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ABSTRACT In view to the unstable navigation risk assessment and make the future navigation risk
forecasting, an innovative decision and forecasting approach is put forward in this study. Different from
the existing literature, at the current time step, we first deduce an enhanced evidence combination rule to
integrate uncertain and conflicting evidences by using weighted basic probabilistic assignment and matrix
operation. As a result, a stable decision is effectively achieved no matter what characteristics of the available
evidences are. Further, an improved α-β filter is designed with its adaptive coefficients in the novel filtering
framework in order to forecast the future navigation risk. What’s more, it is an excellent communication
between the combined basic probabilistic assignment and the improved α-β filter for the first time. After the
deep analysis of the computational complexity, a plenty of numeric simulations and actual experiments are
provided to indicate the reliability and efficiency of the proposed approach.

INDEX TERMS Navigation risk, combination rule, decision, forecasting, computational complexity.

I. INTRODUCTION
Modern transportation has an important role in the advances
of global trade and natural resources recently. As for mar-
itime traffic accident and road traffic accident, the naviga-
tion risk represents the occurring probability of danger or
safety [1], [2]. There are usually five levels of navigation risk
in practical applications, that is, trivial level, tolerable level,
moderate level, substantial level and intolerable level [3], [4].
The dangerous navigation mainly contains the latter two risk
levels that fatally cause the unexpected personal disaster and
property loss. Therefore, how to effectively assess the naviga-
tion risk has become a popular research topic in the academic
circles.

Proceeding from the existing assessment methods of navi-
gation risk, we can easily find that the analytic hierarchy pro-
cess (AHP) is an important multi-evidence decision-making
method [5]–[8]. In the field, [9] presented a ship integrated
navigation system based on AHP in order to assess naviga-
tion risk. Aiming at both complexity and ambiguity, a risk
assessment method based on the triangular fuzzy number
AHP was proposed in [10]. According to the principle of
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system engineering, a fuzzy AHPwas applied to calculate the
weight for each index. In the comprehensive collection in the
maritime accident database, [11] analyzed the navigation risk
using the fuzzy AHP. Combined grey evaluation with AHP,
a determination model was established for priority connectiv-
ity assessment value of each node, and the selection weights
of road traffic network were obtained in [12]. Given that
the discriminate matrix is very important in AHP, the matrix
consistency must be continuously tested [13]. Therefore, [14]
proposed an improved AHP to solve the problem of risk
judgment matrix consistency. Inevitably, the defects of AHP
lie in multi-evidence. Regarding on the available evidences,
the Dempster-Shafer (D-S) evidence theory is a probabilistic
appropriate combination method [15], which has been used
in traffic applications without prior probabilities. For the
basic probabilistic assignment (BPA), two alternative meth-
ods for combining multi-evidence were explored in [16].
First, an improved D-S evidence theory on safety risk per-
ception was proposed in [17], where the combination rule
and weighted rule were utilized to synthesize multi-evidence.
Concerning on the waterways risk, a navigation assess-
ment model based on D-S evidence theory was proposed
in [18], which utilized the evidential reasoning and index
level to merge BPA. Then, [19] embroidery complemented
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the risk analysis and helped the decision maker. We find
that, by merging some interval-valued fuzzy sets, the D-S
evidence theory provides the systematic decision support.
In view to the interval fusion, an evidence combination rule
was developed, and then fed into a fuzzy Bayesian network
in [20]. Since the D-S evidence theory modeled by evidences
cannot be directly combined, it cannot provide reliable deci-
sion and has low complexity based on uncertain and conflict
evidences.

With the rapid development of modern science technology,
the information forecasting emerges as the times require.
The neural network, as a set of connected neurons, can
receive heterogeneous signals and generate prediction. The
back propagation is fundamental so that the back propagation
neural network (BPNN) demonstrates what the correct result
would be under multi-evidence. For this reason, [21] pre-
sented a risk decision system that contained the normalization
of image size as well as the creation of risk characteristics.
In BPNN, the computational complexity equals the product
of the size of risk set and the number of nodes in hidden
layers. Once the total number of required nodes is larger, the
complexity will be higher. Aiming at running effectiveness,
the α-β filter, on the other hand, can presume the complex
system under a dynamic model and achieve the steady-state
solution with exponentially-reduction calculation when the
risk levels is small. Simultaneously, this filter is one of
practical techniques solved in the iterative and decentralized
manner [22]. For example, a new α-β filter was designed
to the satisfactory results under the noisy condition in [23].
Afterwards, a fuzzy α-β filter for predicting maneuvering
targets was presented in [24]. Therefore, it is our research
enthusiasm that the BPNN can be replaced with the α-β
filter to forecast navigation risk for avoiding potential danger.
In this work, the combined BPA will be forecasted using the
α-β filter. However, it is too difficult for the existing α-β
filters to adaptively compute filtering gains of maneuvering
BPA for accurate forecasting.
How can we establish an improved D-S evidence combina-

