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ABSTRACT Autonomous following is one of the key issues in mobile robotics with a wide range of
applications in commercial, industrial and military areas. To achieve autonomous following, the robot needs
not only to robustly detect and track the target, but also efficiently follow the target while avoiding obstacles.
In this paper, we propose a method that combines a Line-of-sight sensor (a 2D laser range finder) and a Non-
line-of-sight sensor (a low-cost Angle-of-Arrival (AOA) tag) to identify, track and follow the target person in
dynamic environments. First, in order to get smooth and continuous moving trajectory of the target person,
a Kalman Filter is used to fuse person tracking information from AOA data and laser data. Then, a real-time
robot-centric rolling grid map is constructed using the laser data. On top of the rolling grid map, a target
potential field is generated by using the fast marching method, and then a direction gradient field is created
based on the target potential field. With the rolling grid map, the target potential field and the direction
gradient field, an improved dynamic window algorithm, FMM-DWA, is proposed to control the robot to
move towards the target. The proposed method considers not only the distance between the robot and the
target, but also the difference between the heading of the robot and the reference direction provided by the
direction gradient field, to avoid falling into the local optimum. To validate the performance of the proposed
method, a series of person following experiments are carried out in complex dynamic environments. The
experimental results show that the proposed following algorithm can effectively deal with the occlusion
problem and robustly follow the target person while quickly avoiding the static and dynamic obstacles.

INDEX TERMS Autonomous following, person tracking, FMM-DWA, local path planning, dynamic
environments.

I. INTRODUCTION
With the continuous development of robotic technologies,
robots have gradually come into our daily life. Nowadays,
robots not only need the ability to accomplish tasks them-
selves, but also the ability to collaborate with humans.
Autonomous person following is one of such kind of ability
with a wide range of applications in commercial, indus-
trial and military areas. For example, an autonomous fol-
lowing robot can carry heavy goods for customers in big
shopping malls to enhance the shopping experience [1].
Another example is that an autonomous following robot can
lead or follow a worker to a specific zone in big logistic
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warehouses to pick goods and return to the packaging area
autonomously [2]. Notably, Boston Dynamics’ LS3 legged
robots have a well-developed person-following capability to
act as load carrying mules [3]. For such kind of applications,
one key step is human tracking and following, where the robot
need not only to robustly track the person but also smoothly
follow the person while avoiding both static and dynamic
obstacles.

Currently, cameras are widely used for autonomous fol-
lowing tasks [4], [5]. Cameras have many advantages for this
task, such as low cost, compact and having abundant infor-
mation. However, cameras are very sensitive to illumination
changes which following robots always suffer in practice.
Besides, it is difficult for cameras to determine accurate
distance to the target and surrounding obstacles, which pose
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great challenges for efficient following in complex environ-
ments. In addition to cameras, laser scanners can also be
used for person tracking and following [6], [7]. Compared
to cameras, laser scanners are capable of providing accu-
rate distance to the target person and surrounding obstacles,
which will make following easier. There are also some works
combine cameras and laser sensors to enhance the tracking
ability [8], [9]. However, both laser scanner and camera are
visual line-of-sight (LOS) sensors, which means they can not
track target when severe occlusion happens. Unfortunately,
service robots working in markets or warehouses always
suffer dynamic obstacles blocking most part of the field-of-
view or sudden loosing target due to quickly turning around
a corner, which will make the robot lose its target and then
fail to plan a path to follow the moving target. Besides, those
robots are also always suffering from unable to identify the
staff with similar body figure and same uniform working in
the market or warehouse. Besides LOS sensors, Non-LOS
sensors can also be used for person tracking and following.
For example, [10] developed a human-tracking ground robot
and [11] proposed an omni-directional person tracking drone
based on ultra-wideband (UWB) radio transceivers mounted
on a robot and a target. However, though those methods can
partially deal with tracking problem in occlusion environ-
ments. The tracking performance decreases dramatically if
there are obstacles existing between the robot and person,
where the tracking pose often jumps sharply. Furthermore,
it is difficult to follow the person smoothly and avoid obsta-
cles by only using UWB sensors.

In order to achieve robust person tracking and smooth
following in dynamic environments, in this paper, we pro-
pose a method that combines a Line-of-sight sensor
(a 2D laser range finder) and a Non-line-of-sight sensor
(a low-cost Angle-of-Arrival (AOA) tag) to identify, track
and follow the target person. First, the laser range finder
is used to detect the human legs to obtain the location of
pedestrians. At the same time, the AOAbase-station equipped
on the robot receives the data from the hand-held AOA tag,
and the position of the tag is calculated using triangulation.
In order to get smooth and continuous moving trajectory of
the target person, a Kalman Filter is used to fuse person track-
ing information from AOA data and laser data. Then, a real-
time robot-centric rolling grid map is constructed using the
laser data. After that, a target potential field is generated by
using the fast marching method [12], and a direction gradient
field is created based on the target potential field. Finally,
an improved dynamic window algorithm (FMM-DWA) with
evaluation of the robot’s heading is proposed to control the
robot to move towards the target while avoiding falling into
local optimum that traditional DWA [13] often encountered.
By using AOA tag together with laser scanner, we not only
solve the difficulty of identifying people with same figure or
uniform, but also solve the occlusion problemwidely encoun-
tered in the real world. In addition, laser sensors are very
good for path planning and obstacle avoidance. The exper-
imental results in various scenarios show that the proposed

tracking and following algorithms can effectively deal with
the occlusion problem and robustly follow the target person
while quickly avoiding the static and dynamic obstacles. The
main contributions of the paper are as follows:
• A robust and accurate person tracking method by fusing
information from a LOS sensor (a 2D laser range finder)
and a Non-LOS sensor (an Angle-of-Arrival tag) is pro-
posed, which can solve the occlusion issue caused by
static and dynamic obstacles.

• A real-time target potential field is generated and added
to the robot-centric rolling grid map, which can further
calculate the direction gradient field to provide reference
moving direction for the robot.

• The heading of the robot is introduced to evaluate the
sampling trajectory, which not only evaluates the dis-
tance between the trajectory endpoint and the target
point, but also evaluates the validity of the azimuth angle
of the trajectory endpoint to avoid falling into local
optimum.

The rest of the paper is organized as follows. Section II
briefly describes the related work. Section III introduces
the overall framework of the autonomous following method.
Section IV details the target person identifying and track-
ing algorithm based on 2D laser scanner and AOA sensor.
Section V describes the robot following and navigation algo-
rithm. Section VI validates the performances of our naviga-
tion system in both simulated and real environments. Finally,
Section VII concludes the paper.

II. RELATED WORK
The autonomous following function is mainly realized by two
steps. First, the robot identifies and tracks the target person.
Second, the robot follows the moving target person in envi-
ronments while avoiding both static and dynamic obstacles.
We briefly describe some works related to those two steps.

