction based on the AST representation of
source code. A significant challenge to achieving this goal
is to extract useful features from the code to be analyzed.
This obstacle, as briefly mentioned in Section II, is often
tackled by adopting some techniques developed initially for
NLP purposes. Unlike NLP-based approaches, in this work,
we present a novel method that allows us to directly give the
AST representation of source code into ML algorithms as
input. More specifically, we translate the AST representation
of source code into a one-dimensional numerical array, where
each element can be treated as a feature in an ML model.
To preserve structural and semantic information contained
in the source code during this translation process, we apply
clever techniques both while converting the tree-type AST
structure to array form and mapping the identified tokens to
categorical numeric values. Thus, the presented method has
potential to leverage data-driven techniques (e.g., AI/ML) for
performing automated intelligent analysis directly on source
code, such as vulnerability prediction, similarity analysis,
code completion, and more, which helps to reduce the need
for domain expert and manual analysis to carry out these
tasks.

More specifically, as depicted in Figure 2, we initially split
source code into smaller parts to allow more granular anal-
ysis. Then, we generate and extract AST for each departed
code component, which also includes a tokenization process
via a lexer. Later on, we convert the extracted AST into the
complete binary tree that has a deterministic shape where
it is specified how many nodes are located at each level of
the tree. Afterward, we encode each token in the complete
binary AST to pre-defined numerical tuples and finally obtain
a one-dimensional numerical array representation of the cor-
responding function-level source code by concatenating the
assigned numerical tuples from the root node to leaves in
order. We justify each step in detail in the following parts,
along with examples.

FIGURE 2. Steps of the proposed source code representation method.

Step-1 (Source Code): In this step, the source code to be
processed is taken as an input. The source code can be written
in any high-level programming language, such as C, C++,
Java, and Python, provided that its AST can be obtained
with the help of an appropriate parser. From this perspective,
the proposed method is actually language-agnostic, that is,
it can be applied to different languages.

Step-2 (Function-level partition): The source code of a
program or an application can be arbitrarily long composed
of a lot of components, functions, and lines. Instead of dealing
with the source code as a whole, it is a good practice to
split it into sub-parts and handle each sub-part separately,
which would increase granularity. For this purpose, we prefer
to use function-level source code because it is the lowest
level of granularity, capturing the overall flow of a sub-
routine [13], [15], [16]. This is also good for more precise
localization of the predicted vulnerabilities. From now on,
the term ‘‘source code’’ is used in the sense of function-level
source code. To make the subsequent steps more concrete and
understandable, we provide a sample function-level source
code written in C language given below, which will be
referenced in the subsequent steps with the corresponding
examples.

int main()
{
int a = 5, b = 2;
printf(a+b);
}

Step-3 (Tokenization): In this step, firstly, the source code
is cleaned by removing its unnecessary elements such as com-
ments, whitespaces, tabs, newlines, etc. Then, the remaining
part is converted into a series of tokens, where a token is a
sequence of characters that can be treated as a unit in the
grammar of the corresponding programming language. This
can be achieved by using a lexer developed explicitly for the
language of the source code. Some tokens extracted from the
main function given above is as follows:

int (keyword), main (identifier), LPAREN
(delimiter), RPAREN (delimiter),
= (operator), 5 (constant),; (symbol)

VOLUME 8, 2020 150675

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

FIGURE 3. AST of the main function in Step-2 of Section IV.

Step-4 (AST Generation): In this step, AST of the source
code is generated, which can be achieved by using a parser
developed specifically for the language of the code. Different
parsers may yield slightly different ASTs even for the same
code depending on their implementation. Yet this would not
be an issue in our case as long as the same parser is used for
all samples. AST contains syntax and semantic information
about the source code, and therefore it is highly useful for
further analysis. Figure 3 shows AST of the main function
given in Step 2. The structural relations (e.g., parent-child)
are important in the AST and could be useful for vulner-
ability identification. Therefore, these relational pieces of
information should not be lost during the transformations in
source code representation stages. This is a bit challenging
given that a regular AST is a kind of m-ary tree where
there is no restriction on the values that m can take, which
means each node may have an arbitrary number of child
nodes that makes the structural shape of the AST unpre-
dictable. To overcome this issue, we apply the next step to the
AST.

Step-5 (Conversion to Complete Binary AST): AST is a
tree type data structure and we need to convert it into an array
format to feed an ML algorithm. Suppose for a moment that
we convert an AST into an array by placing nodes side by side
starting from root level to deeper levels, from leftmost node to
rightmost node at each level. Several problems would occur
in such a conversion. First of all, structural relations among
AST nodes such as parent-child relations would be lost in
the resulting array because a parent node may have arbitrary
number of children. Second, the resulting arrays would be in
different lengths. However, it is highly important to preserve
structural relations among AST nodes while mapping them
into a one-dimensional array because both it contains some
semantic information about the code and neural network
based models use such spatial information to extract hidden
patterns.

As a solution, in this step, we convert a regular AST to
the corresponding complete binary AST, where all leaves
have the same depth, and all internal nodes have exactly
two children. This can be accomplished in a variety of ways.
We perform the following rules for doing this [31]:

• The leftmost child of node-x in them-ary tree is assigned
as the right-child of node-x in the corresponding

FIGURE 4. Complete binary AST of the regular AST in Figure 3.

complete binary tree (single child is treated as the left-
most child here),

• The right sibling of node-x in the m-ary tree is assigned
as left-child of node-x in the corresponding complete
binary tree, and

• If node-x has no children, then its right-child becomes
NULL, and if node-x is the rightmost child of its parent,
then its left-child becomes NULL.