tion rule to make stable decision at the current time step using
various evidences? How can we model a novel α-β filter
to forecast the navigation risk for the next time step using
combined BPA? To answer the double questions, an inno-
vative detection and forecasting approach is proposed. The
main innovations in the study, unlike the general assessment
methods, are outlined as follows:

1) An enhanced evidence combination rule is explored
to integrate uncertain and conflict evidences based on both
weighted BPA and matrix operation with low computational
complexity.

2) An improved α-β filter is utilized with the adaptive
filtering coefficients, in the filtering framework, in order
to forecast the future navigation risk and avoid navigation
danger for the first time.

3)With respect to practical applications, the overall perfor-
mance of the proposed decision and forecasting approach is
discussed in maritime traffic and road traffic.

The organization of this study is assigned as follows:
In Section 2, the related works on the D-S evidence theory
is formulated. In Section 3, we propose the improvements of
BPA computation and the BPA combination under the novel
matrix operation. Afterwards, the optimal α-β filter is derived
with its adaptive filtering coefficients for the maneuvering
BPA. Further, the computational complexity is analyzed.
In Section 4, the numerical study and associated experiment
are discussed with prospective results to verify the decision
and forecasting performance of the proposed approach. In the
last section, we draw the conclusions, and then make the next
research plan.

II. RELATED WORKS
Suppose that the different evidences in the D-S evidence
theory are mutually exclusive in a space 2, we have:

∑
i∈2

mji = 1, 0 ≤ mji ≤ 1

mj (ϕ) = 0
(1)

where mji : 22 → [0, 1] is the original mass function, and
i (i = 1, · · · , s) is the navigation risk level.

As we know, the belief of the given evidence is given by
the sum of BPAs, i.e., Bel (i) =

∑
i⊆2′

mj2′ , and the plausibility

equals 1 minus the sum of BPAs. In general, the plausibility
function is used when the current evidence is true, that is,
Pl (i) =

∑
i∩2′ 6=ϕ

mj2′ . Then, the classic D-S evidence theory

can provide an effectivemeasure in the period [Bel (i) ,Pl (i)].
According to the classic evidence combination rule, the com-
bined result of j (j = 1, · · · , n) raw BPAs related to the asso-
ciated evidences is given by:

m̃j = m1i ⊕ m2i ⊕ · · · ⊕ mji

=

∑
s
∩
i=1

i∈2

mji

1−
s∑

i,i′=1
i6=i′

mjim̃(j−1)i′
(2)

Aiming at the uncertain evidences in the actual naviga-
tion environment, the classic evidence combination rule may
become invalid. At this time, the sum of all BPAs is less
than 1, and then brings about unstable combination results to
a certain extent. Therefore, the extra BPA ϕj of the uncertain
navigation risk level is used to compensate the deficient
component during the process of combination:

s∑
i=1

mji ≤ 1

ϕj = 1−
s∑
i=1

mji

(3)

Although ϕj represents the uncertain evidences in the naviga-
tion environment, the combination result has still error when
mji takes 0.
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Remark 1: The evidence combination rule in Equa-
tion (2) has high computational complexity when i and
j are large. Besides, the decision is unstable when
mji = 0. We will enhance the robustness of conflicting evi-
dences and reduce the complexity in a new combination
mechanism.

III. METHODOLOGY
A. BPA COMPUTATION
Given that the heterogeneous evidences in traffic engineering
are not reliable because of their characteristics, we reduce the
influence from the uncertain and conflicting evidences as far
as possible for navigation risk assessment.