A. PERSON TRACKING
For efficient person tracking, various methods were proposed
based on different sensors. Utilizing RGB-D cameras is a
popular approach to achieve person-following [14], [15]. For
example, Sun et al. used RGB-D cameras to detect and
identify the target person and developed an indoor person
following and companion robot [14]. Chi et al. proposed an
RGB-D sensor-based human gait detection and recognition
method to obtain the target person location [15]. However,
RGB-D cameras usually have narrow horizontal filed of
view(FOV), and it is easy for target moving out of the FOV.
Moreover, since cameras perform poorly in the presence of
lighting variation, they are not good choices for outdoor envi-
ronments. Besides cameras, laser scanners are also widely
used by person-following robots on account of their stability
and large field of view. For example, a 2D laser sensor-based
person detection and tracking method usually determines
the human location by geometric information of human
legs [16], [17] or torso [18]. The person detection and tracking
methods based on the 2D laser scanner are scarcely affected
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by the illumination change, but the information obtained by
the 2D laser scanner is relatively limited. For problems like
this, Bohlmann et al. presented a system based on 3D laser
sensors for autonomous following of a walking person in
outdoor environments [7], which can achieve tracking more
effectively. 3D laser sensors also have large field of view,
so that they are not easy to lose the target. Nevertheless,
if only the contour information of the individuals is used, it is
difficult to distinguish the target person from other moving
objects and misidentification will easily occur when there are
many people in the environment. As aforementioned, there
are many shortcomings of using only single sensor to detect
and track the target. Therefore, researchers also developed
object detection and tracking methods that incorporate multi-
ple sensors. The general way is the combination of a camera
and a 2D laser scanner [8], [19]–[21]. To improve the relia-
bility of target recognition, [8] and [19] proposed a detection
and identification method that combines an omnidirectional
camera with a 2D laser scanner. The omnidirectional camera
is used to identify the target, and the laser scanner is used to
measure the distance of the person identified by the camera.
In addition, [20] and [21] presented a method of combining
one or more high-resolution cameras with a 2D laser scanner.
Those high-resolution front cameras are used to re-identify
the target person, which can solve the problem of short-term
target loss when only using a 2D laser scanner to track the
target. The 2D laser scanner is used to make up for the
defect that the camera has a narrow field of view. However,
in dynamic and uncertain environments, due to the complex
and unpredictable occlusion situations, the combination of
cameras and laser scanners to detect the pedestrian would not
be enough. To solve this problem,wearable devices [22], [23],
are also used for person tracking. Those devices can copewith
the occlusion problem to some extent, but the unstable signal
and limited detection range also lead to tracking pose jumping
sharply and frequently.

B. PERSON FOLLOWING
For person-following navigation, there have been some clas-
sic control methods, such as PID control [6], [24] and pure
pursuit [25]. Those methods are easy to implement and have
high execution efficiency, but they only calculate the angu-
lar and linear velocity of robot according to the distance
and angle between the target and the robot, without con-
sidering obstacle avoidance. Analogously, Bohlmann et al.
proposed a motion control method based on recorded path
of the target person [7]. This assumes that the path taken
by the person is an obstacle-free path. Obviously, it does
not consider obstacle avoidance either. However, in real sce-
narios, there may be some dynamic obstacles in the envi-
ronments when the robot is following the target person,
so it is not safe to use above control methods in a dynamic
environment. To achieve safe and autonomous following
in dynamic and uncertain environments, researchers have
also presented many person-following navigation methods.
For example, Prassler et al. proposed an extended velocity

obstacle approach [26]. Firstly, the points of a circular area
around the target person are taken as the virtual goal set.
Secondly, the velocity obstacle approach is used to control the
robot to move towards the nearest virtual goal. Furthermore,
many path planning algorithms (RRT [27], HybirdAstar [28])
are also used to generate a collision-free path to the virtual
goal. When the target person stops or moves slowly, these
methods can plan a collision-free path very well. However,
when the target person frequently moves or there are many
dynamic obstacles in environments, if the path planner cannot
re-plan the path in real time, the efficiency of the person
following will be reduced and even fail. In addition, there
are also some following methods that do not specify the
target point, but use simple obstacle avoidance algorithms
to make the robot approach the target point. For example,
Peng et al. developed a sonar-based tracking control strat-
egy for person-following robot [29]. This method generates
a path set while identifying the target person, and selects
an optimal path to control the robot moving. Meanwhile,
Zhang et al. also proposed a sonar-based control strategy for
person-following robot and used virtual field force principle
to control the robot [30]. However, neither of the twomethods
takes into account the motion model of the robot, but only
regards the robot as a particle. Thus, the motion trajectory of
the robot is not smooth. In addition to the above traditional
following methods, [31] proposed an approach in which an
agent is trained by hybrid-supervised deep reinforcement
learning to perform a person following task in end-to-end
manner. However, like some traditional methods, this method
does not consider the avoidance of dynamic obstacles, and it’s
difficult to control the robot to follow people smoothly with
action instructions directly generated from discrete images.

III. SYSTEM OVERVIEW
The person-following algorithm proposed in this paper is
tested on a differential-driven robot. As shown in Figure 1,
the front of the mobile robot is equipped with an R2000
2D laser range finder from Pepperl+Fuchs and an AOA
base-station module. The AOA base-station module consists
of two AOA base stations, which receive the data of the
hand-held AOA tag. The laptop is used as an execution plat-
form of the algorithm proposed in this paper. And there are
encoders at the two wheels of the robot, which can be used to
calculate the odometry of the robot.

As shown in Figure 2, our person-following systemmainly
consists of three parts, namely the target person tracking,
the rolling grid map creation and the FMM-DWA planner.
To get the target person tracking information, the 2D laser
sensor is used to detect and track the target person, while the
AOA tag is used to identify the target person and measure
his/her relative position, and then a Kalman Filter [32] is used
to fuse the information from the two sensors to get a stable
target pose. For autonomous following, firstly the rolling grid
map is created based on the laser scanning information and
the odometry of the robot. Then, based on the rolling gridmap
and the target pose, the FMM-DWA planner will generate the
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FIGURE 1. Our hardware system configuration.

velocity instruction to control the robot moving towards the
target and keep a constant distance from the target.

IV. TARGET PERSON TRACKING METHOD
Person identification and tracking is a widely-studied issue
in mobile robotics. To achieve robust and accurate person
tracking in dynamic or even occluded environments, in this
paper, an AOA tag and a 2D laser range finder are used to
solve the identification and tracking problem. With the AOA
tag, it is also easy to solve the problem of tracking a specific
person while there are many people with similar figure and
uniform in the environment. However, the AOA localization
is a wireless localization technology based on antenna arrays
and angle-of-arrival measurements. There will be big noise
when there are obstacles existing between the AOA transmit-
ter and receiver, which will result in the pose estimation of the
target jumps sharply. Therefore, in this paper, we try to use
a Kalman Filter to fuse the tracking results from both laser
scanner and AOA sensor to get a more stable and accurate
tracking performance of the target person.

A. PERSON TRACKING USING AOA TAG
The AOA person tracking system is composed of two parts,
namely a base-station and a tag. The tag is held by the target
person, and the base-station is on the robot. The base-station
module senses the direction of the tag signal and calculates
the relative angle between the base-station and the tag. Thus,
the position of target person could be determined by the posi-
tion information estimated by the AOA localization system.
The AOA localization system [33] is a two-base station local-
ization system, which uses the incident angle of the signal to
realize localization. The basic principle is that the directional
antenna array at the base station is used to obtain the direction
of the signal sent by the the tag, so as to determine the position
of the tag according to the angle of arrival of the signal and
the base station’s position. The position X of the target person
expressed as (x, y) in two-dimensional coordinate system
is then transformed into the odometry coordinate for later
information fusion.