Algorithm 1 Conversion From M-Ary Tree to Binary Tree
1: procedure Encode(rootNode)
2: if rootNode = NULL then return false
3: end if
4: (TreeNode) result ← TreeNode (rootNode.value)
5: if children[rootNode] 6= NULL then
6: rightchild[result] ←

ENCODE(leftmost[rootNode])
7: end if
8: (TreeNode) currNode← rightchild[result]
9: for all c ∈ rootNode do
10: leftchild[currNode]← ENCODE(c)
11: currNode← leftchild[currNode]
12: end for
13: end procedure

Figure 3 and Figure 4 depict the regular AST and the
corresponding complete binary version generated based on
the above-mentioned rules, respectively, for themain function
given in Step-2. In order to have a complete tree, NULL
children nodes are added to NULL nodes until there is a level
where all nodes are NULL.

Step-6 (Encoding to Numerical Tuples): In the obtained
complete binary AST, nodes are named with words or
strings such as ‘‘FuncDef’’, ‘‘Decl’’, ‘‘TypeDecl’’, ‘‘Con-
stant’’,‘‘ID’’, and so on. These names need to be encoded into
categorical numeric values to allow them to be processed by
ML algorithms. Therefore, we map them into predetermined
numerical values, as exemplified in Table 1.

150676 VOLUME 8, 2020

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

TABLE 1. Sample encoding from tokens to numerical tuples.

In this encoding, the first number in the encoded numer-
ical tuple represents the type of token, while second and
third numbers can be used to keep auxiliary information that
may exist at nodes. For example, the token ‘‘Constant: int,
100’’ is encoded to (8.0, 103.0, 100.0). This can be seen
as a three-dimensional data structure where each dimension
keeps a value related to an associated token. Notice that the
numeric values in the encoding are chosen arbitrarily and
can be changed as long as different categories take different
values. The encoding given in Table 1 corresponds to the
tokens in Figure 4 where the NULL nodes in the AST are
encoded to the tuple of 0.0, 0.0, 0.0.

Step-7 (Array Representation): In this final step,
a numeric array is generated based on the complete binary
AST such that the encoded numerical tuples are mapped
to locations in the numeric array according to respective
locations of the token nodes and NULL nodes in the complete
binary AST. We prefer to use the Breadth-first search (BFS)
approach for doing this, i.e., starting at the tree root and
traversing all of the neighbor nodes at the present level prior
to moving on to the nodes at the next depth level as illustrated
in Figure 5.
As an example, following all steps described in this section,

the main function given earlier is converted to the following
array:

[2.0, 0.0, 0.0, 0.0, 0.0, 0.0,

3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 7.0, 0.0, 0.0, 4.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0,

0.0, 0.0, 5.0, 0.0, 0.0,.......]

Notice that, in the presented approach, structural rela-
tions among tokens in an AST are preserved due to the
respective positional relations between elements in the array.

FIGURE 5. Converting complete binary AST structure to array form.

Thus, together with rich categorical encoding, as explained
in the earlier steps, this numeric array corresponds to vector
representation of the related AST and thus retains semantic
information embedded in the AST. In addition to these useful
properties, another significant advantage of the presented
numeric array representation is that each particular element
in the resulting array acts as a feature, and therefore can
be directly inputted into an ML algorithm, which enables
performing automated AST-based intelligent code analysis.

V. VULNERABILITY PREDICTION
We model the vulnerability prediction problem as a binary
classification task such that our ML model takes the
source code as input and decides whether it contains spe-
cific predefined vulnerabilities or not. For experimental
analysis and performance evaluation, we used the pub-
licly available dataset given in [16] containing a large
amount of function-level source code collected from various
open-source projects, where the details are given in the fol-
lowing subsections.

A. DATASET
The public Draper VDISC Dataset published at [16] con-
tains a vast number of function-level source codes collected
from several open-source projects such as Debian Linux
distribution [17], public git repositories on GitHub [18] and
SATE IV Juilet Test Suite [19] of NIST’s Samate project.
Unlike the first two, the SATE IV Juilet Test Suite contains
synthetic codes, but it constitutes only about 1 percent of
the entire dataset as indicated in [16]. The authors of [16]
stated that they carefully labeled these function-level codes
according to findings from three different static analyzers
indicating potential exploits. They categorized these func-
tions under 5 different groups of CWE vulnerabilities as indi-
cated in Table 2 such that the functions flagged by the static
code analyzers were labelled as vulnerable for the category
of interest, while the others were labelled as non-vulnerable
functions. The authors of [16] also mentioned that they split
the whole dataset into three subparts as training (80%), val-
idation (10%) and test (10%) sets, while paying attention to
not include a duplicate of training sample in the test dataset.

VOLUME 8, 2020 150677

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

To preserve the disjointness of the training and the test sets,
we intentionally avoided k-fold cross validation, and instead,
used the dataset in the original splitting in our experiments.

The Draper VDISC Dataset is highly imbalanced as the
number of positive (i.e. vulnerable) samples is far less than
the number of negative (non-vulnerable) samples due to fact
that they are collected from real world projects and thus
reflect the natural distribution of the targeted vulnerabilities.
We keep this imbalance in our experiments to measure the
effectiveness of our proposed method fairly. Also, we build
balanced subsets in some of our experiments to measure the
detectability of different vulnerability categories on equal
terms.