Let Cj =
s∑

i,i′=1
i6=i′

mjim̃(j−1)i′ in Equation (2) be the product of

inconsistent BPA. We find that the value the higher, the con-
flict the higher. The relationship between the value and its
conflict is defined by:

high conflict, 0.975 ≤ Cj < 1
moderate conflict, 0.900 ≤ Cj < 0.975
low conflict, 0 ≤ Cj < 0.900

(4)

Considering the uncertainty and conflict, we use the fol-
lowing probability to define the uncertainty and conflict of
the associated evidences:

Bet
(
mj
)
=

∑
i∈2

1
s

mji(
1− ϕj

) (5)

where mj is a BPA vector of mji in a given 2 and
ϕj 6= 1. The degree on the BPA mji supported by
other BPA mj′i

(
j′ 6= j

)
can be defined based on the Cosine

similarity:

CosSim
(
mj
)
=

∑
j6=j′

Bet
(
mj
)
Bet

(
mj′
)

√∑
j
Bet2

(
mj
)√∑

j′
Bet2

(
mj′
) (6)

Note that CosSim
(
mj
)
equals 0 when Bet

(
mj
)
and Bet

(
mj′
)

are orthogonal, i.e., two independent evidences are com-
pletely conflicting. On the contrary, CosSim

(
mj
)
approx-

imates to 1 when Bet
(
mj
)

and Bet
(
mj′
)

are basically
coincided, i.e., they offer the roughly same support on the
given proposition. Then, we have the normalized Cosine
ratio:

CosRat
(
mj
)
=

CosSim
(
mj
)∑

j
CosSim

(
mj
) (7)

We calculate the weight ofmj as follows:

wj =
CosRat

(
mj
)

max
j

(
CosRat

(
mj
)) (8)

At this time, mj is for the BPA improvement. Recalling
Equation (3), we update mji and ϕj using Equation (7):

mji
Update
←−−−−− wjmji (9)

ϕj
Update
←−−−−− wj

(
ϕj − 1

)
+ 1 (10)

Note that wj in the equations above weaken the uncertain
and conflicting BPA mji and strengthen ϕj for eliminating
some 0s. The equations reduce the impact of uncertain evi-
dence on the communication and alleviate conflict among
evidences.

B. COMBINATION IMPROVEMENT
Proposition 1:Assume that the improved BPA vector ismj =[
mj1 · · · mjs ϕj

]
when j ≥ 2, the combined BPA vector m̃j =[

m̃j1 · · · m̃js ϕ̃j
]
can be defined by:

m̃j = mj ⊕mj−1 ⊕ · · · ⊕m1
matrix formation
−−−−−−−−−−⇀↽−−−−−−−−−−
matrix formation

(
mT
j m̃j−1

)
Kj (11)

where the matrix computation is the sum of each element on
the diagonal and its corresponding elements at the top-right
and bottom-left corners (the latter computation involves only
one element on the diagonal). On the contrary, the matrix for-
mation separates the sum into three elements of the diagonal
and corners iteratively. Further, some parameters are given
by:

m̃ji =


n∏
j=1

(
mji + ϕj

)
−

n∏
j=1

ϕj, n 6= 1

m1i, n = 1

(12)

ϕ̃j =


n∏
j=1

ϕj, n 6= 1

ϕ̃1 = ϕ1, n = 1

(13)

Kj =
n∏
j=1

1−
s∑

i,i′=1
i6=i′

mjim̃(j−1)i′


−1

(14)

where Kj is the normalized factor.
Proof:We have the combined BPA element when n ≥ 2:

m̃ji =
n∏
j=1

(
mji + ϕj

)
−

n∏
j=1

ϕj

=
(
mji + ϕj

) (
m̃(j−1)i + ϕ̃j−1

)
− ϕjϕ̃j−1

= mjim̃(j−1)i + mjiϕ̃j−1 + ϕjm̃(j−1)i (15)

Note that m̃ji can be rewritten into the iteration form in
Equation (15), that is, it equals to the sum of associated
BPA product. According to the evidence combination rule,
there is the basic element

(
1− Cj

)−1, and Kj obeys the
continued multiplication. We have in hand Kj Equation (14).
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Let (·)T denote transpose matrix, m̃ji can be rewritten using
Equation (12):

m̃j =
[
m̃j1 · · · m̃js ϕ̃j

]1−
s∑

i,i′=1
i6=i′

mnim̃(n−1)i′


−1

×

n−1∏
j=1

1−
s∑

i,i′=1
i6=i′

mjim̃(j−1)i′


−1

=


mj1m̃(j−1)1 + mj1ϕ̃j−1 + ϕjm̃(j−1)1

...

mjsm̃(j−1)s + mjsϕ̃j−1 + ϕjm̃(j−1)s
ϕjϕ̃j−1


T

×

n∏
j=1

1−
s∑

i,i′=1
i6=i′

mjim̃(j−1)i′


−1

matrix formation
−−−−−−−−−−⇀↽−−−−−−−−−−
matrix computation


mj1m̃(j−1)1 · · · mj1m̃(j−1)s mj1ϕ̃j−1

...
. . .

