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ABSTRACT Infrared small target detection systems are an important part of space infrared imaging
satellites. However, small infrared target detection is often affected by cirrus false alarm sources with similar
grayscales. In this article, an infrared cirrus detection method based on the tensor robust principal component
analysis model (TRPCA) is proposed. The method treats multiple bands of remote sensing data as tensors,
but classical tensor nuclear norms cannot represent the tensor rank well; therefore, we use tensor multi-mode
expansion sum nuclear norm (TMESNN) to approximate the tensor rank better. First, a set of Landsat-8 data
is transformed into a tensor model, and a TRPCAmodel is constructed by TMESNN and the L1 norm. Then,
this model is solved by Ket augments and the alternating direction method of multipliers (ADMM). Finally,
Mallat wavelet transform is used to supplement information and remove clutter, and the final detection
result is obtained by adaptive threshold segmentation. Compared with other optimization-based methods,
this method has better detection performance and accuracy.

INDEX TERMS Tensor multi-mode expansion sum nuclear norm, cirrus detection, ADMM, Ket augments,
wavelet transform.

I. INTRODUCTION
Space infrared imaging satellites play an important role in
ground monitoring, natural resource exploration and early
warning systems, and are a necessary tool for ground surveil-
lance, observation, and early warning and interception of
missiles or aircraft [1]. However, in satellite infrared images,
some high-radiation terrain or phenomena in the imaging
band has the same gray level as the target, which may cause
false alarms in remote sensing early warning system. These
terrains or phenomena are called false alarm sources [2].
There is an important false alarm source called cirrus [3].
As shown in FIGURE 1, cirrus is marked with red boxes.
It is usually weak, and its visual characteristic is similar to
infrared military targets, which cause false alarms in remote
sensing early warning systems, so the study of cirrus detec-
tion in satellite infrared images is necessary.
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FIGURE 1. Schematic diagram of a cirrus infrared image.

A. RELATED WORK
Early cloud detection methods used physical properties, such
as reflectance, brightness and temperature [4]–[9], to extract
clouds from images. Scholars have proposed many methods
for cloud detection of temporal infrared data using observa-
tion images of more than two scenes at the same location
but at different times [10]–[13]. Many artificial intelligence
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methods have also been used for satellite infrared image
target detection [14]–[19], but these methods are not suitable
for cirrus detection in real scenes because they require a large
quantity of image data [20].

Targets such as missiles or aircraft appear as small targets
in satellite infrared images. Cirrus has similar visual charac-
teristics with these small targets, so the infrared small targets
detection method can be introduced into cirrus detection. The
detection methods of infrared small targets mainly include
methods based on filtering and visual features [21]–[27],
methods based on background continuity [28], [29]
and methods based on optimization.

Due to the improvement in optimization methods, the
accuracy of infrared small target detection is constantly
improving [30]–[38]. In optimization methods, princi-
pal component analysis (PCA) is a classic model [39],
which reduces the dimensionality of high-dimensional data,
removes sparse irrelevant information, and obtains the main
information. From another perspective, we can also treat cir-
rus as the sparse component in infrared images and obtain it
by PCA. However, the PCAmethod is susceptible to outliers.
The emergence of RPCA [40] solved this problem. Its basic
idea is that under certain constraints, matrix Y is approx-
imately decomposed into two different matrices, S and L,
after optimization, one sparse and one low-rank. This idea has
been used in image processing [41]–[43]. In infrared images,
the rank of the background is low, and the cirrus false alarm
source is relatively sparse. Therefore, sparse components of
the infrared image such as cirrus clouds, noise and clutter can
be obtained by RPCA.

In traditional remote sensing image detection, the image
is usually expanded into a two-dimensional matrix and stud-
ied using classic image processing methods, which lose
the inherent structural information of multispectral images.
Tensors, as a multidimensional extended form of matri-
ces, have proven to be superior in processing multidimen-
sional data. In recent years, some scholars have constructed
third-order tensors of infrared images for small target detec-
tion. First, the objective function is constructed according to
characteristics of the tensor’s background and target. Then,
the objective function is solved and the detection results are
obtained [23], [30], [32], [44], confirming that the combi-
nation of a tensor model and robust principal component
analysis model can achieve good results. Based on small
sample remote sensing data, this article proposes a method
based on small sample data [45], which uses visual features
and sparse and low-rank decomposition to detect cirrus.

B. MOTIVATION
The backgrounds of infrared images are usually a low-rank
matrix under certain conditions because the certain nonlo-
cal autocorrelation is the characteristic of the background.
In addition, the target area of infrared images is small, so it
is regarded as a sparse matrix. The infrared target detection
problem is naturally transferred to the matrix decomposition
model by the above theory. Cirrus is sparse relative to the

background, which has a lower rank. The infrared image of
the cirrus consists of sparse cirrus elements and low-rank
background elements, so the cirrus detection problem can
also be transformed into a matrix decomposition problem.

Tensors, as high-dimensional extensions of matrices,
can be directly used to process high-dimensional data
such as color images, videos [46]–[48], and hyperspectral
images [48]–[52] and is faster and more efficient. Based
on the same extension concept, TRPCA was proposed, also
known as high-order RPCA or tensor recovery [53]. Remote
sensing data with multiple bands can be regarded as a tensor
data composed of height, width, and spectrum, so the TRPCA
model can be used for tensor decomposition.

Sum of Nuclear Norms (SNN) was applied to the TRPCA
model by Huang et al. [54], but its low rankness cannot
effectively solve the rank optimization problem. Lu et al.
applied the Tensor Nuclear Norm (TNN) to the TRPCA
model [55], but TNN cannot well-represent the low rank of
high dimensions. Yang et al. applied the Tensor Multi-mode
Expansion Sum Nuclear Norm (TMESNN) to the TRPCA
model [56], showing its powerful ability to capture hid-
den associations between different tensor modes. In the real
world, high-dimensional data are more vulnerable to the seri-
ous damage of sparse noise. A large number of experiments
have proven that, compared with SNN and TNN, the method
based on TMESNN has advantages in PSNR and SSIM
values. It has been shown that the use of TMESNN in the
TRPCA model can approximate the tensor rank better, and
thus achieve good results in tensor decomposition of high-
dimensional data.