The referenced dataset contains functions written in C and
C++ languages. From this dataset, we selected only the
functions that are written in C language and parseable by
the parser, namely Pycparser [32], we used in our implemen-
tation. Thus, we obtained several subsets from the original
training, validation, and test datasets.

B. IMPLEMENTATION DETAILS
In the implementation phase of the proposed source code
representation method, we used the Pycparser library, which
is a parser for the C language (C99), for generating ASTs
of the source codes. Also, to convert a regular AST into a
complete binary AST, we adapted some open-source imple-
mentations [33] to our case. To encode nodes of an AST
into numeric values, we identified 48 different essential token
types based on the grammar of C language and assigned
unique values for each token type (the first number in the
numerical tuple as exemplified in Table 1), as well as deter-
mined different values for encoding auxiliary information
(e.g., char, int, float, short, signed, +, −, ==, >, <, etc.) of
tokens when required (the second and the third numbers in the
numerical tuple). For the ML implementations, we used both
the Scikit-learn [34] and the TensorFlow [35] libraries. In the
Scikit-learn, we implemented and executed Multi-layer Per-
ceptron (MLP) algorithm, while in the TensorFlow, we imple-
mented and ran Convolutional Neural Network (CNN)
algorithm.

C. IMPACT OF AST DEPTH
In a complete binary tree, the number of nodes that can exist
at each level is certain and doubled in each subsequent depth
level. Thus, at level-k, there are 2k nodes. In total, for a
complete binary AST with depth k , there are

∑k
i=0 2

i nodes.
Because each node (token) is encoded to a tuple consist-
ing of 3 numeric values, the resulting array size becomes∑k

i=0 3.2
i. However, all input data must be in the same size

for all samples while feeding them into an ML algorithm,
which may not be the case because the size of the resulting
arrays may be different. To have an identical dimension in
the resulting numeric array representation for all functions,
we can either apply padding on the shorter arrays or cut the
binary AST at a certain pre-determined level for all functions.
We preferred the latter case because using the partial binary

FIGURE 6. ROC curves for varying binary AST depths.

tree above a certain level might be more efficient and feasible
than the padding which could increase the resulting array size
unnecessarily. To figure out the optimal depth to be taken
for this purpose, we investigated its impact on vulnerability
prediction performance and conducted a set of experiments
as follows.

Extracting a subset of the dataset for the vulnerability
type CWE-119, we generated corresponding numerical rep-
resentation of the source code up to the binary AST depth
of 6, 8, 10 and 12. Notice that the resulting numerical array
size is 381, 1533, 6141 and 24573 for the depth of 6, 8,
10 and 12 respectively. In this set of experiments, the training
dataset is comprised of 2684 ‘‘vulnerable’’ and 2684 ‘‘not
vulnerable’’ functions, whereas the test dataset contains 335
‘‘vulnerable’’ and 335 ‘‘not vulnerable’’ functions. Then we
built a CNN model in the TensorFlow environment with
the training dataset and evaluated it with the test dataset.
Since the constructed dataset is balanced, including the same
number of samples for both ‘‘vulnerable’’ and ‘‘not vul-
nerable’’ classes, we generated ROC (Receiver Operating
Characteristic) curves for performance evaluation. Figure 6
shows our result as the true positive and false positive ratio for
different binary AST depths that are used as a threshold to cut
complete binary ASTs. As seen in Figure 6, our vulnerability
predictionmodel performs better for AST depth of 8, while its
performance degrades as the depth decreases (e.g. for depth
6) or increases (e.g., for depth 10 and 12). The corresponding
AUC (Area Under Curve) values for these curves are 0.816,
0.854, 0.687 and 0.825 respectively for depth 6, 8, 10 and 12.
This behaviour we observed may seem counter-intuitive as
one might expect better results for the highest AST depths
(e.g. depth 10 and 12) since they carry more information
with respect to relatively lower depths (e.g. depth 6 and 8).
However, in machine learning, there is a phenomena known

150678 VOLUME 8, 2020

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

TABLE 2. The types of vulnerabilities investigated in the experimental work.

FIGURE 7. Processing time per sample during training for the AST depths
of 6,8,10 and 12 resulting in the numerical array size of 381, 1533, 6141,
and 24573 respectively.

as the curse of dimensionality which requires to increase the
size of the training set exponentially with the data dimension
to preserve predictive power of the model [36]. Otherwise,
with a fixed number of training samples, the predictive power
of a model initially increases as the data dimension (i.e. the
number of features) grows, but then begins to decrease when
the dimension reaches at a specific point [37]. Therefore,
the exponential growth in the dimension of input data is the
major reason for degradation in ML performance for higher
AST depths because the learning becomes more difficult for
the model and requires more samples as the input size grows.
From this, we conclude that it is feasible to cut a complete
binary AST at certain depth instead of considering the whole
tree in some cases.

We also observed the impact of AST depth on training time
as depicted in Figure 7. For the depth of 6, 8, 10 and 12,
the corresponding processing time during training is 1, 6, 25,
and 92 ms/sample respectively, on a 64-bit Windows-10 PC
with an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz pro-
cessor and 32.0 GB RAM. The processing time grows expo-
nentially as the AST depth increases, which is an expected
outcome since the size of numeric array representation of
code snippets grows exponentially as well.