...
...

mjsm̃(j−1)1 · · · mjsm̃(j−1)s mjsϕ̃j−1
ϕjm̃(j−1)1 · · · ϕjm̃(j−1)s ϕjϕ̃j−1



×

n∏
j=1

1−
s∑

i,i′=1
i6=i′

mjim̃(j−1)i′


−1

=
[
mj1 · · · mjs ϕj

]T [ m̃(j−1)1 · · · m̃(j−1)s ϕ̃(j−1) ]
×

n∏
j=1

1−
s∑

i,i′=1
i6=i′

mjim̃(j−1)i′


−1

= mT
j m̃j−1Kj

= mj ⊕mj−1 ⊕ · · · ⊕m1 (16)

Remark 2: In the proposed evidence combination rule,
we replace the classic evidence combination under the matrix
iteration computation so as to reduce the computational com-
plexity. In the risk decision process, aiming at the overall
size s of navigation risk set, at each time step index k ,
the computational complexity of the classic D-S evidence
theory is nO

(
22s
)
. Then, the computational complexity in the

available τ (τ ≥ k) scans equals nτO
(
22s
)
. For comparison,

the improved D-S evidence theory at each time step has the
computational complexity in Table 1. When we only consider
the iteration number of multiplication, the complexity of
decision process is transformed from the power type into the
quadratic type. Then, we have in hand the following equation
when s ≥ 4.

nτO
(
22s
)
> nτO

(
2s2 + 5s+ 2

)
(17)

TABLE 1. Computational complexity of decision process.

C. RISK FORECASTING
As a warning of future navigation state, it has significance
to make the moving transportations free from the potential
hazard in complex navigation environment. At time step
index k − 1, we rewrite the posterior maximal BPA as
mj (k − 1|k − 1) with the subscript j. Then, the BPA is fore-
casted by:{
mj (k|k−1) = mj (k−1|k−1)+ ṁj (k − 1|k − 1)T
ṁj (k|k − 1) = ṁj (k − 1|k − 1)

(18)

where T is the sampling time, and ṁj denotes the instanta-
neous change rate of mj.

Subsequently, the BPA is updated at time step index k:mj (k|k)=mj (k|k−1)+α (k)
(
mj (k)−mj (k|k−1)

)
ṁj (k|k)= ṁj (k|k−1)+

β (k)
T

(
mj (k)−mj (k|k−1)

) (19)

where the filtering coefficients α (k) and β (k) are:

α (k) =
2 (2k − 1)
k (k + 1)

(20)

β (k) =
6

k (k + 1)
(21)

Remark 3: Note that α (k) and β (k) gradually decreases
with the increasing time step index k . They approximate to
0 when k tends to the infinity. If the involved BPA change
is rapid, the random maneuver cannot be accurately defined,
and then the existing α-β filter cannot forecast the reliable
navigation risk. For this reason, the proposed α-β filter
explores the adaptive filtering coefficients when the com-
bined BPA becomes maneuvering.

First, we redefine β (k) as follows:

β (k) = 2 (2− α (k))− 4
√
1− α (k)

= 2
(
1−

√
1− α (k)

)2
= 2

(
1−

√
(k − 1) (k − 2)

k (k + 1)

)2

(22)

It is easy to prove that β (k) becomes convergent when k ≥ 3,
which means the proposed α-β filter begins to stably operate
at the 3rd time step.
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Define the relative error between the combined BPA and
the updated BPA at time step index k:

1mj (k) =
∣∣mj (k)− mj (k|k)∣∣ (23)

Considering the standard deviation σ in the proposed filter,
we have the other adaptive filtering coefficient:

ρ (k) =
√
α (k) (24)