After tensor decomposition of high-dimensional data,
the sparse components detected in multiple bands are
obtained. However, the components of these bands are not
complete targets, and there is clutter interference. Therefore,
we use the wavelet transform method to fuse the sparse
components detected in different frequency bands. It can not
only eliminate clutter, but also supplement information to
avoid the inability to detect a complete cirrus cloud in a single
band. Finally, cirrus cloud images can be obtained.

Based on the above motivations, this article proposes three
innovative points:

1) First, TMESNN is a better representation of the tensor
rank, so this article developed a TRPCA model based
on TMESNN. Then, the problem of the infrared cirrus
detectionwas transformed into a problem of solving the
TRPCA model.

2) Second, the proposed TRPCA model is solved by an
improved ADMM framework. In addition, this frame-
work use KET augments to expand tensors with lower
order so that they become tensors with lower order,
which greatly reduces the algorithm complexity and
computational time of the proposed method.

3) The Mallat wavelet transform method is used to fuse
the sparse components detected in different bands.
It can not only remove clutter but also supplement the
information, avoiding a single band that cannot detect
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the complete cirrus cloud. Eventually, a cirrus image
can be obtained.

The structure of this article is as follows. Section 2 briefly
covers some basic concepts about tensors and solutions.
In section 3, The structure of the TRPCA model based on
TMESNN is comprehensively described, and the improved
ADMM solution framework of the proposed model is
derived. In section 4, tests are carried out on the model in
section 3 under different scenarios with various evaluation
indexes, which verify its effectiveness. Section 5 introduces
the discussion in this article. Section 6 concludes.

II. PRELIMINARIES
Before constructing the model, we need to briefly review
some basic concepts and preliminary knowledge. In this arti-
cle, A is used to represent the tensor, A is used to represent
the matrix,−→a is used to represent the vector, and a is used to
represent the scalar.

A. THE FUNDAMENTALS OF TENSORS
Before constructing the model, we need to briefly comb
through some basic concepts and preliminary knowledge.
In this article, A is used to represent the tensor, A is used
to represent the matrix, −→a is used to represent the vector,
and a is used to represent the scalar. Tensors are struc-
tures that describes higher-dimensional data. Tensors are
higher-order extensions of scalars, vectors, and matrices,
so we can also represent scalars, vectors, and matrices as
lower-order tensors. A ∈ RN1×N2×N3 is a third-order tensor
whose (n1, n2, n3) element is An1,n2,n3 . The column fibers,
row fibers, and tube fibers ofA areA (:, n2, n3),A (n1, :, n3)
and A (n1, n2, :).

Tensors can also be seen as a stack of different matrices,
whose horizontal, side and front slices are represented by
A (n1, :, :), A (:, n2, :), A (:, :, n3) or An1,:,:,A:,n2,:,A:,:,n3 .
In the tensor system, there are many definitions similar to

those in matrix theory. These definitions are briefly explained
below:
Definition 1 (Tensor Expansion Operation): Unlike a

matrix consisting of only rows and columns, the order l tensor
has l modes. Accordingly, we obtain a matrix in each mode.
For a tensor, the mode-i unfolding operation is represented by
the following operations:

A(i) = reshape(A) ∈ RNi×(N1···Ni−1Ni+1···Nl) (1)

The mode-(1,. . . , k) unfolding operation of the tensor is
expressed as:

A[i] = reshape[i](A,
i∏

k=1

Nk ,
l∏

k=i+1

Nk ) ∈ R

i∏
k=1

Nk×
l∏

k=i+1
Nk

(2)

where reshape(·) is the representation of a tensor expan-
sion operator [42]. The corresponding tensor operation is:
unreshape(reshape(A)) = A.

Definition 2 (Circ Operation [1]): The third-order tensor
performs the cyclic expansion operation and is expressed as
circ(·):

circ(A) =


A(1) A(N3) · · · A(2)

A(2) A(1)
· · · A(3)

...
...

. . .
...

A(N3) A(N3−1) · · · A(1)

 (3)

where A(i) represents the front slice of the tensor.
Definition 3 (t-product):According to the tensor expansion

formula, the t-product of third-order tensors A ∈ RN1×N2×N3

and B ∈ RN1×N2×N3 is the product of matrices in different
forms:

C = A ∗ B = unreshape(circ(A) · reshape(B)) (4)

where ∗ represents the t -product between tensors.
Definition 4 (Conjugate Transpose): If we take the

adjunct transpose of the front slice of the third-order tensor
A ∈ RN1×N2×N3 , and the order of the slices is reversed
from 2 to N3, then I obtains the adjunct transpose tensor
AT
∈ RN2×N1×N3 .

Definition 5 (Orthogonal Tensor): If the tensor P is an
orthogonal tensor, then it fits the following equation:

P ∗ PT
= PT

∗ P = I (5)

Definition 6 (Diagonal Tensor):A ∈ RI1×I2×···×IN is a diago-
nal tensor when its elements are satisfied, i1 = i2 = · · · = iN ,
and ai1i2···iN 6= 0, the other elements are all 0.
Definition 7 (Matrix Nuclear Norm): Given the matrix

Z ∈ RN1×N2 , its nuclear norm is:

‖Z‖∗ =
∑

r
σr (Z) (6)

where σr (Z) (r = 1, 2, . . . ,min (N1,N2)) represents the sin-
gular value of the matrix Z.
Definition 8 (SNN [58]): Given the third-order tensor

A ∈ RN1×N2×N3 , its SNN is
3∑
i=1
αi
∥∥A(i)

∥∥
∗
, the constraint αi

satisfies:
3∑
i=1
αi = 1.

Definition 9 (TNN [59]:) Given the third-order tensor

A ∈ RN1×N2×N3 , its TNN is:
N3∑
i=1
αi
∥∥A(i)

∥∥
∗
, and the constraint

αi satisfies:
N3∑
i=1
αi = 1.