D. DIMENSION REDUCTION
As illustrated for the main function in Step-7 in Section IV,
there may be too many 0 (zeros) in numeric array repre-
sentation due to NULL nodes in the complete binary AST.
Considering the whole dataset, if the resulting array repre-
sentations of most functions contain zero or the same value
at the same columns, then these columns will have a less

FIGURE 8. Feature importance based on principal component analysis.

or negligible impact on the ML model. To reveal the most
important features and eliminate ineffective features, wemea-
sured variance for each column and determined principal
components. Figure 8 shows principal components for the
depth of 8. As seen in this figure, around 250 features out
of 1533 have a considerable effect on the ML model. From
this, we can reduce the array size from 1533 to 250, which
provides an advantage for the training time of the ML model.
According to our experimental analysis, this process reduces
training time by about 68%.

E. PERFORMANCE EVALUATION
As justified in Section V-C, we take partial binary AST up
to depth 8 in the experiments presented in this part. We pre-
pared two different experimental settings, as explained in the
following parts.

1) IMBALANCED DATASET
In this set of experiments, we used the dataset given
in Table 3. As seen in this table, there is a massive difference
between the number of positive (i.e., vulnerable) and negative
(i.e., not vulnerable) samples, which makes the dataset highly
imbalanced. It is inherently more challenging to achieve
good performance results with highly imbalanced datasets in
ML applications. For this reason, in performance evaluation,
we have to take into consideration the ratio between the
number of positive and negative samples, which determines
the baseline.

We realized our implementation using the Scikit-learn [34]
library to built a multi-label classifier. Thus, when our ML
model tests a source code fragment, it simultaneously anal-
yses the code for all categories of vulnerabilities. In other
words, there is no need to develop and train a separate

VOLUME 8, 2020 150679

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

TABLE 3. The number of positive and negative samples in imbalanced dataset that are obtained by under-sampling the original dataset.

ML model for different vulnerability categories, which is an
advantage in terms of training time, processing power, and
memory requirements.

We preferred to use the Multi-Layer Perceptron (MLP)
algorithm because it has multi-label classification capability
and yielded better results with respect to other ML algo-
rithms. We obtained many results by changing hyperparame-
ters of the model, such as by setting hidden layer size to 5, 10,
20, 50, and 100.We observed that theMLmodel showed sim-
ilar performance for the hidden layer size 5 and 10, whereas
its performance degraded when the hidden layer size was set
to 20, 50, or 100. This indicates that the model becomes over-
fitted for higher hidden layer sizes. Figure 9 shows individual
Precision-Recall (P-R) curves for each vulnerability class
when the hidden layer size is 5. From the figure, we can infer
that our model performs better for certain vulnerabilities than
others. For example, it is seen that CWE476 shows the best
performance as almost reaching the F1=0.6 curve when the
precision and the recall are around 0.701 and 0.521, respec-
tively, resulting in the area under the curve (AUC) of 0.528.
On the other hand, CWE469 demonstrates the worst perfor-
mance yielding the F1=0.090 with AUC of 0.031. The P-R
curves for the other three classes (i.e., CWE119, CWE 120+,
CWEother) lay between CWE476 and CWE469 reaching the
F1 scores of 0.509, 0.427 and 0.270 respectively. The area
under curve for the micro-average P-R curve (i.e., the aver-
age performance for all categories) is 0.377 as passing the
F1=0.4 curve. There is a similar trend in CWE-based per-
formance evaluation in [16]. Notice that, while interpreting
this figure, we must take the ratio of positive and negative
samples into consideration because it determines the baseline.
Therefore, predicting vulnerabilities for CWE469 is much
more challenging because it has a much higher imbalance in
the dataset with respect to other categories, as seen in Table 3,
which is the main reason for its poor performance. Regarding
the performance of CWEother, considering that the category
CWEother is comprised of multiple different vulnerability
types such as CWE-20, CWE-457, CWE-805 and more, as in
the original dataset, it may become more challenging for
the ML model to build a common classifier for all these
different vulnerability types, and this could be one reason for
its relatively worse performance.

2) BALANCED DATASET
In this set of experiments, we undersampled the imbalanced
dataset given in the previous part to generate a balanced
subset that allows us to make a comparison with the ROC

FIGURE 9. P-R curves for different classes for the imbalanced dataset.

curves given in [16]. Performing performance comparison on
balanced dataset is important as it gives insight to what extent
the targeted vulnerabilities can be detected under similar
conditions. To undersample the dataset, we selected the same
number of ‘‘vulnerable’’ and ‘‘not vulnerable’’ functions for
each particular class. For example, as seen in Table 3, there
are 2684, 335, and 355 ‘‘vulnerable’’ functions for the vul-
nerability type of CWE119 in the training, validation, and
test datasets respectively. To generate a balanced set for this
class, we kept all of the ‘‘vulnerable’’ functions and randomly
selected the same amount of ‘‘not vulnerable’’ functions
(e.g. yielded a training dataset containing 2684 ‘‘vulnerable’’
and 2684 ‘‘not vulnerable’’ functions for CWE119 class).
A similar procedure was applied for other classes as well,
and balanced datasets were obtained that contained the same
number of ‘‘vulnerable’’ and ‘‘not vulnerable’’ functions.

We performed experiments using CNN algorithm on the
Tensorflow with the hyperparameters given at Table 4. For
each vulnerability type, we trained separate ML model on
the associated balanced dataset. Figure 10 shows ROC curves
when binary AST is taken up to depth level 8 for different
vulnerability types. As it can be seen from the Figure 10,
the trained models perform well compared to ‘‘No skill’’
(random decision) for all classes. These results show that the
proposed source code representation method is capable of

150680 VOLUME 8, 2020

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

TABLE 4. The hyper-parameters of the CNN algorithm in the balanced
dataset experiment.