Further, ρ (k) σ represents the error of updated BPA and
1mj(k)
ρ(k)σ denotes the error ratio related to updated BPA. Let ε be
the instability threshold, the time step index can be updated
as:

k+1←

k−round
((

1mj (k)
ρ (k) σ

−ε

)
k
)
,

1mj (k)
ρ (k) σ

−ε>0

k + 1, else
(25)

where k is updated when the error ratio is more than the
instability threshold. At this time, the maneuver of BPA is
greater and k keeps decreasing. Otherwise, k automatically
increases 1 in order to represent the stable BPA. Once k
is updated, we will calculate the values of α (k), β (k) and
ρ (k). We also need the counter τ to accumulate k when using
Equation (25). In the navigation risk forecasting process,
we select the posterior maximal BPA. The reason is explained
that there aremany elements in a combined BPA vector. How-
ever, the associated navigation risk level must be changed
when the value is not maximal. At this time, j should be
automatically selected by looking for the maximumwhen the
BPA keeps decreasing.We set the threshold ofmj (k|k) to 0.5.
Once the navigation risk level is adjusted, the k will be taken
from the beginning value 1. When the posterior maximal
BPA is always less than 0.5, we have to check j at each time
step.

j =

{
j, mj (k|k) ≥ 0.500
sup

{
max

{
mj (k|k)

}}
, mj (k|k) < 0.500

(26)

Remark 4: The proposed α-β filter inevitably needs extra
computational complexity in Table 2 (only considering the
iteration number of multiplication). Recalling the filtering
framework, we use Equations (20), (22) and (24) to calcu-
late the adaptive filtering coefficients, and use Equation (18)
to forecast the navigation risk for the next time step. The
computational complexity of the equations should be further
considered. Note that the complexity is increasing with k .
Once the order is reset, k will be recounted. With respect to
τ in the counter, the complexity will not accumulate until the
overall surveillance time is over. Then, we have the following
equation when s ≥ 4.

τO
(
s3
)
> τO (11s) (27)

TABLE 2. Computational complexity of forecasting process.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. DECISION EXPERIMENT
In the numerical study, we used a scenario to assess the
overall performance of the proposed approach. The experi-
mental environment was: IntelTM CoreTM i5, 8 GB memory
and MATLABTM R2018a. We employ four kinds of typical
evidences, and the trivial, tolerable, moderate, substantial and
intolerable risk levels.

To deal with the uncertain evidences, the uncertain level is
also used. Among our tested datasets, we select a typical set
of raw BPAs in order to analyze the decision performance.
Then, the BPAs are presented in the matrix:

m =


0.6500 0.2500 0.1000 0.0000 0.0000 0.0000
0.2000 0.2500 0.3500 0.1000 0.1000 0.1000
0.1000 0.2000 0.4500 0.1500 0.1500 0.0000
0.2000 0.3500 0.3000 0.0000 0.0000 0.1500


(28)

where the columns from left to right mean the trivial, tol-
erable, moderate, substantial, intolerable and uncertain risk
levels. The rows from top to bottom mean the different evi-
dences. The element in this matrix is the associated BPA.
There are the conflicting BPAs in the first three columns
owing to the maximal value in each row. For the classic D-S
evidence combination rule, we have the combined BPAs:

m̃j =
[
0.2110 0.4057 0.3834 0.0000 0.0000 0.0000

]T
(29)

Note that in the first three columns, the combined BPA corre-
sponding to the tolerable and moderate risk levels are roughly
similar. The product of inconsistent BPA is

Cj = 0.9877 (30)

where the value approximates to 1, which means there is the
high conflict among the evidences. We cannot directly make
reliable decision for this situation.
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To overcome the difficulty above, we use the improved
approach to calculate Bet

(
mj
)
related to Equation (28):

Bet
(
mj
)
=
[
0.2000 0.2222 0.2000 0.2353

]T (31)

Then, the Cosine similarity is given by:

CosSim
(
mj
)
=
[
0.7118 0.7642 0.7118 0.7925

]T (32)

The Cosine ratio is:

CosRat
(
mj
)
=
[
0.2388 0.2564 0.2388 0.2659

]T (33)