B. SOME MATH PRELIMINARIES
Definition 10 (ADMM Framework [60]): ADMM is an
efficient computational framework for solving 2-block dis-
tributed convex optimization problems:

argminx,zg(x)+ h(z)

s.t. Ex + Fz = b (7)
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where x ∈ Rn, z ∈ Rm, E ∈ Rp×n, F ∈ Rp×m, b ∈ Rp,
g : Rn → R, and h : Rm → R. The augmented Lagrangian
function of this convex optimization problem is:

L(x, z, y) = g(x)+ h(z)+ 〈y,Ex + Fz− b〉

+
ρ

2
‖Ex + Fz− b‖22 (8)

where y is a Lagrangian multiplier, and ρ is a regular coeffi-
cient. The iterative steps of ADMM are:
xk+1 = argminxg(x)+

〈
yk ,Mx

〉
+
ρ

2

∥∥∥Ex + Fzk − b∥∥∥2
2

zk+1 = argminzh(z)+
〈
yk ,Nz

〉
+
ρ

2

∥∥∥Exk+1 + Fz− b∥∥∥2
2

yk+1 = yk + τρ
(
Exk+1 + Fzk+1 − b

)
(9)

where τ represents the step size, and k represents the number
of iteration steps.
Definition 11 (Ket Augmentation [61]): Ket augmenta-

tion is an enhancement method that can transform low-order
tensors into high-order tensors. Under the tensor train
decomposition, the Ket augmented tensor provides a clearer
representation of the local data structure compared with the
original tensor. If there is little correlation between the dimen-
sions of the tensor, the augmented version of the tensortrain
rank is lower. Therefore, Ket augments are an effective pre-
processing step to minimize rank.

Given a tensor A ∈ Rm×n×r , the processing steps of Ket
augmentation include the following three steps:

1) Factorization: m = m1 × m2 × · · · × ms, n = n1 ×
n2× · · ·× ns, convert the size ofA to m1×m2× · · ·×

ms × n1 × n2 × · · · × ns × r ;
2) Change the order of the dimensions of A, convert the

size to m1 × n1 × m2 × n2 × · · · × ms × ns × r ;
3) Turn A into an augmented result of size m1n1 ×

m2n2 × · · · × msns × r .

III. PROPOSED METHOD
The background of infrared images obtained in military and
space applications are usually the sky, clouds, sea surface,
etc. [62], and due to atmospheric refraction, dispersion, opti-
cal defocus of equipment, etc., the obtained images usually
have some blur [63]. According to the analysis of back-
ground characteristics, the background of such an infrared
image usually has a certain nonlocal autocorrelation, which
can generally be regarded as a low-rank continuous matrix.
Accordingly, as the area occupied by the pixels belonging to
the infrared target is small relative to the background, it can be
regarded as a sparse matrix [64]. The infrared target detection
problem is naturally transferred to the matrix factorization
model by the above theory. In general, we can use the fol-
lowing model to describe the infrared image of small target:

D = R+ S (10)

where D is the original infrared image, R and S represent
different matrix components after decomposition, one is low-
rank, the other is sparse. By solving the following convex

optimization problems, the matrix decomposition can be
realized:

min ‖R‖∗ + λ ‖S‖1
s.t. D = R+ S (11)

From the perspective of tensor analysis, performing RPCA
calculations on high-dimensional data can fully mine the
hidden data structure information. To solve matrix decompo-
sition problems, RPCA is extended to TRPCA. The TRPCA
optimization model can be extended from the matrix RPCA
model:

min
R,S

rank(R)+ λ ‖S‖0

s.t. D = R+ S (12)

where R and S represent different tensor components
after decomposition, one is low-rank, the other is sparse.
According to the basic knowledge of tensors, the tensors in
this model, whose sparse terms are represented by the L0
norm, and their low-rank terms are approximated by the rank
of tensors. FIGURE 2 is a model diagram of TRPCA.

FIGURE 2. The model diagram of TRPCA.

Multiband remote sensing images can be regarded
as third-order tensor data composed of multispectra,
so the TRPCA model can be used for low-rank sparse
decomposition.

A. TRPCA MODEL BASED ON TMESNN
Obviously, the TRPCA optimization model is an N-P hard
problem. The L1 norm of the tensor can be used to convex
the L0 norm of the tensor, but the representation of the tensor
rank has always been a problem.

Some scholars use SNN to represent the tensor rank and
apply it to TRPCA:

min
R,S

3∑
i=1

αi
∥∥R(i)

∥∥
∗
+ λ ‖S‖0

s.t. D = R+ S (13)

However, SNN cannot properly represent the global con-
nection between different tensor models, because A(i) repre-
sents the tensor expansion of a single model.When all models
have the same dimension (N1 = N2 = N3 = N ), the size
of A(i) is N × N 2, which cannot represent the connection of
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high-dimensional data well. Later, some scholars proposed
TNN and applied it to TRPCA:

min
R,S

N3∑
i=1

αi

∥∥∥R(i)
∥∥∥
∗

+ λ ‖S‖0

s.t. D = R+ S (14)

TNN is successfully applied to image restoration, and it has
better results than SNN. However, in TNN, only one or two
dimensions’ connections are represented by t-SVD, which
indicates that TNN lacks a low-rank representation of the
third dimension and even higher dimensions.

Recently, TMESNN [61] was proposed:

‖R‖TMESNN =

l−1∑
i=1

αi
∥∥R[i]

∥∥
∗

(15)

where the mode (1,. . . , k) expansion operation of tensor R

is represented by R[i] ∈ R

i∏
k=1

Nk×
3∏

k=i+1
Nk
, which is expanded

by the first k modes and the last 3-k modes, and l is the
tensor’s dimension. TMESNN represents the relationship
between different dimensions, which SNN and TNN cannot
do. TMESNN is also used to solve mathematical problems:
large-scale matrix singular value decomposition and so on.

This article uses the L1 norm to the convex relax L0 norm.
Therefore, the cirrus detection model based on TRPCA is as
follows:

min
R,S
‖R‖TMESNN + λ ‖S‖1

s.t. D = R+ S (16)

where ‖·‖TMESNN represents TMESNN, and ‖·‖1 represents
the L1 norms.