FIGURE 10. ROC curves for different classes for the balanced dataset.

characterizing source code for vulnerability prediction. The
corresponding AUC values for the curves in Figure 10 are
0.874, 0.778, 0.829, 0.882 and 0.755 for vulnerability types of
CWE-119, CWE-120, CWE-469, CWE-476 and CWE-other
respectively. According to Figure 10, the vulnerability predic-
tion for CWE-119 and CWE-476 classes perform better than
the remaining classes, which implies that detecting these two
vulnerability categories is easier than the other categories,
yet the performance of other classes is encouraging as well.
This also matches the experimental results obtained in the
previous section where the model gave the best results for
CWE-119 and CWE-476 classes. It is interesting to observe
that CWE-120 and CWE-other, the two vulnerability classes
that actually contain more than one vulnerability type as
explained in Table 2, perform worse than the other three
categories. As described in Table 2, CWE120+ vulnerabil-
ity data consists of CWE120, CWE121 and CWE122 vul-
nerability functions and similarly CWEother data contains
CWE20, CWE457, CWE805 and some other vulnerability
types. Containing multiple vulnerability types may be a rea-
son for their relatively bad performance because constructing
a common classifier for all of them should be more difficult.

In comparison with the results in [16], the ROC curves in [16]
may seem to outperform our results; however, notice that the
ROC curves in [16] are obtained from the SATE IV dataset,
which contains simple synthetic functions. On the other hand,
our ROC curves are based on real-world functions collected
from open-source projects as described in Section V-A, and
therefore our case is more challenging with respect to the
situation in [16].

3) COMPARISON WITH THE Code2vec
We also compared our presented method with the
code2vec [20], which is a state-of-art code representation
method. The code2vec uses a neural network model to repre-
sent a code snippet as a single fixed-length code vector, which
can be used to predict semantic properties of the snippet.
To this end, the method first decomposes the code into a
collection of paths in its AST, called path contexts, and then
the network learns the atomic representation of each path
contexts while simultaneously learning how to aggregate a
set of them. The authors demonstrate the effectiveness of the
code2vec by using it to predict a method’s (i.e. function’s)
name from the vector representation of its body.

One major difference between the code2vec and our pre-
sented method is that a distributed representation technique
with neural networks is employed in the code2vec to generate
vector representation of code snippets, whereas a kind of
deterministic rule-based representation is used in our method.
Thus, the generated vector representation of code fragments
in our proposed method becomes static in the sense that it
does neither change under varying conditions nor depend on
other code samples in a given dataset, while the resulting
codevector in the code2vec approach is dynamicmeaning that
it may change under different settings such as being consid-
ered with different datasets for different objectives. Another
significant difference between the two approaches is that the
code2vec method assigns different weights (i.e. attention) to
certain subpaths of AST depending on their importance in
prediction, on contrary to our presented approach which takes
a certain part of AST into consideration depending on depth
and assigns equal importance to its elements.

To make performance comparison with the code2vec for
vulnerability prediction, we used two open source imple-
mentations called code2vec4 and astminer5 [38]. The former
requires the latter to extract path context of the C codes con-
sidered in our own work, as the publicised implementation
of the code2vec currently supports only Java and C# as the
input languages. Because the public implementation of the
code2vec is designed to predict function names, we needed
to convert the problem of name prediction to the problem of
vulnerability prediction. For this purpose, we tried alternative
experiment settings as follows: (i) (Code2vec multilabel)
We replaced original function names with new multi-word
names (i.e. a tuple of 5 different words corresponding to

4https://github.com/tech-srl/code2vec
5https://github.com/JetBrains-Research/astminer

VOLUME 8, 2020 150681

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

TABLE 5. Performance comparison of the presented method with the code2vec.

5 different vulnerability types) such that each element in
the tuple can take one of the two possible words, one of
which indicates the existence of a specific vulnerability type
and the other implies the opposite. Thus, after replacing the
function names in this way, predicting functions’ names by
using the code2vec corresponds to the prediction of vulnera-
bilities likewise our multi-label binary classification task. (ii)
(Code2vec single label)We replaced original function names
with a new single-word label that is chosen differently for
each vulnerability category and takes one of the two possible
words depending on whether the function is vulnerable or
non-vulnerable. In this case, we performed prediction task
separately by using the code2vec for each vulnerability cat-
egory in disjoint processes. (iii) (Code2vec + MLP) After
applying item (i), we extracted the corresponding code vector
representation of the functions according to the code2vec,
which is a numeric array containing 384 elements, and then
used them in an additional ML algorithm (i.e. MLP) for vul-
nerability prediction in a similar manner to our imbalanced
dataset experiment.

We performed performance comparison of these
approaches experimentally with our own method on the
prediction of vulnerabilities on the imbalanced dataset shown
in Table 3. Since we observed that (i) and (ii) performed
similarly, we included only the experimental results of (i) and
(iii) in comparison with our presented method. Table 5 con-
tains performance evaluation results for Approach (i) (i.e.
code2vec), Approach (iii) (i.e. code2vec+MLP) and our
own method. According to the results of code2vec, the best
F1 value was obtained as 0.09 for category CWEOther,
while all other F1 values are less than this value. It is even
zero for category CWE469, which means the algorithm
did not find any one of the vulnerable functions. On the
other hand, it seems that applying MLP on code vectors
(code2vec+MLP) improved performance to some extend,
resulting in F1 values between 0.017 (CWE469) and 0.225
(CWE120+). Finally, it is seen from Table 5 that our method
performs better than the code2vec approaches, resulting in
F1 values between 0.093 (CWE469) and 0.593 (CWE476).