B. PERSON TRACKING USING LASER SCANNER
In our system, the 2D laser sensor equipped in the front of
the mobile robot is about 40cm height from the ground. The
laser scanning angular range is−180◦∼ 180◦, and its angular
resolution is 0.35◦. In order to track a person, we need to
detect human legs in environments. First, the laser points
from a scan are segmented into several clusters, where each
cluster has at least five laser points whose mutual distance
is less than a certain threshold. Second, geometric features
are generated for each cluster, including the number of laser
points, the width and length of laser clusters, the distance
and angle relative to the laser sensor. Finally, based on those
geometric features, clusters are further classified as human
legs or non-human legs. The classification is done using a
random forest classifier trained on a set of 1700 positive
and 4500 negative examples [34]. The positive example is
gathered by setting the scanner up in a populated area where
we specify a bounding box, within which only peoples’ legs
will appear. And the reverse example is gathered by moving
the scanner on a mobile platform around empty rooms.

FIGURE 2. The architecture of our person-following system.
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As shown in Figure 3, when the classification of clusters is
completed, the person will be tracked based on the tracking
information of human legs clusters. We assume that there
are generally only two leg clusters within the range of 0.4m
around a person. When there are other leg clusters within
0.4m of one leg cluster, we will take the average of the leg
cluster position as the pedestrian position, and if there are
no other leg clusters, the leg cluster position will be directly
taken as the pedestrian position. At time t , the position of
the human detected by the laser ranger finder is expressed
as zt =

{
z1t , z

2
t , . . . . . . z

n
t
}
, and n is the number of the human

detected by the laser sensor at time t .

FIGURE 3. Human legs detection and human tracking. The red point
clouds generated by 2d laser scanning are distributed in the grid diagram
with the cell size set to 0.4m. They are classified into human leg clusters
and non-human leg clusters. The human leg clusters are represented by
circular marks without arrow and number, and marks with arrow or
number represent the person detected by laser. The number is the id of
the person, and the arrow represents the direction of movement of the
person.

C. KALMAN FILTER-BASED TRACKING
Since the tracking information provided by AOA tag is more
robust against occlusion while the tracking information pro-
vided by laser scanner is more accurate, in our system we try
to fuse them to get a more robust and accurate tracking per-
formance. To achieve this, we first estimate the position of all
people by detecting legs from laser points. Then, to identify
the target person from other people, the position of the target
person returned by the AOA tag is used as the initial value X
of the target. Finally, a Kalman Filter is used to fuse the track-
ing information from two sensors. The Kalman filter involves
two stages: prediction andmeasurement update. In the predic-
tion stage, there are two important matrix, the state transition
matrixAt and the motion noise matrixRt . The state transition
matrix is set according to a constant velocity motion model
used in the prediction stage. The matrix At is as follow:

At =


1 0 0 1t 0 0
0 1 0 0 1t 0
0 0 1 0 0 1t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (1)

Then, the motion noise Rt is generally set to be a little bit
large. In the update stage, the update phase is divided into
two steps: first, the location of the target person is updated
by using the position measured by the AOA tag; second,
the position detected by the laser range finder is used as an
observation to update the first updating result. In the first
step, since the position information measured by the AOA
tag fluctuates greatly, the data is preprocessed using a sliding
window filter to obtain Z1t . The observation noise matrix Q1

t
is generally set to be small. The second step uses the laser
range finder to detect human legs as an observation. Although
the position information measured by the AOA tag is not
accurate, the value of Z1t does not deviate too much from the
true value. The closest value Z2t to Z1t is selected from zt ,
and if the distance between Z1t and Z2t is less than 0.8m,
the second updating will be performed. The magnitude of
the second measurement noise Q2

t is related to the distance
between the two position data closest to Z1t in zt . The process
of using Kalman Filter to fuse the data from the two sensors
is described in Algorithm 1.

Algorithm 1 Kalman Filter

1 Kalman Filter(Xt−1, Pt−1, Z1
t , zt )

2 Constant velocity model prediction:
3 X̃t = AtXt−1
4 P̃t = AtPt−1ATt + Rt
5 AOA tag update:

6 Kt = P̃tHT
t

(
Ht P̃tHT

t + Q
1
t

)
7 Xt = X̃t + Kt

(
Z1
t − Ht X̃t

)
8 Pt = (I − KtHt)Pt
9 Laser update:
10 Z2

t = select
(
Z1
t , zt

)
11 if dist(Z1

t , Z
2
t ) < 0.8 then

12 Kt = PtHT
t
(
HtPtHT

t + Q
2
t
)

13 Xt = Xt + Kt
(
Z2
t − HtXt

)
14 Pt = (I − KtHt)Pt
15 end
16 return Xt ,Pt ;

V. FOLLOWING AND NAVIGATION
In order to keep the robot at a certain distance from the tracked
person while avoiding dynamic obstacles in environments,
a FMM-DWA algorithm is proposed to generate trajectory of
the robot, so that the robot can move to the target quickly
and smoothly. First, a velocity field is constructed based on
obstacles information in the rolling grid map created by using
laser data. Second, a target potential field is created by the
fast marching method based on the grid propagation speed
provided by the velocity field, and then a direction gradient
field is created based on the target potential field. Third,
the trajectory evaluation function constructed based on the
rolling grid map, the target potential field and the direction
gradient field are used to select the optimal trajectory from
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all sampling trajectories generated by the DWA. Finally,
the velocity command is generated from the optimal trajec-
tory to control the robot. Different from the traditional DWA
algorithm, the FMM-DWA proposed in this paper can avoid
falling into local optimum, because the heading of the robot
is considered to evaluate the sampling trajectory. A block
diagram of our following navigation is shown in Figure 4.

FIGURE 4. A block diagram of our following navigation.

A. TARGET POTENTIAL FIELD GENERATION
The fast marching method (FMM) was introduced by Sethian
in 1996 and is a numerical method that approximates the
viscosity solution of the Eikonal equation [35]. The equation
is as follows:

|∇T (x)| ∗W (x) = 1. (2)

where x represents a point in the search space, and its rep-
resentation in two-dimensional space is x = (x, y). T (x) is
the arrival time from the start point to point x, and W (x)
is the local propagation speed of the interface at point x.
By discretizing the gradient T (x), the Eikonal equation can
be solved for each point x in space, where x corresponds to
the grid of the i-th row and j-th column in the planning space
represented by the grid. The gradient expression of a point is
simplified to Equation 3:

T1 = min(T (i− 1, j),T (i+ 1, j)),

T2 = min(T (i, j− 1),T (i, j+ 1)). (3)

Merging equations 2 and 3, and then squaring the left and
right sides of the resulting equation, we can obtain the discrete
form of Equation 2:(

T (i, j)− T1
1x

)2

+

(
T (i, j)− T2

1y

)2

=
1

W (i, j)2
. (4)

Solving Equation 4 can obtain the solution of the Eikonal
equation 2:

T (i, j) =
T1 + T2

2
+

1
2

√
2

W (i, j)2
− (T1 − T2)2. (5)

The fast marching method classifies the grids in the grid
map into three categories: (1) Frozen: the T values in such
grids are no longer changed; (2) Unknown: the T values in
such grids have not been calculated yet; (3) Narrow: This type
of the grid is between Frozen andUnknown. The flow chart of
the fast marching method is described in Algorithm 2. Firstly,
all the grids will be classified as the Unknown class and the
T value will be set to infinity. Secondly, the T value of the
algorithm’s initial source point is set to 0 and the grids are
classified as the Narrow class. After that, the looping part
of the program begins to be performed. The grid whose T
value is minimum in the Narrow class is classified as the
Frozen class, and the T value of its adjacent grids that are
not in the Frozen class are solved by using Equation 5. If the
adjacent grid belongs to the Unknown class, it is classified as
the Narrow class. The execution of the looping part will not
stop until the spread of the grid map is completed.