To solve ADMM in the next section, we convert (16)
to the following problem by introducing auxiliary variables
Vi (i = 1, 2, . . . , l − 1) andW:

min
R,S

l−1∑
i=1

αi ‖Vi‖∗ + λ ‖W‖1

s.t. Vi = R[i],D = R+ S,W = S (17)

B. SOLUTION OF THE PROPOSED MODEL
The expansion of the model is as follows:

The model constructed by TMESNN and the L1 norm is
solved by the ADMM framework. The augmented Lagrange
function is:

L(R,S,W,Vi,Ci, ε, η)

=

l−1∑
i=1

(
αi ‖Vi‖∗ +

〈
Ci,Vi − R[i]

〉
+
βi

2

∥∥Vi − R[i]∥∥2F)
+ λ ‖W‖1
+ 〈η,W − S〉 +

σ

2
‖W − S‖2F + 〈ε,D −R− S〉

+
γ

2
‖D −R− S‖2F (18)

where Ci, ε and η represent the Lagrangian multiplier, βi, σ
and γ represent the penalty factor.

Then, ADMM is solved by the following iterative steps:

(
Sk+1,Rk+1

)
= argminR,SL(S,R,Vki ,W

k ,Ck
i , η

k , εk ),(
Vk+1i ,Wk+1

)
= argminR,SL(Sk+1,Rk+1,Vi,

W,Ck
i , η

k , εk ),
Ck+1
i = Ck

i + τβi(V
k+1
i − Rk+1[i] ),

εk+1i = εki + τγ (D
k+1
− Sk+1 −Rk+1),

ηk+1i = ηki + τσ (W
k+1
− Sk+1)

(19)

Next, we present the specific solution steps for each sub-
problem:

Subproblem of (R,S):(
Sk+1,Rk+1

)
= argminR,S L(S,R,Vki ,W

k ,Ck
i , ε

k , ηk )

= argminR,S

l−1∑
i=1

(〈
Ck
i ,V

k
i − R[i]

〉
+
βi

2

∥∥Vi − R[i]∥∥2F)
+

〈
ηk ,Wk

− S
〉
+
σ

2

∥∥∥Wk
− S

∥∥∥2
F

+

〈
εk ,D −R− S

〉
S +

γ

2
‖D −R− S‖2F

= argminR,S

l−1∑
i=1

βi

2

∥∥∥Vki − R[i] + Ck
i /βi

∥∥∥2
F

+
σ

2

∥∥∥W k
− S + ηk/βi

∥∥∥2
F
+
γ

2

∥∥∥D −R− S + εk/γ
∥∥∥2
F

(20)

Use F (R,S) to represent the objective function in equa-
tion (20), and use optimization condition ∂F/∂R = 0 and
∂F/∂S = 0 to obtain:

(
3∑
i=1

βi + γ

)
R+ γS

=

l−1∑
i=1

βi

(
unreshape[i]

(
Vki + C

k
i

)/
βi

)
+γ

(
D + εk

/
γ
)

γR+ (γ + σ)S = γ
(
D + εk

/
γ
)

+σ
(
Wk
+ ηk

/
σ
)

(21)

From formula (21), we can solve:

Rk+1
=

(
γN k
− (γ + σ)M k

)/(
γ 2
−

(
3∑
i=1

βi + γ

)
(γ + σ)

)

Sk+1 =
(
γM k

−

(
3∑
i=1

βi + γ

)
N k

)
/(

γ 2
−

(
3∑
i=1

βi + γ

)
(γ + σ)

)
(22)
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Among them:
M k
=

l−1∑
i=1

βi(unreshape[i](Vki + C
k
i /βi)+ γ (D + ε

k/γ )

N k
= γ (D + εk/γ )+ σ (Wk

+ ηk/σ )

(23)

Subproblem ofW:

Wk+1
= argmin

W
λ ‖W‖1

+

〈
ηk ,W − Sk+1

〉
+
σ

2

∥∥∥W − Sk+1
∥∥∥2
F

= argmin
W

λ ‖W‖1 +
σ

2

∥∥∥W − Sk+1 + ηk/σ
∥∥∥2
F

(24)

Using a soft thresholding operator [65], the following solu-
tion can be obtained:

Wk+1
= max

(∣∣∣Sk+1 − ηk/σ ∣∣∣− λ

σ
, 0
)
◦

Sk+1 − ηk/σ∣∣Sk+1 − ηk/σ ∣∣
(25)

where ◦ is the Hadamard product, and 0 ◦ 0
0 is defined as 0.

Subproblem of Vi:

Vk+1i

= argmin
Vi

l−1∑
i=1

αi ‖Vi‖∗ +
〈
Ck
i ,Vi − R

k+1
[i]

〉
+
βi

2

∥∥∥Vii − Rk+1[i]

∥∥∥2
F

= argmin
Vi

l−1∑
i=1

(
αi ‖Vi‖∗ +

βi

2

∥∥∥Vii − Rk+1[i] + C
k
i /βi

∥∥∥2
F

)
(26)

The subproblem of Vi can be split into l − 1
subproblems:

argmin
Vi

αi ‖Vi‖∗ +
βi

2

∥∥∥Vi − Rk+1[i] + C
k
i /βi

∥∥∥2
F

(i = 1, 2, . . . , l − 1) (27)

The solution to subproblem (27) is:

Vk+1i = V6αi/βiU
T (28)

where Rk+1[i] − Ck
i /βi = V6UT , 6αi/βi = diag(

max
(
6r,r − αi/βi

)
, 0
)
, and 6r,r is an important compo-

nent of 6, which appears in this formula as the r-th singular
value.

Algorithm 1 presents the whole algorithm:

C. BAND FUSION
Wavelet transform has many advantages such as accurate
reconstruction, approximate human vision and multiresolu-
tion analysis, and has been widely used in image fusion [66].
The basic principle of band fusion based onwavelet transform

Algorithm 1 Specific Steps of the ADMM Framework (17)
Input: The initial tensor D, parameters λ, γ and σ .
Process:
Step 1: InitializeR = D,Vi,W,Ci, ε, η, maximum itera-
tion step K = 200, τ = 1.1.
Step 2: While

∥∥Rk+1
−Rk

∥∥
F

/∥∥Rk
∥∥
F > ε and k < K

Do
Step 3: UpdateR and S by:

Rk+1
=

(
γN k
− (γ + σ)M k

)
/(

γ 2
−

(
3∑
i=1

βi + γ

)
(γ + σ)

)

Sk+1 =
(
γM k

−

(
3∑
i=1

βi + γ

)
N k

)
/(

γ 2
−

(
3∑
i=1

βi + γ

)
(γ + σ)