One reason for the poor performance of the code2vecmight
be that it is not designed to deal with binary classification
problems on highly imbalanced datasets, which require to
accurately detect positive test samples constituting a very
small portion of thewhole test samples, while not raising false
alarms for negative samples. For example, in the code2vec
approach, it is considered a success to some extend when a

method’s name is predicted accurately at second rank, which
would be a complete false prediction in a binary classification
case. On the other hand, the reason for superiority of our
presented method is probably the fact that the resulting vector
representation in our presented approach retains information
about structural relations among AST nodes thanks to both
categorical encoding of AST tokens and their consistent map-
ping to final vector correspondence, which helps the used
ML algorithm to reveal hidden patterns indicating targeted
vulnerabilities.

Our method also advantageous compared to code2vec
method with respect to run-time of algorithms. It takes on
average 30 seconds for our proposed method to train the
model while each training epoch of code2vec takes 147 sec-
onds on average. All the experiments for our proposed
method are performed on a 64-bit Windows-10 PC with an
Intel(R) Core(TM) i7-8650UCPU@1.90GHz processor and
32.0 GB RAM. Since code2vec developers provided their
instructions for Ubuntu systems, we tested code2vec on a
Ubuntu 18.04 installed on a virtual machine that utilizes
24022 MB base memory and 4 processors and runs on the
same windows computer described here.

VI. DISCUSSION
In our existing implementation for encoding AST tokens to
numerical tuples, we used a tuple of 3 numeric values for each
different token, where the first number corresponds to token
type while second and third numbers in the tuple are reserved
for embedding auxiliary information related to the token as
described in Section IV. In doing so, we aimed to transfer as
much information as possible fromAST to numeric array rep-
resentation. However, using 3 numbers for one token makes
the resulting array size 3 times more extended with respect to
1:1 mapping, which increases space and time requirements
in ML operations. An alternative approach might be using
tuples of 2 numeric values or using only 1 number in a
greater range covering all possible variants of tokens. This
would result in relatively shorter numeric arrays with respect
to an existing case; however, it might also be less effec-
tive in preserving information embedded into AST. To shed
light on this issue, we also implemented 1:1 encoding (i.e.
mapping 1 token to 1 numeric value) in addition to existing
1:3 encoding (i.e. mapping 1 token to a tuple of 3 numeric val-
ues) and performed similar experiments. We did not observe
any significant performance differences when implementing
1:1 mapping in the encoding step.

150682 VOLUME 8, 2020

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

Another topic we examined is whether employing sparse
matrix representation in resulting numerical array is useful or
not. More specifically, instead of encoding NULL nodes in a
complete binary AST, only extracted tokens could be encoded
with additional location indexes to take into consideration of
their respective locations in the tree. This could significantly
reduce the size of the resulting numerical array represen-
tation. Our experimental investigations revealed that sparse
matrix representation has some negative side effects, which
degrade the performance of the ML model in vulnerability
prediction. This may be due to the fact that inserting extra
parameters in the encoding like the respective location index
of AST tokens results in disruptive effect, but this issue needs
more elaboration.

VII. CONCLUSION AND FUTURE WORK
Automated intelligent software security analysis is an impor-
tant topic that gathered great interest lately. In this context,
we first proposed a source code representation method that is
capable of characterizing source code into a proper format for
further processes in ML algorithms. The presented method
extracts and then converts AST of a given source code frag-
ment into a numerical array representation while preserving
structural and semantic information contained in the source
code. Thus, it enables us to perform ML-based analysis
on source code through resulting numeric array represen-
tation. We implemented our approach and experimentally
investigated the problem of vulnerability prediction from
source code using ML as benefiting from a public vulnera-
bility dataset containing a large amount of real function-level
source code mined from several open-source projects and
carefully labeled according to examinations of multiple static
code analysis tools. We conducted many experiments under
different settings with the objective of predicting 5 different
predetermined vulnerability types and achieved promising
and encouraging results compared to state-of-art methods.

As a future work, it would be interesting to examine the
presented source code representation technique for different
objectives rather than vulnerability prediction, such as simi-
larity analysis and code completion. Another direction could
be to research how to improve localization and interpretation
aspects of the vulnerability prediction (i.e. where exactly is
a detected vulnerability in a function-level code and why
is it detected as a vulnerability). Furthermore, it would be
of interest to explore possible ways of leveraging transfer
learning techniques with the presented method to apply a
model trained on a certain language to other languages.

REFERENCES
[1] R. Telang and S. Wattal, ‘‘An empirical analysis of the impact of software

vulnerability announcements on firm stock price,’’ IEEE Trans. Softw.
Eng., vol. 33, no. 8, pp. 544–557, Aug. 2007.

[2] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, ‘‘Evaluating com-
plexity, code churn, and developer activity metrics as indicators of software
vulnerabilities,’’ IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 772–787,
Nov. 2011.

[3] R. S. Ross, ‘‘Information security,’’ Joint Task Force Transformation Ini-
tiative, Guide Conducting Risk Assessments, NIST Special Publication,
Gaithersburg, MD, USA, Tech. Rep. 800-30 Revision 1, 2012.

[4] A. M. Delaitre, B. C. Stivalet, P. E. Black, V. Okun, T. S. Cohen, and
A. Ribeiro, ‘‘Sate V report: Ten years of static analysis tool expositions,’’
NIST, Gaithersburg, MD, USA, Tech. Rep. SP-500-326, 2018.