Algorithm 2 Fast Marching Algorithm

1 FMM(xs, X , T , W )
2 Initialization:
3 Unknown = X , Narrow = ∅, Frozen = ∅
4 Ti = ∞ ∀Xi ∈ X
5 for Xi ∈ Xs do
6 Ti = 0
7 Unknown = Unknown \Xi
8 Narrow = Narrow ∪ Xi
9 end
10 propagation:
11 while Narrow 6= ∅ do
12 Xmin = argminXi∈Narrow {Ti}
13 end
14 for Xi ∈ (Near (Xmin) ∩ Xi /∈ Frozen) do
15 T = SolveEikonal (Xi,T ,W )
16 if T < Ti then
17 Ti = T̃
18 end
19 if Xi ∈ Unknown then
20 Narrow =Narrow∪Xi
21 Unknown=Unknown\Xi
22 end
23 end
24 Narrow =Narrow\Xmin
25 Frozen =Frozen∪Xmin
26 return T ;

The FMM algorithm can be thought of as a Dijkstra
algorithm. But different from the traditional Dijkstra algo-
rithm, the FMM algorithm can proceed along the diago-
nal direction instead of along the grids. Figure 5(a) shows
the four-neighbor propagation results of the Dijkstra in
an unobstructed environment, and Figure 5(b) shows the
four-neighbor propagation results of the FMM algorithm,
where the velocity W is constant. It can be seen from
Figure 5 that the distance value of each grid to the start grid
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FIGURE 5. Dijkstra vs FMM.

calculated by Dijkstra is the same as Manhattan distance, and
the distance calculated by the FMM algorithm is closer to the
Euclidean distance. Therefore, the direction of the gradient
vector calculated based on the target potential field created by
using the FMM algorithm is closer to the direction pointing
to the initial source point whose T value is set to 0.
In the person-following navigation system, the laser sen-

sor is used to detect obstacles in environments, and a
robot-centric rolling grid map is constructed based on laser
scanning data, as shown in Figure 6(a). To evaluate the arrive
time T of each point in grid map, the FMM algorithm is used
to create a target potential field on the rolling grid map.When
calculating the arrive time T , the grid propagation velocityW
in the area where obstacle is located is set to 0, so that
the interface propagation cannot pass through the obstacle.
Meanwhile, the propagation velocityW in areas closer to the
obstacle are set according to the piecewise function 6. The
velocity field containing the speed of each point in the grid
map is shown in Figure 6(b).

W (x) =

{
e−α/d(x,y)

2
d(x, y) < d

1 d(x, y) ≥ d,
(6)

where α is the obstacle influence factor, d(x, y) is the dis-
tance of the point (x, y) to the nearest obstacle on the map,

and d is the threshold. In the grid map, the FMM algo-
rithm is used to propagate the interface by the setting prop-
agation speed, and finally obtains the target potential field,
as shown in Figure 6(c). The target potential field is dif-
ferentiated to generate a direction gradient field, as shown
in Figure 7, which provides the reference direction for robot
moving.

B. IMPROVED DWA ALGORITHM
There are many local path planning methods used in the field
of mobile robots. The DWA algorithm is a classic online local
path planning method that works well in dynamic and uncer-
tain environments. The method mainly samples multiple sets
of velocities in the velocity space (v,w) and simulates the
trajectory of the robot within a certain period of time. After
obtaining multiple sets of trajectories, these trajectories will
be evaluated, and the velocity of the optimal trajectory is
selected to drive the robot to move. The highlight of this algo-
rithm reflects in the dynamic, which means that the velocity
sampling space is limited to a feasible dynamic range accord-
ing to the acceleration and deceleration performance of the
mobile robot. Two-wheel differential-driven mobile robots
can only move forward and backward or rotate. Considering
two consecutive moments, the robot moves a very short dis-
tance, so the trajectory between the adjacent moments can be
regarded as a straight line. Assuming that the robot’s pose
at time t is (xt , yt , θt), then the pose at time t + 1 can be
calculated according to Equation 7. By sampling multiple
sets of velocities in the velocity space, the expected poses
of the robot at different velocities are calculated, and then
the simulated trajectories of the robot could be generated,
as shown Figure 8.

xt+1 = xt + vt ∗
i

t ∗ cos θt

yt+1 = yt + vt ∗
i

t ∗ sin θt

θt+1 = θt + wt ∗
i

t (7)

FIGURE 6. Target potential field generation. (a) Grid map. (b) Velocity field. The velocity field is constructed by using velocity equation
based on the grid map. (c) Target potential field. The target potential field is created by using the fast marching method based on the
grid propagation speed provided by the velocity field.
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FIGURE 7. Direction gradient field. The direction gradient field is created
based on the target potential field. The red arrows are the reference
direction provided by the direction gradient field for the robot to adjust
the heading.

FIGURE 8. Sampling trajectory in collision-free environments.

In order to find the optimal trajectory, a series of evaluation
functions are used to select the most suitable trajectory from
all sampling trajectories. To evaluate each candidate trajec-
tory, we introduce the target potential field and direction gra-
dient field into our evaluation function. In environments with
obstacles, FMM algorithm is used to establish a target poten-
tial field, where T (x, y) represents the time needed to arrive
target position from current position (x, y). By differentiating
the target potential field, we can get a direction gradient field,
and therefore get the reference direction θ(x, y) for the robot
moving from current position to the target position.

As shown in Figure 9, the start point of the trajectory is
(xs, ys, θs) and the end point of the trajectory is (xe, ye, θe).
To select the best trajectory, following evaluation steps are
considered.

1) MOTION VALIDITY EVALUATION
In order to evaluate the effectiveness of moving from cur-
rent position to the target, a motion validity function as

FIGURE 9. Motion model.

Equation 8 is constructed.

goal−cost =
(
2− e−β|θe−θr (xe,ye)|

)
∗

T (xe, ye)∑
T (xe, ye)

(8)

where goal−cost is the trajectory validity cost, which is used
to evaluate whether the trajectory moves to a position where
the T value is low.

∑
T (xe, ye) is the sum of the end point

arrival time T (xe, ye) of all trajectories. β is the influence
factor of the robot’s heading. When the difference between
the end point orientation θe of the trajectory and the refer-
ence direction θr (xe, ye) provided by the direction gradient
field increases, the goal−cost will become larger, so that the
trajectory closer to the reference direction will be selected.