)
Step 4: UpdateW by:

Wk+1
=max

(∣∣∣Sk+1−ηk/σ ∣∣∣− λ
σ
, 0
)
◦

Sk+1 − ηk
/
σ∣∣Sk+1−ηk/σ ∣∣

Step 5: Update Vi by:

Vk+1i = V6αi/βiU
T

Step 6: Update Ci, ε and η by:
Ck+1
i = Ck

i + τβi(V
k+1
i − Rk+1[i] ),

εk+1i = εki + τγ (D
k+1
−Rk+1

− Sk+1),

ηk+1i = ηki + τσ (W
k+1
− Sk+1)

Step 7: End Do
Output: Low-rank component R and sparse
component S.

is to decompose different bands, fuse the components of
different frequencies, and finally, conduct inverse wavelet
transform to obtain the final image. Selecting appropriate
high-frequency fusion rules can preserve image edge features
and remove clutter. The selection of low-frequency fusion
rules determines the image’s contour. The correct selection of
fusion rules can improve the visual effect of fusion images.

The key steps of wavelet transform include decomposi-
tion, fusion and reconstruction, where reconstruction and
decomposition are inverse processes to each other. The
image is decomposed into different components of low and
high frequency in three directions (horizontal, vertical, and
diagonal) [1]. Wavelet decomposition is the principle of
decomposition from coarse to fine, that is, from the first layer
to the N-th layer.

Currently, the most widely used is the Mallat algorithm
[68], which can improve the speed of image wavelet decom-
position and reconstruction.Mallat uses two one-dimensional
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filters to decompose two-dimensional images.
Cj = HcHrCj-1

DH
j = GcHrCj-1

DV
j = HcGrCj-1

DD
j = GcGrCj-1

(29)

where the low-frequency components of the layer j decom-
position are represented by Cj, which is an approximation on
Cj-1. DH

j , D
V
j and DD

j are high-frequency detail components
of Cj-1. In the image, r is the row, c is the column, and j-1 is
the number of decomposition layers. H represents low-pass
filters. G represents the high-pass filters

Let the conjugate matrix of H and G be H∗ and G∗.
According to the Mallat reconstruction formulas, we can
obtain:

Cj-1 = H∗rH
∗
cCj + H∗rG

∗
cCj + G∗rH

∗
cCj + G∗rH

∗
cCj (30)

According to the law of regional energy, the components of
different frequencies are fused. The center of energy Ei

J (x,y)
is (x,y) and its region size is M× N:

Ei
J (x,y) =

∑
x0∈M,y0∈N

[
Di
K,J
(
x+ x0, y+ y0

)]2
(31)

where the decomposition coefficients of pixels in the K-th
image at the J scale are represented by Di

K,J (x,y). Its fusion
coefficient is:

FiJ (x,y) =

{
Di
A,J (x,y) ,E

i
A,J (x,y) ≥ Ei

B,J (x,y)
Di
B,J (x,y) ,E

i
A,J (x,y)<E

i
B,J (x,y)

(32)

where the wavelet coefficients Ei
A,J (x,y) and Ei

B,J (x,y) are
derived from the source images A and B in the wavelet
decomposition of the image layer j can be calculated by
formula (31).

Assume the images of the band to be fused are Fi(i =
1, 2, 3, · · · , 7) and the fusion image is F. The specific steps
are as follows:

1) An appropriate wavelet basis is selected to conduct
N-layer discrete wavelet decomposition (DWT decom-
position) of Fi(i = 1, 2, 3, · · · , 7). The end of each
band can obtain one component with low frequency and
3N components with high frequencies:

F = CN
1 +

N∑
j=1

3∑
k=1

Dj,k
1

F2 = CN
2 +

N∑
j=1

3∑
k=1

Dj,k
2

. . .

F7 = CN
7 +

N∑
j=1

3∑
k=1

Dj,k
7

(33)

where CN
i represents the low-frequency component of

Fi under the N-th decomposition layer, and Dj,k
i is the

high-frequency component of Fi in the three direc-
tions (horizontal, vertical and diagonal) under the N-th
decomposition layer.

2) In each decomposition layer, fusion rule f 1 and f 2 are
used to fuse the coefficients with different frequency.
The fusion starts from the N-th layer and decreases
successively until the 1st layer, that is, it can obtain
one image Fc with low frequency and 3N images
F j,kD with high frequencies, where the conditions j =
1, 2, 3, · · · ,N , and k = 1, 2, 3 are satisfied. Fc and
F j,kD jointly constitute multiscale images.

3) To obtain the fused image, IDWT is performed on the
multiscale image.

D. PROCESS SUMMARY OF THE PROPOSED METHOD
Algorithm 2 presents the general flow of the cirrus detection
algorithm.

Algorithm 2 The General Flow of the Cirrus Detection
Algorithm

Input: Infrared remote sensing image Y ∈ Rm×n×r ,
parameter λ, γ and σ .
Process:
Step 1: Take a part of the image Y for testing, the image
size is 512 × 512, and the tensor with the size of 512 ×
512 × 6 is formed
Step 2: Transform the 512× 512×6 tensor into a 4× 4×
4× 4× 4× 4× 4× 4× 4× 6 tensor using Ket augments,
Step 3: Construct the tensor robust principal component
analysis model using TMESNN and the L1 Norm
Step 4: Initialize R = D,Vi,W,Ci, ε, η,maximum iter-
ation step K = 200, and τ = 1.1. The TRPCA model is
solved by the ADMM algorithm:

While
∥∥Rk+1

−Rk
∥∥
F

/∥∥Rk
∥∥
F > ε and k < K Do

UpdatingR and S by (22)
UpdatingW by (24)
Updating Vi by (38)
Updating Ci, ε and η by (19)

End Do
Step 5: Low-rank tensor R and sparse tensor S are used
to reconstruct target image Fi(i = 1, 2, 3, · · · , 7) and
background image Gi(i = 1, 2, 3, · · · , 7).
Step 6: Divide Fi(i = 1, 2, 3, · · · , 7) into N-layer discrete
wavelet decomposition (DWT decomposition), and use
the fusion rules to fuse the wavelet coefficients of each
layer to obtain one image Fc with low frequency and 3N
images Fj,kD (j = 1, 2, 3, · · · ,N , k = 1, 2, 3) with high
frequencies, Fc and Fj,kD to form a multiscale image F′.
Multiscale image F′ is subjected to inverse discrete wavelet
transform (IDWT) to obtain fused image F′

Step 7: Perform adaptive threshold segmentation on F′ to
obtain cirrus detection image C
Output: Cirrus detection image C ∈ Rm×n
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FIGURE 3. The overall flow chart of infrared cirrus detection method based on TMESNN.