By using the weight of BPA,

wj =
[
0.8982 0.9643 0.8982 1.0000

]T (34)

the optimized BPA matrix can be written as:

m =


0.5838 0.2246 0.0898 0.0500 0.0500 0.1018
0.1929 0.2411 0.2875 0.0964 0.0500 0.1321
0.0898 0.1796 0.4042 0.1347 0.0898 0.1018
0.2000 0.2500 0.3000 0.0500 0.0500 0.1500


(35)

Comparison with Equation (28), there is no 0s in Equa-
tion (35) and each BPA has weighted. Finally, the combined
BPAs under the proposed combination rule are:

m̃j =
[
0.2233 0.3239 0.4171 0.0043 0.0015 0.0274

]T
(36)

Note that the moderate risk level is maximal, and others are
lower than 1/3 that is a usual constant value in practical engi-
neering. Comparison with Equation (29), the current decision
of moderate risk level is reliable.

FIGURE 1. Decision result of different methods.

Figure 1 shows the combined BPA of two kinds of
approaches under the different Cj. Note that the decision
result becomes more instable when Cj is increasing in the
classic D-S evidence theory method. The reason is explained
that some available evidences lead to conflicting BPAs.
Besides, the classic method cannot obviously distinguish
between tolerable level and moderate level because the

BPAs are more approximate. By comparison, the proposed
approach makes satisfactory decision whether the conflict is
higher or lower. For example, we achieve the current risk level
is moderate when Cj is 0.990. Of course, the final result is in
line with the ground truth.

FIGURE 2. Decision accuracy of different methods.

Figure 2 shows the comparison result of the classic D-S
met and the proposed approach. Note that the proposed
approach has the higher accuracy under the differentCj. Some
uncertain evidences are corrected based on the weighted
BPA. Further, the Cosine ratio makes significant role in the
decision process. There is a remarkable improvement under
the condition of Cj = 0.990. Moreover, the computational
complexity of the proposed approach is 7.8% of the classic
D-S method. As for the classic method, it is hard to construct
a more reasonable BPA when the evidence combination rule
is directly used.

FIGURE 3. Decision accuracy of different methods.

Figure 3 compares the computational complexity using
three methods under the different s. We make change s from
3 to 6 for simplicity. The proposed approach including the
process of the BPA computation has the smallest fluctuation
against other two methods with the increasing s. For the pop-
ular AHP method, we need the eigenvalue of the high-order
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FIGURE 4. Decision result and forecasting result.

matrix when getting the consistency ratio in the decision
process, where the computational complexity of eigenvalue
is proportional to the cubic of s. Although it is regarded a
popular method on the navigation risk decision, compared
with D-S method, the AHP method still has the highest
complexity in the case of s ≥ 6.

B. FORECASTING EXPERIMENT
Figure 4 compares the decision result and forecasting result
using two methods during continuous 200 scans. We make
use of the BPA decision value on the certain risk level j in the

proposed approach as mj (k) at the time step k . After some
statistical analysis, we set the related parameters σ = 0.010
and ε = 0.950 for achieving better forecasting performance.
Note that the forecasting result on each risk level approxi-
mates to the decision result in the proposed approach. It can
be explained that the proposed α-β filter provides the reliable
forecasting result. Since the BPA fluctuation is dominated
by the uncertain and conflicting evidences, the proposed fil-
ter adjusts forecasting when the available evidence changes.
We can easily make the decision during the surveillance
period. For the most time before the 185th scan, we find
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that the forecasting result on the moderate level are mainly
dominant, which changes around the average value 0.417.
The tolerable level has the greater value in the proposed
approach and its average value is about 0.320. It represents
the BPA change rapidly from the 185th scan to the 200th scan.
Of course, the uncertain level is acceptable. It can also be
verified that the proposed filter gives the satisfactory fore-
casting for various evidences. Suppose that mj (k) is given by
the decision of proposed D-S method, the proposed α-β filter
can be executed with the initial values. As a result, there are
small error permutations from the decision of the proposed
D-S method because of the improved filtering mechanism.
Although the timely navigation risk assessment is necessary,
the risk forecasting is of significance in the navigation engi-
neering. We can make stable decision using the proposed
approach. By comparison, the classic D-S method cannot
make the accurate decision because the difference between
the moderate level and the tolerable level is not remarkable.

FIGURE 5. Comparison of decision and forecasting.