2) HEADING VALIDITY EVALUATION
As you can see, the motion validity evaluation function
Equation 8, has the same effect as the trajectory evalua-
tion function of the traditional DWA algorithm. But only
considering the use of an evaluation function similar to
Equation 8 to select the optimal trajectory, the robot is easy to
get into trouble and eventually cannot escape from obstacles.
Therefore, in this paper we also introduce the evaluation of
the robot’s heading into the evaluation function so that the
robot can quickly adjust its heading to avoid obstacles ahead
when approaching the obstacles, especially enable to move
back when it is too close to an obstacle. The evaluation of the
heading of the robot is expressed by Equation 9.

angel−cost =
(

1
T (xs, ys)

+ e−αd(xs,ys)
2
)

∗
|θe − θr (xe, ye)|∑
|θe − θr (xe, ye)|

, (9)

where T (xs, ys) is the arrival time of the start point of a trajec-
tory. When T (xs, ys) is small, the angle cost increases rapidly,
which makes the robot more likely to choose a trajectory that
is similar to the reference direction provided by the direction
gradient field. d(xs, ys) is the distance between the start point
of the trajectory and the nearest obstacle. When d(xs, ys) is
small, the robot quickly adjusts the heading to the reference
direction to avoid getting too close to the obstacles.

Finally, to select an optimal trajectory from all sampling
trajectories, the sum of the weighted goal−cost and the
weighted angle−cost , as shown in Equation 10, is used to
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evaluate the merits and demerits of each trajectory.

total−cost = σgoal−cost + λangle−cost (10)

where σ and λ are the weight of motion validity evaluation
and heading validity evaluation respectively.

VI. EXPERIMENTS AND RESULTS
As you know, the person-following method proposed in this
paper is mainly composed of two parts: the first part is
the target person tracking based on AOA tag and 2D laser;
the second part is the target following navigation based on
the FMM-DWA algorithm. In order to verify the feasibility
and robustness of the person following system, the experi-
ment is also divided into the two parts in real and/or simu-
lated environments. The real experiment mainly relies on the
laboratory devices: a laptop (cpu: i5, memory 8G), a two-
wheel differential-drive mobile robot, an R2000 2D laser
range finder from Pepperl+Fuchs, and an AOA sensor from
Yaoguang Company. All our algorithms are implemented
using C++ and ROS framework on Ubuntu LST16.04. The
simulation experiment of obstacle avoidance was carried out
using the Gazebo simulator.

A. TARGET TRACKING EXPERIMENT
In the person tracking experiment, we carried out two tests to
validate the filtering performance of our proposed tracking
method. In the first test, there is no obstacles between the
robot and target person. In the second test, there are some
obstacles moving between the robot and the target.

1) NON-OCCLUDED ENVIRONMENT
First, we compare the tracking trajectory from the Kalman
Filter and the AOA tracking system. The results are shown
in Figure 10. As can be seen from the figure, when only
the AOA equipment is used, the position estimation of the
target person is inaccurate, and sometimes there is a sharp
jump. However, the trajectory obtained by Kalman Filter
is much smoother, which eliminates some jumps in the
AOA measurement.

Then, the laser tracking results are also compared to the
results of Kalman Filter. It can be seen from Figure 11 that the
trajectory obtained by laser tracking is similar to the results
of Kalman Filter, but the trajectory obtained using Kalman
Filter is also smoother.

2) OCCLUDED ENVIRONMENT
In the case of no occlusion, the position of the person detected
by the laser sensor is relatively reliable. However, in the case
of occlusion, relying solely on the laser sensor may cause
tracking failure. For example, in the case of Figure 12(a),
the id of the person tracked by a laser scanner is 4. How-
ever, as shown in Figure 12(b), since the target person were
blocked by obstacles for a while, the person tracking failed.
In Figure 12(c), when the tracked person disappears for a
while and is tracked again by the laser scanner, the id of
the tracked person is reassigned to 51 at this time. This is

FIGURE 10. AOA tracking trajectory and Kalman filter trajectory. The red
trajectory is obtained by using the AOA sensor, and the black trajectory is
obtained by using the Kalman Filter.

FIGURE 11. Laser tracking trajectory and Kalman filter trajectory. The red
trajectory is obtained by using the laser scanner and the black trajectory
is obtained by using the Kalman Filter.

because it is very difficult to re-identify a person using
2D laser scanner. If only a laser range finder, the robot will
not be able to effectively track the target person when the
target is occluded. Even if the target person is tracked again
by the laser, it will be assigned a new target id. Similarly,
If only a camera is used, it will also fail when occlusion
occurs, especially in environments with many people wearing
same uniform. In Figure 13(a), the camera recognizes that
the target id is 0. When the half body of the target person
is blocked by the wall, the recognition will fail, as shown
in Figure 13(b). At this time, neither the laser sensor nor
the camera sensor can effectively track the target person,
and the target will lose. In Figure 13(c), when the target
person re-enters the camera field of view, the id of the tracked
person is also reassigned. This is because the camera-based
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FIGURE 12. These three picture show the situation of using only the laser scanner to detect and track a person. (a) The id of the first
detected person is assigned to 4. (b) The person tracking failed. (c) After the target disappears for a while and is tracked again,
the target person’s id is reassigned to 51.

FIGURE 13. These three pictures show the situation of using only the camera to identify and track a person. A labeled yellow box is
used to mark the recognized person. (a) The id of the first recognized person is assigned as 0. (b) The person tracking failed. (c) After
the target disappears for a while and is recognized again, the target person’s id is reassigned to 1.

pedestrian re-identification method is also not robust enough.
If the camera is mounted on a moving robot, it will have
a lower probability of successfully re-identifying the target
person. Even we combine cameras and laser scanners, it is
also very difficult to solve occlusion problems always suffer-
ing in practical environments since they are both line-of-sight
sensors.

Fortunately, the AOA tag is very helpful to solve the prob-
lem that the laser scanner cannot re-identify the target person.
This is because the AOA device can provide a unique id to
help the laser re-identify the target. Besides, when occlusion
occurs, the AOA sensor can still provide a target to lead the
robot toward the target person. However, the AOA cannot
be used alone, because our low-cost AOA sensor has two
problems, namely the signal strength is relatively weak and
the signal value fluctuates greatly. If only the AOA sensor is
used to provide a target, our robot motion will be very unsta-
ble. Therefore, it is necessary to fuse the two measurements
from AOA sensor and laser scanner. As shown in Figure 14,
the light green and red trajectories are the AOA tracking
trajectory and the laser tracking trajectory respectively. There
are many jumps in the AOA tracking trajectory. The laser
tracking trajectory is much more stable than that of the AOA.
However, laser scanner is a line-of-sight sensor, which cannot
track the target when severe occlusion happens. The black
trajectory is the target person’s trajectory obtained by using

FIGURE 14. Kalman filter tracking in occluded environments. The light
green trajectory is the AOA tracking trajectory, and sometimes there is a
sharp jump. The red trajectory is the laser tracking trajectory, and the
black trajectory is the target person’s trajectory obtained by using the
Kalman Filter. The laser scanner failed to track the target person in the
orange arrow area, and the person disappeared for a while. The target
person was tracked again by the laser scanner in the green arrow area.
Unfortunately, the id of the tracked person changed. With the AOA
re-initialization, our method could track the person again.