The Landsat-8 data is used in the experiment in this
article, and its satellite is a successor to the U.S. Landsat
series [69]. Landsat-8 was launched on February 11, 2013,
and is equipped with a thermal infrared sensor (TIRS) and the
Operational Land Imager (OLI). The nine sensor bands of the
OLI can cover the wavelength range from infrared to visible
light. The TIRS includes 2 separate thermal infrared bands.
The satellite captures data in 11 mutually registered spectral
bands, which can be regarded as a tensor data composed of
height, width and spectrum. Because the attributes of similar
bands are basically coincident, six bands related to cloud
attributes are selected.

FIGURE 3 visually describes the overall process of the
infrared cirrus detection algorithm based on TMESNN. For
this flowchart, the specific text description is also given:

1) Tensor Construction. Given a set of Landsat-8 data,
using its 6 band images: Band 4 (the band range is
0.630–0.680µm), Band 5 (the band range is 0.845–
0.885µm), Band 6 (the band range is 1.560–1.660µm),
Band 7 (the band range is 2.100–2.300µm), Band 9
(the band range is 1.360–1.390µm), Band 10 (the band
range is 10.60 -11.19µm). Take a part of the image for
testing, the image size is 512 × 512, and a tensor with
the size of 512 × 512 × 6 is formed.

2) Separation of target and background. Using Ket aug-
ments, the 512 × 512 ×6 tensor is transformed into a
4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 6 tensor. The
input tensors are decomposed into low-rank tensors and
sparse tensors by algorithm 2.

3) Image reconstruction and band fusion. Low-rank tensor
and sparse tensor are used to reconstruct the target
image and the background image. After that, theMallet
wavelet transform algorithm is used to fuse the target

images of 6 bands, the wavelet basis function is the
Morlet wavelet. Finally, the cirrus image is obtained by
adaptive threshold segmentation.

IV. EXPERIMENT AND RESULTS
Nine groups of cirrus infrared images were tested in this
article. The test data was fromLandsat8 data with a resolution
of 30 m. Each group of data includes 6 bands, and the specific
meaning of each band is given in section 3. The original
image was too large (7,621 × 7,751), and not every area
had clouds, so a part of the image was taken for testing,
the image size is 512× 512, and 1.360–1.390µmband image
to show the cirrus distribution image. In FIGURE 4, (a) is
from 37.82◦ ∼ 39.91◦ degrees east longitude and 105.65◦ ∼
108.32◦ degrees south latitude. The shape of the cirrus is
point-shaped and sparsely distributed throughout the image.
(b) is from 46.92◦ ∼ 48.73◦ degrees east longitude and
78.15◦ ∼ 81.33◦ degrees south latitude, the cirrus is densely
distributed in clusters, and the other areas are somewhat
sparsely distributed. (c) is from 95.42◦ ∼ 98.63◦ degrees
east longitude and 31.72◦ ∼ 33.76◦ degrees south latitude,
the cirrus is distributed in clusters in the middle of the image.
(d) is from 108.22◦ ∼ 111.63◦ degrees east longitude and
61.78◦ ∼ 64.13◦ degrees north latitude, there is only one
cirrus and it is weak. (e) is from 95.15◦ ∼ 98.42◦ degrees
east longitude and 72.09◦ ∼ 74.56◦ degrees north latitude,
and the clustered cirrus is densely distributed. (f) is from
71.28◦ ∼ 74.67◦ degrees west longitude and 54.29◦ ∼
56.36◦ degrees north latitude, and the cirrus is flocculent and
densely distributed in the upper part of the water body. (g) is
from 15.56◦ ∼ 17.67◦ degrees west longitude and 44.96◦ ∼
47.35◦ degrees north latitude, and the cirrus clusters densely
throughout the image. (h) is from 147.43◦ ∼ 149.87◦ degrees
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FIGURE 4. Images of cirrus in nine regions. (a)-(i) in the figure denote cirrus images of different regions and
shapes.

FIGURE 5. Schematic diagram of the actual image and test image:
(a) groundtruth image, (b) prediction image.

east longitude and 61.79◦ ∼ 63.45◦ degrees north latitude,
and the cirrus is sparsely distributed in the whole image in
the shape of dots. (i) is from 37.41◦ ∼ 39.63◦ degrees west
longitude and 56.85◦ ∼ 58.90◦ degrees south latitude, the
cirrus varies in size and is densely distributed throughout the
image.

In this article, the cirrus detection method based on
TMESNN is compared with other classical optimization
methods, and its detection performance is evaluated quali-
tatively and quantitatively from several aspects. The experi-
mental environment is an Intel Core i7-8550u 1.80 GHzCPU,
Windows 10 OS with 8 GB memory, and MATLAB R2019a.

A. EVALUATION METRICS
During the detection, there are 4 cases: ¬ True Positive (TP),
which predicts the target as the target,­ False Negative (FN),
which detects the pixels in the background as the target,
® True Negative (TN) means predicting the background as
the background, ¯ False Positive (FP) means predicting the
target as the background. Since we are performing a super-
vised evaluation, we need to manually label the real cirrus
mask image, which is shown in FIGURE 5(a). FIGURE 5(b)
shows detected images. From these two figures, TP, FP,
FN and TN are obtained.

The ROC curve is used to describe sensitivity. To obtain the
ROC curve, we need to fit the relationship curve between
the true positive rate (TPR) and false positive rate (FRR).
The abscissa is the FPR and the ordinate is the TPR. The
definitions of FPR and TPR are the following equations:

TPR =
TP

TP+ FN
(34)

FPR =
FP

TN + FP
(35)
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FIGURE 6. ROC curves of different λ values under nine scenes.

Generally, the larger the area under the curve (AUC) is, the
better the method’s detection effect represented by the ROC
curve.