Subsequently, we analyze the computational complexity of
the classic α-β filter, popular BPNN and proposed approach.
Figure 5 indicates the averaged complexity under the dif-
ferent s. Note that the computational complexity of fore-
casting risk of the proposed method is the lowest owing
to the individual filtering framework for each risk level in
the low-dimension space, but not in the entire-dimension
space. For the BPNN (3-input-layer, 8-hidden-layer and
3-output-layer), it linearly increases and then approximates
the product of s and the number of nodes in the hidden layer
(8 nodes). In the classic method, it has the greatest value
when s > 6.

C. PRACTICAL EXPERIMENT
There are two kinds of practical experiments in this section.
First, in view to the actual maritime engineering, the dom-
inant evidences of water traffic contain four categories:
the hydrological evidence, meteorological evidence, environ-
mental evidence and navigable evidence. Corresponding to

FIGURE 6. For actual maritime engineering.

Figure 6, we have in hand the following BPA matrix:

m =


0.1000 0.1000 0.7000 0.0500 0.0000 0.0500
0.2000 0.5000 0.1000 0.1000 0.1000 0.0000
0.1000 0.1000 0.1000 0.6000 0.0500 0.0500
0.6000 0.0000 0.2000 0.1000 0.0000 0.1000


(37)

where each evidence has different maximal BPA related to
the evidences from the upper row to the lower row. For
example, we find that the hydrological evidence has the BPA
of 0.7000 for the moderate level.

FIGURE 7. Decision and forecasting result corresponding to Figure 6.

Figure 7 demonstrates the decision and forecasting result.
The BPAs of trivial and moderate risks are approximated
in the current environment. For the proposed approach,
it presents the maximal BPA of 0.813 for the tolerable level.
The forecasting result coincides with the stable decision.
It provides the reliable information with the smaller error
covariance.

For the actual traffic engineering in Figure 8, we think
of the weather evidence, road facility evidence, vehicle evi-
dence and pedestrian evidence. Although the road facility
is relatively stable, the weather evidence from climate sen-
sors is tender. The pedestrian dynamics maybe have random
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FIGURE 8. For actual traffic engineering.

motion characteristics. In Figure 8, we have the following
BPA matrix:

m =


0.6500 0.2500 0.1000 0.0000 0.0000 0.0000
0.2000 0.2500 0.3500 0.1000 0.1000 0.1000
0.1000 0.2000 0.4500 0.1500 0.1500 0.0000
0.2000 0.3500 0.3000 0.0000 0.0000 0.1500


(38)

Similarly, we achieve the decision and forecasting result
using the proposed approach in Figure 9. Note that the
weather is fine and other evidences are tolerable or moderate.
There are some 0s in the equation above. Therefore, the clas-
sic D-S method cannot complete risk decision based on the
original evidences, and then gives ineffective values. The
proposed approach can provide the decision and forecasting
results of trivial level.

FIGURE 9. Decision and forecasting results corresponding to Figure 8.

According to the practical experiments, the reliability of
the proposed approach is enhanced in two aspects: the BPA
weight is used to weaken the uncertainty and conflict in the
decision process. Moreover, the novel filtering mechanism
optimizes the coefficients to overcome the BPA maneuvers
in the forecasting process. With respect to the efficiency,
the complexity of decision process becomes the quadratic
type based on the matrix operation. Besides, the complexity

is also reduced because the adaptive filtering coefficients and
the number of scans are both considered.

V. CONCLUSION
The primary challenges are to deal with the unstable
performance of the existing methods on the navigation risk
assessment. This study presents an innovative decision and
forecasting approach. We first analyze the classic D-S evi-
dence theory as a typical assessment method. Regarding
on its disadvantages, we weight the BPAs and utilize the
Cosine ratio to overcome the uncertainty of BPA. Afterwards,
the evidence combination rule is explored based on thematrix
formation and computation for lower complexity. Consid-
ering the forecasting performance, the adaptive α-β filter
is developed in the filtering framework. Also, we discuss
the computational complexity individually. The numerical
studies and actual experiments demonstrate that the intelli-
gent decision and forecasting can be achieved with the sat-
isfactory performance for navigation risk assessment in both
maritime and traffic engineering. In our work, although the
BPA computation is suitable for the uncertain and conflicting
evidences, the extra complexity has been involved. Once the
number of current evidences exploded, the complexity will be
affected. Therefore, as for the next research developments,
we will further improve the assessment efficiency of the
proposed approach.
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