Kalman Filter to fuse the person tracking information from
both AOA and laser scanner. It can be seen from the result
that this fusion can achieve a stable and smooth tracking
trajectory. In addition, since the field-of-view of the laser
scanner for human legs detection is blocked in the orange
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FIGURE 15. These three pictures show the situation of obstacle avoidance in simulated environments. The red arrow represents the
target pose, the red box represents the robot’s body, the red trajectory is the robot’s track, the black part is the obstacle, and the gray
areas are generated by the obstacle inflating with a given radius. (a) The robot faces the obstacle to create a situation of the robot
getting into trouble. (b) The first goal was send to test the obstacle avoidance performance of the long rectangular robot when coming
into a narrow corridor and the ability of getting out of trouble. (c)The long rectangular robot will escape from the narrow corridor.

arrow area, the laser scanner failed to track the target person.
As you can see, there is a gap in the red trajectory between
the orange and green arrow. But our tracking system could
still obtain a full tracking trajectory. And after the target
person disappeared for a period of time, the laser scanner
successfully tracked the person again in green arrow area
with AOA re-initialization. We get a smooth person tracking
trajectory again. Therefore, our tracking system is also more
robust than using only line-of-sight sensors.

B. AUTONOMOUS FOLLOWING EXPERIMENT
The autonomous following experiment is divided into three
parts: obstacle avoidance experiment in simulated environ-
ments, person following experiment in collision-free environ-
ments and person following experiment in environments with
static and dynamic obstacles.

1) OBSTACLE AVOIDANCE EXPERIMENT IN SIMULATED
ENVIRONMENTS
The simulation experiment was carried out on the ASUS
K450v laptop running Ubuntu LST16.04 and ROS. The
C++ programming language was used to implement all
algorithms. The 3D Gazebo simulator was used for robot
and environment simulation. In this experiment, we want to
test obstacle avoidance ability and the ability of escaping
from local minimum of the proposed method. Videos demon-
strating the performance of our approach can be found at:
https://youtu.be/czzNazIj0vk.

At the beginning, the robot faces the obstacle as shown
in Figure 15(a). Then, a goal is sent at the end of the corridor,
and the robot moves toward the target point and generates
a red trajectory as shown in Figure 15(b). In Figure 15(c),
another goal is sent. Since the corridor is very narrow and
our robot is a long rectangle, the robot cannot turn in the
narrow corridor. For such kind of scenario, the traditional
DWA will fail. However, for our method, the robot will move
backwards to a spacious place and then adjust the heading.

The simulation experiment verified that the navigation algo-
rithm has a better obstacle avoidance ability.

Compared with the traditional DWA algorithm, the
improved DWA algorithm proposed in this paper introduces
the evaluation of the robot’s heading, so as to avoid falling
into the local optimum. The traditional DWA calculates the
distance from the endpoint of each sampling trajectory to
the target point and selects the trajectory closest to the target
point. As shown in Figure 16(a), the red trajectory is too close
to obstacles, so its cost is the largest of the three trajectories.
The yellow trajectory is closer to the target point than the
green trajectory, thus the yellow trajectory has a lower cost
and will be selected. However, when the robot moves to the
end of the yellow trajectory, the three forward sampling tra-
jectories hit obstacles. At this time, the robot get into trouble
and cannot escape from obstacles. The method proposed in
this paper introduces the robot’s heading evaluation to avoid
getting into the local optimum. In Figure 16(a), the difference
between the endpoint’s direction of the yellow trajectory and
the reference direction provided by the direction gradient
field is large, so the cost of the trajectory is big. The green
trajectory is far from the target point, but the endpoint’s
direction of the trajectory is similar to the reference direction
in the gradient field, so the direction angle cost of green
trajectory is less than that of the yellow trajectory. Combining
the distance cost and the heading cost, the green trajectory
will be selected in our method.

When the robot fall into the local optimum, all sampling
trajectories of the robot will collide with obstacles. For DWA
method, the robot will be get stuck and stop there. However,
the method proposed in this paper can also escape from this
situation. As shown in Figure 16(b), since the robot is too
close to obstacles, the three forward sampling trajectories will
hit the obstacle. In this case, the traditional DWA algorithm
considers that the current position is closer to the target point
and the potential field value is smaller, so the backward
trajectory will not be selected and the robot will be get stuck
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FIGURE 16. Schematic diagram of the improved DWA algorithm. The
top-left red circle is the target point, the black-filled rectangular blocks
represent obstacles, and the blue arrows distributed in the barrier-free
area are the reference directions provided by the direction gradient field
for the robot to adjust the heading. The long red, yellow and green arrows
represent the three sampling trajectories generated by DWA, and the
triangle at the end of the trajectory indicates the direction of the end of
the sampling trajectory.

with the obstacle. However, in our method, the endpoint’s
direction of the forward sampling trajectory is very different
from the reference direction in the gradient field, so the cost
of the forward sampling trajectory will be very large. The
direction of the green trajectory in the backward direction
is closer to the reference direction in the gradient field,
so the cost of the trajectory is smaller, and the robot will
choose a backward trajectory to get out of trouble. When the
heading of the robot is adjusted to be closer to the reference
direction in the gradient field, as shown in Figure 16(c),
the robot will move forward again to approach the target
point.

2) PERSON FOLLOWING EXPERIMENT IN COLLISION-FREE
ENVIRONMENTS
Different from traditional navigation algorithms, in addition
to the obstacle avoidance ability, the robot’s following algo-
rithm proposed in this paper should also be able to respond
quickly to the moving target person and maintain a con-
stant distance from the tracked person. The real experiment
was conducted in an open and collision-free indoor environ-
ment. The person will walk arbitrarily to test the velocity
response of the robot, and the velocity response curve is as
shown in Figure 17. In this experiment, the expected distance
between the robot and the target person is set to 0.8m. How-
ever, due to factors such as the robot’s motion inertia and the
continuous movement of the target person, the actual distance
between the person and the robot is usually between 0.7m
and 1.6m. Besides, the robot can move at a velocity of 1m/s
and quickly follow the target person.

FIGURE 17. Linear velocity response curve and distance error curve. The
black curve is the linear velocity response curve of robot during the
person following, and the red curve is the distance error curve between
the robot and the target person.

It can be seen from Figure 18 that although the trajectory
of the moving person still fluctuates, the trajectory of the
robot is very smooth. When this experiment was completed,
the target person walked 45m, and the robot only moved 36m.
Compared with the track length of the target person, the track
of the robot is shortened by 20%.

In person-following, the smoothness of the robot trajectory
is an important indicator to measure whether it is a good
follow movement. In this paper, two indicators are used to
measure the quality of the following motion. The first indica-
tor is the acceleration of the robot, and the second indicator
is the turning radius of the robot. If the acceleration is too
big, it can be considered that the motion is not smooth. If the
robot’s turning radius is extremely small, the trajectory is
also considered as not smooth. During the 36-meter follow-
ing, a total of 506 motion commands were generated in our
method. The distribution of acceleration and turning radius in
506 motion commands is shown in Table 1 and Table 2. It can
be seen from the table that the robot’s accelerations aremostly
smaller than 0.2m/s2, and only two commands are bigger
than 4m/s2. Besides, most of turning radii are bigger than
1m. Therefore, our method could always generate a smooth
following trajectory.
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TABLE 1. Acceleration distribution.

FIGURE 18. Following trajectory in collision-free environments. The grid
cell size is set to 1m. The red trajectory is the moving trajectory of the
robot, and the purple trajectory is the walking trajectory of the tracked
person.