The PR curve is used to describe the performance of
classification/retrieval. Its abscissa is recall and the ordinate
is precision. The definitions of precision and recall are the
following equations:

precision =
TP

TP+ FP
(36)

recall =
TP

TP+ FN
(37)

There may be a conflict between accuracy and recall, so a
combination of the two is needed. The F-measure is the
accuracy’s weighted harmonic average:

F-Measure =

(
1+ α2

)
recall × precision

α2 (recall + precision)
(38)

where α2 is usually taken as 0.3, which will increase the
weight of accuracy and that accuracy is more important than
the recall rate.

The meaning of intersection-over-union (IOU) is to con-
duct threshold segmentation of the predicted image and cal-
culate the ratio of intersection and union between it and the
groundtruth image. The specific formula is as follows:

IOU =
predicted ∩ groundtruth
predicted ∪ groundtruth

(39)

B. PARAMETER ANALYSIS
For the proposed model, several important parameters are
taken as fixed values, for example, the iteration termination
condition is set to

∥∥Rk+1 − Rk∥∥F/∥∥Rk∥∥F ≤ 10−4 and the

weight is αi =
δi∑l−1
i=1 δi

, δi = min
(∏i

k=1 nk ,
∏3

k=i+1 nk ,
)
.

However, some parameters, such as λ, γ , σ and βi, usually
affect the robustness of different scenarios. We use the ROC
curve to qualitatively evaluate the local optimal values set by
the parameters.
λ is a regularization parameter that can balance the pro-

portional weight of sparse terms and low-rank terms, which
is generally taken as λ ∈ [0.01, 0.1], so we draw the
ROC curve with λ = [0.02, 0.04, 0.06, 0.08, 0.1], as shown
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FIGURE 7. ROC curves of different γ values under nine scenes.

in FIGURE 6, and conclude that λ = 0.02 is the local optimal
value.
γ is the penalty factor and is generally set as γ ∈

[0.001, 0.003], so we draw the ROC curve with γ =

[0.001, 0.002, 0.003], as shown in FIGURE 7, and conclude
that γ = 0.001 is the local optimal value.
The value range of σ is usually set as [0.001, 0.01].

Similar to the above steps of γ , we explore its five values
[0.001, 0.003, 0.005, 0.007, 0.009]. In FIGURE 8, we can
conclude that σ = 0.001 is the local optimal value by
comparing the ROC curves.
βi is the penalty factor, which satisfies βi = f αi and is

generally f ∈ {0.1, 0.5, 1.1, 1.5}. Therefore, we draw the
ROC curve with values in the set, as shown in FIGURE 9,
and conclude that f = 1.1 is the local optimal value.

C. COMPARISON OF METHODS
The 512 × 512×6 tensor is transformed into the 4 × 4 ×
4 × 4 × 4 × 4 × 4 × 4 × 4 × 6 tensor, l = 10. The local
optimal solution of each parameter is obtained through the

above experiments, and the iteration termination condition
needs to be set as:

∥∥Rk+1 − Rk∥∥F/∥∥Rk∥∥F ≤ 10−4, the weight

is αi = δi/
∑3

i=1 δi, where δi = min
(∏i

k=1 nk ,
∏3

k=i+1 nk ,
)
,

(i = 1, 2, 3), regularization parameter λ = 0.02, penalty
factor γ = 0.001, σ = 0.001 and βi = 1.1αi. Then,
the TMESNN-based cirrus detection method is applied to the
test images of nine scenes.

In this article, the proposed method is compared with the
PCA, RPCA, SNN and TNN methods; these methods all
use wavelet transform and adaptive threshold segmentation.
As shown in Figure 10, (a) is the original image. (b) is
the cirrus detection image by the PCA method. (c) is the
cirrus detection image by the RPCA method. (d) is the cirrus
detection image by the SNNmethod. (e) is the cirrus detection
image by the TNNmethod. (f) is the cirrus detection image by
the proposed method. It is clear that the detection results by
the proposed method are visually better than those by PCA,
RPCA, SNN and TNN.

In this article, the ROC curve, PR curve, F-measure and
IOU are used to qualitatively and quantitatively evaluate the
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FIGURE 8. ROC curves of different σ values under nine scenes.

TABLE 1. AUC values of different ROC curves.

proposed methods with the PCA, RPCA, SNN and TNN
methods. As shown in FIGURE 11, the ROC curves of
TMESNN and the PCA, RPCA, SNN and TNNmethodswere
compared under nine scenarios. The figures in TABLE 1 are
theAUCvalues of the ROC curves in FIGURE 11. If the value
is closer to 1, the detection effect is better. The bold numbers
represent the maximum values in several methods.

FIGURE 12 is a PR curve comparing TMESNN with the
PCA, RPCA, SNN and TNN methods in nine scenarios.
TABLE 2 shows the area under the PR curve in FIGURE 12.

TABLE 4 show the F-measures and IOU values for several
methods respectively. These are the experimental results in
nine different test scenarios. For each of the experiments in
this article, to distinguish the maximum values in the table
from the other values, they are shown in bold.

D. WAVELET TRANSFORM EXPERIMENT
In this article, Mallat wavelet transform is used to supple-
ment information and remove clutter. To verify its effec-
tiveness, we compare the method without wavelet transform
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FIGURE 9. ROC curves of different f values under nine scenes.

TABLE 2. AUCpr values of different ROC curves.

with methods using different wavelet basis functions; these
functions include Haar, Mexihat and Morlet wavelets. Their
wavelet decomposition and reconstructionmethods are all the
Mallat wavelet transform.

As shown in Figure 13, (a) is the original image. (b) is
the cirrus detection image by the method without wavelet
transform. (c) is the cirrus detection image by the method
using the Haar wavelet basis function. (d) is the cirrus

detection image by the method using the Mexihat wavelet
basis function. (e) is the cirrus detection image by the
method using the Morlet basis function. It is clear that
the detection results by the method using the Morlet
basis function are visually better than those by the other
methods.