[5] M. Dowd, J. McDonald, and J. Schuh, The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities. Reading,
MA, USA: Addison-Wesley, 2006.

[6] M. Jimenez, ‘‘Evaluating vulnerability prediction models,’’ Ph.D. disser-
tation, Dept. Sci., Technol. Commun., Univ. Luxembourg, Rue Mercier,
Luxembourg, Oct. 2018.

[7] T. Abraham and O. de Vel, ‘‘A review of machine learning in software
vulnerability research,’’ Cyber Electron. Warfare Division, Dept. Defense,
Austral. Government, Edinburgh, SA, Australia, Tech. Rep. DST-Group-
GD-0979, 2017.

[8] B. McCorkendale, X. F. Tian, S. Gong, X. Zhu, J. Mao, Q. Meng,
G. H. Huang, andW.G. E. Hu, ‘‘Systems andmethods for combining static
and dynamic code analysis,’’ U.S. Patent 8,726,392, May 13, 2014.

[9] E. Ustundag Soykan, Z. Bilgin, M. A. Ersoy, and E. Tomur, ‘‘Differentially
private deep learning for load forecasting on smart grid,’’ in Proc. IEEE
Globecom Workshops (GC Wkshps), Dec. 2019, pp. 1–6.

[10] Z. Bilgin, E. Tomur, M. A. Ersoy, and E. U. Soykan, ‘‘Statistical appliance
inference in the smart grid by machine learning,’’ in Proc. IEEE 30th
Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC Workshops),
Sep. 2019, pp. 1–7.

[11] M. Craglia, Ed., A. Annoni, P. Benczur, P. Bertoldi, P. Delipetrev,
G. De Prato, C. Feijoo, E. F.Macias, E. Gomez,M. Iglesias, H. Junklewitz,
M. L. Cobo, B. Martens, S. Nascimento, S. Nativi, A. Polvora,
I. Sanchez, S. Tolan, I. Tuomi, and L. V. Alujevic, ‘‘Artificial intelligence—
A European perspective,’’ Publications Office, Rue Mercier, Luxembourg,
Tech. Rep. EUR 29425 EN, 2018.

[12] U. Alon, S. Brody, O. Levy, and E. Yahav, ‘‘Code2seq: Gen-
erating sequences from structured representations of code,’’ 2018,
arXiv:1808.01400. [Online]. Available: http://arxiv.org/abs/1808.01400

[13] L. Chen, W. Ye, and S. Zhang, ‘‘Capturing source code semantics via tree-
based convolution over API-enhanced AST,’’ in Proc. 16th ACM Int. Conf.
Comput. Frontiers, Apr. 2019, pp. 174–182.

[14] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, ‘‘A novel
neural source code representation based on abstract syntax tree,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 783–794.

[15] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, ‘‘Devign: Effective
vulnerability identification by learning comprehensive program semantics
via graph neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst.,
New York, NY, USA: Curran Associates, 2019, pp. 10197–10207.
[Online]. Available: http://papers.nips.cc/paper/9209-devign-effective-
vulnerability-identification-by-learning-comprehensive-program-
semantics-via-graph-neural-networks.pdf

[16] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, ‘‘Automated vulnerability detection in
source code using deep representation learning,’’ in Proc. 17th IEEE Int.
Conf. Mach. Learn. Appl. (ICMLA), Dec. 2018, pp. 757–762.

[17] Debian—The Universal Operating System. Accessed: Jul. 4, 2020.
[Online]. Available: https://www.debian.org/

[18] Github—Distributed Version Control Software. Accessed: Jul. 4, 2020.
[Online]. Available: https://github.com/

[19] P. E. Black and P. E. Black, Juliet 1.3 Test Suite: Changes From 1.2.
Gaithersburg, MD, USA: US Department of Commerce, National Institute
of Standards and Technology, 2018.

[20] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, ‘‘Code2vec: Learning
distributed representations of code,’’ in Proc. ACM Program. Lang., vol. 3,
Jan. 2019, pp. 1–29, doi: 10.1145/3290353.

[21] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, ‘‘Predicting vulner-
able software components,’’ in Proc. 14th ACM Conf. Comput. Commun.
Secur. CCS, 2007, pp. 529–540.

[22] S. Neuhaus and T. Zimmermann, ‘‘The beauty and the beast: Vulnerabil-
ities in red hat’s packages,’’ in Proc. USENIX Annu. Tech. Conf., 2009,
pp. 1–14.

[23] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, ‘‘Identifying
the characteristics of vulnerable code changes: An empirical study,’’ in
Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng. FSE, 2014,
pp. 257–268, doi: 10.1145/2635868.2635880.

[24] B. Chernis and R. Verma, ‘‘Machine learning methods for software vul-
nerability detection,’’ in Proc. 4th ACM Int. Workshop Secur. Privacy
Analytics IWSPA, 2018, pp. 31–39.

[25] J. Walden, J. Stuckman, and R. Scandariato, ‘‘Predicting vulnerable com-
ponents: Software metrics vs text mining,’’ in Proc. IEEE 25th Int. Symp.
Softw. Rel. Eng., Nov. 2014, pp. 23–33.

VOLUME 8, 2020 150683

http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.1145/2635868.2635880

Z. Bilgin et al.: Vulnerability Prediction From Source Code Using ML

[26] A. Hindle, E. T. Barr, Z. Su,M. Gabel, and P. Devanbu, ‘‘On the naturalness
of software,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 837–847.