TABLE 2. Turning radius distribution.

3) PERSON FOLLOWING IN ENVIRONMENTS WITH
OBSTACLES
For the person following experiment in environments with
obstacles, we built an indoor environment with many static
and dynamic obstacles as shown in Figure 19(a). The exper-
imental environment is a long corridor. There are many scat-
tered square obstacles in the corridor. The person will pass
through all the obstacles in the corridor, then bypass a pillar
at the end of the corridor and finally pass through all the
square obstacles again and return to the original start point.
During the movement, the obstacles and pillar will block
the view of the laser scanner, which will make the tracked
person disappear for a short while. Besides, the robot also
need to avoid all the static and dynamic obstacles (several
arbitrarily walking people) while following the tracked per-
son, as shown in Figure 19(b). In this experiment, videos
demonstrating the performance of our approach can be found
at: https://youtu.be/0-dSx782yB0.

In order to validate the performance of the proposed
method, our following algorithm is compared to the
MPEPC [36] algorithm. In both tests, the walking path of
the target person will be kept as consistent as possible. The
control frequency of the controller is set as 10Hz in both
experiments, and the maximum velocity of the robot is set
to 1.5m/s. In Figure 20(a), the trajectory of the robot gen-
erated by the FMM-DWA algorithm is shown. As we noted
before, in environments with many obstacles, the tracking
performance of AOA sensor drops dramatically, which will
jump sharply if there is an obstacle between the robot and
the target person. Fortunately, we use a Kalman Filter to fuse
the tracking data from both AOA and laser scanner, therefore
we could get a much smoother tracking trajectory. However,

FIGURE 19. Person following in environments with obstacles.

if the AOA data fluctuates frequently, there is still a large
error between the position obtained by the Kalman Filter and
the position of the real person. For example, in Figure 20(b),
when the trajectory of the target person fluctuates frequently
for a period of time, the robot may make sharp turns and
cannot move very smoothly. In this person-following experi-
ment, our FMM-DWA algorithm successfully avoided static
and dynamic obstacles in environments. While for MPEPC
algorithm, the robot failed to avoid obstacles that appeared
around the red arrow area, as shown in Figure 20(c), where
the robot lost its target person.

Figures 21(a) and 21(b) are linear velocity response curves
of the FMM-DWA andMPEPC algorithm respectively. It can
be seen from the figures that the linear velocity of the
FMM-DWA algorithm changes more slowly, and the linear
velocity of the MPEPC algorithm has many obvious jumps.
In order to quantitatively compare the performance of the
two algorithms, the percentage of control commands whose
acceleration is greater than 1 m/s2 and the turning radius is
less than 1m in the total control command, and the percentage
of robot trajectory length and target person trajectory length
are calculated as shown in Table 3.

TABLE 3. Comparison of performance between FMM-DWA algorithm and
MPEPC algorithm.

Table 3 shows that the smoothness of the trajectory gener-
ated by FMM-DWA algorithm is obviously better than that
generated by MPEPC algorithm, because more than 90%
accelerations in FMM-DWA are smaller than 1m/s2 while
only 68% in MPEPC. And the control commands of turning
radius that are smaller than 1m in MPEPC account for 8% of
the total commands, which is 2.6 times of FMM-DWA. Fur-
thermore, the robot’s trajectories in FMM-DWA algorithm
experiment andMPEPC algorithm experiment are both about
95% of the trajectory of the target person, and there is no
obvious difference.
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FIGURE 20. Following trajectory in environments with obstacles. The grid cell size is set to 1m. The red curve is the trajectory of the
target person, the black curve is the robot’s trajectory. The black squares are the static obstacles in the environment. (a) The robot
successfully completed following a person by using our following algorithm in this crowded environment. (b)Sharp turn. (c) The
person following that is implemented by using MPEPC algorithm is easy to fail in this environment. (d) Trajectory of FMM-DWA
and MEPEC.

FIGURE 21. Linear speed response curve and distance curve in environments with obstacles. The red curve is the distance between the robot and the
target person, and the blue curve is the linear velocity of the robot. (a) The linear velocity of using our algorithm to accomplish person following task
changes more slowly. (b) The linear velocity of using the MPEPC algorithm has many obvious jumps.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a stable and robust person fol-
lowing method. The target person identification and tracking
is achieved by using the combination of a 2D range finder
and an Angle-of-Arrival tag to solve the occlusion problem.
For the following navigation, firstly, a real-time robot-centric
rolling grid map is constructed using the laser data. Secondly,
a target potential field is generated by using the fast marching
method and a direction gradient field is created based on
the target potential field. Finally, Based on the rolling grid
map, the target potential field and the direction gradient field,
an improved dynamicwindow algorithm, FMM-DWA, is pro-
posed in this paper to control the robot to move towards the

target. In FMM-DWA, the direction gradient field provides
a reference of the heading of the robot, which avoids the
robot selecting local optimal trajectory. However, the person-
following navigation method proposed in this paper does not
predict themotion of dynamic obstacles. In the future, wewill
further improve the navigation performance by considering
dynamic obstacle prediction to make our method faster and
smoother.

REFERENCES
[1] J. Sales, J. V. Martí, R. Marín, E. Cervera, and P. J. Sanz, ‘‘CompaRob:

The shopping cart assistance robot,’’ Int. J. Distrib. Sensor Netw., vol. 12,
no. 2, Feb. 2016, Art. no. 4781280.

150324 VOLUME 8, 2020



D. Jin et al.: Robust Autonomous Following Method for Mobile Robots

[2] M. Kenk, M. Hassaballah, and J.-F. Brethé, ‘‘Human-aware robot navi-
gation in logistics warehouses,’’ in Proc. 16th Int. Conf. Inform. Control,
Autom. Robot., Jul. 2019, vol. 2, pp. 371–378.

[3] D. Wooden, M. Malchano, K. Blankespoor, A. Howardy, A. A. Rizzi, and
M. Raibert, ‘‘Autonomous navigation for BigDog,’’ in Proc. IEEE Int.
Conf. Robot. Autom., May 2010, pp. 4736–4741.

[4] P. Nikdel, R. Shrestha, and R. Vaughan, ‘‘The hands-free push-cart:
Autonomous following in front by predicting user trajectory around
obstacles,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 4548–4554.

[5] A. Ess, K. Schindler, B. Leibe, and L. Van Gool, ‘‘Object detection and
tracking for autonomous navigation in dynamic environments,’’ Int. J.
Robot. Res., vol. 29, no. 14, pp. 1707–1725, Dec. 2010.

[6] A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, ‘‘Person tracking and
following with 2D laser scanners,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2015, pp. 726–733.

[7] A. Beck-Greinwald, A. Zell, K. Bohlmann, S. Buck, and H. Marks,
‘‘Autonomous person following with 3D LIDAR in outdoor environment,’’
J. Automat. Mobile Robot. Intell. Syst., vol. 7, no. 2, pp. 24–29, 2013.

[8] M. Kobilarov, G. Sukhatme, J. Hyams, and P. Batavia, ‘‘People track-
ing and following with mobile robot using an omnidirectional camera
and a laser,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May2006,
pp. 557–562.

[9] K. Koide and J. Miura, ‘‘Identification of a specific person using color,
height, and gait features for a person following robot,’’ Robot. Auto. Syst.,
vol. 84, pp. 76–87, Oct. 2016.