As shown in Figure 14, the ROC curves of the method
without wavelet transform and the methods using different
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FIGURE 10. The experimental results of PCA, RPCA, SNN, TNN and the proposed method in test images of nine scenes:
(a) is the original image, (b)-(f) are cirrus detection images by PCA, RPCA, SNN, TNN and the proposed method.

wavelet basis functions were compared under nine scenarios,
‘‘no’’ refers to ‘‘the method without wavelet transform’’,
‘‘haar’’, ‘‘Mexihat’’ and ‘‘Morlet’’ refer to methods using

haar, Mexihat and Morlet wavelet basis functions The fig-
ures in TABLE 5 are the AUC values of the ROC curves
in Figure 14. If the value is closer to 1, the detection effect
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FIGURE 11. ROC curve of TMESNN compared with PCA, RPCA, SNN and TNN in nine scenarios.

TABLE 3. F-Measures corresponding to different methods in 9 scenes.

is better. The bold numbers represent the maximum values in
several methods.

E. ALGORITHM COMPLEXITY ANALYSIS
Real-time performance is the basic requirement of cirrus
detection. However, it is difficult to reach a balance between
the algorithm efficiency and its excellent accuracy, recall
rate, IOU and F-measure. Traditional cirrus detection is often

based on physical models, whose assumptions and calcu-
lations are simple and fast, but the accuracy is not ideal.
A major drawback to optimization-based approaches is the
complexity of the algorithm. Therefore, this section discusses
the time complexity and computational time of different
algorithms. Assuming that the size of the original remote
sensing tensor data is N1 × N2 × N3, for TRPCA based on
TMESNN, the computational complexity of subproblem W
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FIGURE 12. PR curve of TMESNN compared with PCA, RPCA, SNN and TNN in nine scenarios.

TABLE 4. IOU corresponding to different methods in 9 scenes.

is O
(∏l

i=1 Ni
)
, the computational complexity of subprob-

lem (R, S) is O
(∏l

i=1 Ni
)
, and the computational complex-

ity of subproblem Ui is O
(∑l−1

i=1 min
(
p2i qi, piq

2
i

))
, where(

pi =
∏i

k=1 nk , qi =
∏l

k=i+1 nk
)
. The total computational

complexity is O
(∏l

i=1 Ni +
∑l−1

i=1 min
(
p2i qi, piq

2
i

))
.

Table 6 summarizes the algorithmic complexity of all the
methods tested in this article and lists their average calcula-
tion time in 9 scenes of data in nine scenarios. We can see that
the tensor-based optimization method takes longer than the
low-level optimizationmethod, but the TMESNN-based opti-
mization method takes the least time among the tensor-based
optimization methods.
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FIGURE 13. The experimental results of the method without wavelet transform and the methods
using different wavelet basis functions in the test images of nine scenes: (a) is the original image,
(b) are cirrus detection images by the method without wavelet transform, (c)-(e) are cirrus detection
images by methods using different wavelet basis functions.

Experimental results verify the performance of the
TMESNN-based TRPCA model. In FIGURE 11, the ROC
curve of the model is close to the upper left corner,

indicating that the detection performance is relatively good.
In FIGURE 12, comparedwith other algorithms, the PR curve
of the proposed algorithm is closer to the upper right corner,
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FIGURE 14. ROC curve of the method without wavelet transform and the methods using different wavelet basis functions in nine scenarios.

TABLE 5. AUC values of different ROC curves.

indicating a better detection effect. TABLE 1 and TABLE 2
show the AUC value and AUCpr value, respectively. The
AUC value and AUCpr value of the proposed model are
closer to 1, indicating that its detection effect is better, and
the algorithm has a higher recall rate and a lower false alarm
rate. TABLE 3 shows the F-measures of 9 scenarios. As seen
from the values that are bold, the F-measure of this algorithm
is higher than that of the other models.

TABLE 4 shows the IOU of 9 scenarios. The IOU value of
this model is within the range of 0.7 to 0.9, which is higher
than that of the other models and can directly indicate that the
detection effect of this model is better. In FIGURE 14, com-
pared with other methods, the ROC curve of the method using
Morlet wavelet is closer to the upper right corner, indicating
a better detection effect. In TABLE 5, the AUC value of the
method using Morlet wavelet is closer to 1, indicating that its
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TABLE 6. Complexity and computing time of various algorithms
(in seconds).

detection effect is better. In this article TABLE 6 summarizes
the algorithm complexity tests of different methods, and lists
their average computational times in nine scenarios in the
9 groups of data; we can see that the optimization method
based on tensor takes longer than the low-level optimization
method, and the optimization method based on TMESNN
based on tensor consumes the least time. In summary, the cir-
rus detectionmethod virtual alarm source based on TMESNN
has good infrared cirrus detection performance.

V. CONCLUSION
Aiming at the insufficient performance of cirrus detection
methods based on physical attributes and its loss of multi-
spectral data internal structural information, and the methods
based on artificial intelligence relying on massive data, etc.,
an infrared image cirrus detection method based on tensor
multimode expansion sum nuclear norm is proposed. This
method makes full use of small sample data, which uses
visual features and sparse and low-rank decomposition to
detect cirrus.

This method regards multiple bands of remote sensing data
as tensors, and combines the tensor multimode expansion
sum nuclear norm and l1 norm to construct a tensor decom-
position model, transforming the traditional cirrus detection
task into a TRPCA problem, and TMESNN can represent
the tensor rank better compared with existing tensor nuclear
norms. This problem is solved by an efficient algorithm based
on ADMM combined with Ket augmentation, which greatly
reduces the algorithm complexity and calculation time and is
faster than similar existing tensor-based methods. To remove
clutter and supplementary information and avoid the prob-
lem that a single band cannot detect complete cirrus clouds,
Mallat wavelet transform is used to fuse the sparse compo-
nents of multiple bands. Finally, threshold detection is used to
obtain cirrus cloud detection results. After many experiments,
the ROC, PR, AUC, IOU value, F-Measures and other quality
indicators show that this method has higher robustness in
different environments than traditional optimization-based
methods, and it is more robust with good detection
performance and accuracy.

Although some progress has been made, there are still
some shortcomings that need to be considered. For example,
compared with optimization methods that do not contain
tensors, this method has considerable room for improvement
in real-time, so we need to explore more efficient methods.
In addition, this method is suitable for small sample data
and cannot use more advanced and efficient deep learning
methods, so it is necessary to further expand the dataset.
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