[27] V. Efstathiou and D. Spinellis, ‘‘Semantic source code models using
identifier embeddings,’’ in Proc. IEEE/ACM 16th Int. Conf. Mining Softw.
Repositories (MSR), May 2019, pp. 29–33.

[28] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and
M. Harman, ‘‘The importance of accounting for real-world labelling when
predicting software vulnerabilities,’’ in Proc. 27th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng. ESEC/FSE, 2019, pp. 695–705,
doi: 10.1145/3338906.3338941.

[29] S. Liu, G. Lin, Q.-L. Han, S. Wen, J. Zhang, and Y. Xiang, ‘‘DeepBalance:
Deep-learning and fuzzy oversampling for vulnerability detection,’’ IEEE
Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1329–1343, Jul. 2020.

[30] B. Chess and J. West, Secure Programming With Static Analysis. London,
U.K.: Pearson, 2007.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[32] Pycparser—Parser for the C Language. Accessed: Jul. 4, 2020. [Online].
Available: https://github.com/eliben/pycparser

[33] Algodaily—Algorithm for Encoding M-Ary Tree to Binary Tree.
Accessed: Jul. 4, 2020. [Online]. Available: https://github.com/
calvinchankf/AlgoDaily

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[35] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software. [Online]. Available: https://www.
tensorflow.org/

[36] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge, U.K.: Cambridge Univ. Press,
2014.

[37] G. V. Trunk, ‘‘A problem of dimensionality: A simple example,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 3, pp. 306–307,
Jul. 1979.

[38] V. Kovalenko, E. Bogomolov, T. Bryksin, and A. Bacchelli, ‘‘PathMiner:
A library for mining of path-based representations of code,’’ in Proc.
IEEE/ACM 16th Int. Conf. Mining Softw. Repositories (MSR), May 2019,
pp. 13–17.

ZEKI BILGIN (Member, IEEE) received the B.S.
andM.S. degrees in electrical and electronics engi-
neering from Gazi University, Ankara, and the
Ph.D. degree in computer science from The City
University of New York, NY, USA. He is currently
working as an Experienced Security Researcher
at Ericsson Research, Turkey. He was involved in
many industrial and academic research projects
related to telecommunications, the Internet of
Things (IoT), 5G, cybersecurity, social computing,

computer vision, smart grids, and machine learning, and authored many
scientific articles and inventions in these domains.

MEHMET AKIF ERSOY received the B.S. and
M.S. degrees in computer engineering from
Boğaziçi University, in 2012 and 2015, respec-
tively, where he is currently pursuing the Ph.D.
degree. He had worked as a Researcher at The
Scientific and Technological Research Council,
National Cryptology Institute, for three years.
He is currently working as an Experienced Secu-
rity Researcher at Ericsson Research, İstanbul,
Turkey, where he joined, in October 2018. He has

several years of experience as a Software Developer. He has authored some
international conference papers related to networks, parallel programming,
and security.

ELIF USTUNDAG SOYKAN received the M.S.
degree in computational science and engineering
from Istanbul Technical University, in 2005, where
she is currently pursuing the Ph.D. degree. She
had worked at The Scientific and Technologi-
cal Research Council, National Cryptology Insti-
tute, for 13 years in security domain. She joined
Ericsson Research, in 2018, as a Senior Security
Researcher. She has published several papers in
international conferences, mostly on information

security and privacy. Her research interests include ML/AI security, privacy
enhancing technologies, and the Internet of Things (IoT) security.

EMRAH TOMUR received the B.S. and M.Sc.
degrees in electronics engineering from Bilkent
University, in 1999 and 2001, respectively, and the
Ph.D. degree in information systems from Mid-
dle East Technical University, in 2008. He has
been working as a master’s Researcher at Ericsson,
since January 2019, where he is currently leading
the research team in the area of security. Before
joining Ericsson, he worked as a Research and
DevelopmentManager in private sector companies

and the Technology Transfer Manager in universities, where he gave courses
and served as a Graduate Thesis Advisor. He has several scientific research
papers published in journals and conference proceedings in the area of secu-
rity. He also worked in numerous various national and international research
and development projects funded by EU or national agencies. His technical
expertise is on security of the Internet of Things, M2M, and wireless sensor
networks.

PINAR ÇOMAK was born in Ankara, Turkey.
She received the B.Sc. degree in mathematics
and the M.Sc. and Ph.D. degrees in cryptography
from Middle East Technical University (METU),
in 2010, 2013, and 2020, respectively. She had
worked as a Research Assistant at METU for eight
years. She joined Ericsson Research, İstanbul,
Turkey, in September 2019, where she has been
working as an Experienced Security Researcher.
She has authored some international conference

papers related to coding theory, computational algebra, and cryptography.

LEYLI KARAÇAY was born in Tabriz, Iran,
in 1983. She received the B.Sc. degree in soft-
ware engineering from IAU, Qazvin, Iran, in 2006,
and the M.Sc. and Ph.D. degrees in computer
science and engineering from Sabanci University,
in 2012 and 2020, respectively. She had worked
as a Teaching Assistant at Sabanci University, for
seven years. She joined Ericsson Research, İstan-
bul, Turkey, in October 2019, where she has been
working as a Security Researcher. She has some

scientific research papers published in journals and conference proceeding
in the area of security.

150684 VOLUME 8, 2020

http://dx.doi.org/10.1145/3338906.3338941