[10] T. Feng, Y. Yu, L.Wu, Y. Bai, Z. Xiao, and Z. Lu, ‘‘A human-tracking robot
using ultra wideband technology,’’ IEEE Access, vol. 6, pp. 42541–42550,
2018.

[11] B. Hepp, T. Nageli, and O. Hilliges, ‘‘Omni-directional person tracking
on a flying robot using occlusion-robust ultra-wideband signals,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 189–194.

[12] J. A. Sethian, ‘‘A fast marching level set method for monotonically advanc-
ing fronts.,’’ Proc. Nat. Acad. Sci. USA, vol. 93, no. 4, pp. 1591–1595,
Feb. 1996.

[13] D. Seror, A. Nissan, R. M. Spira, E. Feigin, R. Udassin, and
H. R. Freund, ‘‘Comparison of bursting pressure of abdominal wall defects
repaired by three conventional techniques,’’ Amer. Surgeon, vol. 69, no. 11,
pp. 978–980, 2003.

[14] Y. Sun, L. Sun, and J. Liu, ‘‘Human comfort following behavior for service
robots,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO), Dec. 2016,
pp. 649–654.

[15] W. Chi, J. Wang, and M. Q.-H. Meng, ‘‘A gait recognition method for
human following in service robots,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
vol. 48, no. 9, pp. 1429–1440, Sep. 2018.

[16] A. Cosgun, D. A. Florencio, and H. I. Christensen, ‘‘Autonomous person
following for telepresence robots,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2013, pp. 4335–4342.

[17] Y. Sung and W. Chung, ‘‘Hierarchical sample-based joint probabilistic
data association filter for following human legs using a mobile robot in a
cluttered environment,’’ IEEE Trans. Human-Machine Syst., vol. 46, no. 3,
pp. 340–349, Jun. 2016.

[18] E.-J. Jung, B.-J. Yi, and S. Yuta, ‘‘Control algorithms for a mobile robot
tracking a human in front,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Oct. 2012, pp. 2411–2416.

[19] Y. Kobayashi, Y. Kinpara, T. Shibusawa, and Y. Kuno, ‘‘Robotic
wheelchair based on observations of people using integrated sensors,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2009, pp. 2013–2018.

[20] C. Granata and P. Bidaud, ‘‘A framework for the design of person following
behaviors for social mobile robots,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Oct. 2012, pp. 4652–4659.

[21] H.-M. Gross, K. Debes, E. Einhorn, S. Mueller, A. Scheidig,
C. Weinrich, A. Bley, and C. Martin, ‘‘Mobile robotic rehabilitation
assistant for walking and orientation training of stroke patients: A report
on work in progress,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC),
Oct. 2014, pp. 1880–1887.

[22] J. D. Goyzueta, R. Katz, O. Dumitrescu, H. S. H. Choi, and T. Kahn,
‘‘The disappearing kidney: A case of emphysematous pyelonephritis,’’
Arch. Internal Med., vol. 154, no. 22, pp. 2613–2615, 1994.

[23] R. Liu, G. Huskic, and A. Zell, ‘‘Dynamic objects tracking with a mobile
robot using passive UHF RFID tags,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Sep. 2014, pp. 4247–4252.

[24] R. Gockley, J. Forlizzi, and R. Simmons, ‘‘Natural person-following
behavior for social robots,’’ in Proc. ACM/IEEE Int. Conf. Hum.-Robot
Interact. (HRI), 2007, pp. 17–24.

[25] S. Hemachandra, T. Kollar, N. Roy, and S. Teller, ‘‘Following and inter-
preting narrated guided tours,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2011, pp. 2574–2579.

[26] E. Prassler, D. Bank, and B. Kluge, ‘‘Motion coordination between a
human and a mobile robot,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., vol. 2, Oct. 2002, pp. 1228–1233.

[27] J. Miura, J. Satake, M. Chiba, Y. Ishikawa, K. Kitajima, and H. Masuzawa,
‘‘Development of a person following robot and its experimental evalua-
tion,’’ Intell. Auton. Syst., vol. 11, pp. 89–98, Dec. 2010.

[28] G. Huskic, S. Buck, L. A. I. Gonzalez, and A. Zell, ‘‘Outdoor person
following at higher speeds using a skid-steered mobile robot,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 3433–3438.

[29] W. Peng, J. Wang, and W. Chen, ‘‘Tracking control of human-
following robot with sonar sensors,’’ Adv. Intell. Syst. Comput., vol. 531,
pp. 301–313, 2017.

[30] J. Zhang, J. Wang, andW. Chen, ‘‘A control system of driver assistance and
human following for smart wheelchair,’’ in Proc. IEEE Int. Conf. Robot.
Biomimetics (ROBIO ), Dec. 2014, pp. 1927–1932.

[31] L. Pang, Y. Zhang, S. Coleman, and H. Cao, ‘‘Efficient hybrid-supervised
deep reinforcement learning for person following robot,’’ J. Intell. Robotic
Syst., vol. 97, no. 2, pp. 299–312, Feb. 2020.

[32] R. E. Kalman, ‘‘A new approach to linear filtering and prediction prob-
lems,’’ J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

[33] P. Kułakowski, J. Vales-Alonso, E. Egea-López, W. Ludwin, and
J. García-Haro, ‘‘Angle-of-arrival localization based on antenna arrays
for wireless sensor networks,’’ Comput. Electr. Eng., vol. 36, no. 6,
pp. 1181–1186, Nov. 2010.

[34] L. Breiman, ‘‘ST4_method_random_forest,’’Mach. Learn., vol. 45, no. 1,
pp. 5–32, 2001.

[35] S. Garrido, L. Moreno, and P. U. Lima, ‘‘Robot formation motion planning
using fast marching,’’ Robot. Auto. Syst., vol. 59, no. 9, pp. 675–683,
Sep. 2011.

[36] J. J. Park and B. Kuipers, ‘‘Autonomous person pacing and following
with model predictive equilibrium point control,’’ in Proc. IEEE Int. Conf.
Robot. Autom., May 2013, pp. 1060–1067.

DAPING JIN received the B.S. degree in mechan-
ical engineering from Dalian Jiaotong University,
Dalian, China, in 2018. He is currently pursu-
ing the M.S. degree with the Faculty of Robot
Science and Engineering, Northeastern University,
Shenyang, China.

His research interests include autonomous fol-
lowing robot and path planning.

ZHENG FANG (Member, IEEE) received the B.S.
degree in automation and the Ph.D. degree in
pattern recognition and intelligent systems from
Northeastern University, China, in 2002 and 2006,
respectively.

He was a Postdoctoral Research Fellow with
Carnegie Mellon University, from 2013 to 2015.
He is currently an Associate Professor with the
Faculty of Robot Science and Engineering, North-
eastern University. His research interests include

visual/laser SLAM, perception, and autonomous navigation of various
mobile robots.

JIEXIN ZENG received the B.S. degree in
autonomous from Northeastern University,
Shenyang, China, in 2017, and the M.S. degree
from the Faculty of Robot Science and Engineer-
ing, Northeastern University, in 2020.

His research interests include optimal control
and real-time motion planning for autonomous
mobile robot.

VOLUME 8, 2020 150325


