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ABSTRACT The intelligent patrol car with environmental sensing and autonomous navigation is a special
robot, which is mostly used for equipment defect detection in industrial areas such as the power distribution
room or data center room. A path planning algorithm for the navigation system of intelligent patrol car
is proposed to ensure efficient and secure navigation in the complex indoor environment, and its effect
is verified by simulation and experiment. First, a patrol car platform integrated with several intelligent
devices is built to achieve global localization, mapping and path planning. Then a new co-optimization
on multi-objective Cauchy mutation cat swarm optimization (MOCMCSO) and artificial potential field
method (APFM) is proposed to solve the multi-objective optimization problem on shortest global path length
and minimum total turning-angle variation. The optimal path is written into the navigation module to drive
the patrol car to move and navigate. The simulations are carried out to confirm that the method can achieve
a balance between the shortest path and good path smoothness, which has less optimization time and lower
fitness value compared with multi-objective cat swarm optimization (MOCSO) and multi-objective particle
swarm optimization (MOPSO), and is more suitable for global path planning in indoor environment. Finally,
the experiments have been carried out in the data center equipment room to verify the effectiveness and
superiority over the path planning algorithm on MOCMCSO.

INDEX TERMS Intelligent patrol car, path planning, simultaneous localization and mapping, Cauchy
mutation cat swarm algorithm, multi-objective optimization.

I. INTRODUCTION
The intelligent patrol car for industrial applications is a spe-

industrial internet, advanced manufacturing and unmanned
detection [2], [3]. The high intelligent autonomous robots,

cial highly intelligent autonomous robot, which can be used
for automatic inspection for high-voltage power distribution
rooms, large data center equipment rooms and manufacturing
workshops, and so on [1]. In recent years, the rapid devel-
opment of artificial intelligence technology has driven the
technological progress of autonomous robots in the fields of
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such as patrol cars, service robots and rescue robots, have
been widely applied to terrain detection, disaster relief and
factory operations. These robots have brought huge benefits
for enterprises and the industry [4].

The environmental perception, behavior control, naviga-
tion planning and dynamic decision are the necessary capa-
bilities of intelligent patrol cars, to realize movement safely
in indoor environment, on the one hand, the intelligent patrol
car needs to sense the environmental information and its own
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posture through sensors [5], [6], on the other hand, it needs
to process the perceived information and make the right
decision for behavior control and finally move without col-
lision towards the target point, which is path planning tech-
nology [7]. Recently, domestic and overseas scholars have
taken up large-scale research on path planning algorithm, and
achieved some excellent results [8], [9].

Due to the large number of electrical and communica-
tion equipment in industrial scenes, obstacle avoidance algo-
rithms are required to have high real-time, robustness, and
stability [10]. Intelligent patrol cars need to avoid colli-
sions with high-risk and expensive equipment in large spaces
quickly in order to reach the work area. The global path
must be efficient, so path planning methods for complex
indoor environments are key research direction. At present,
the traditional algorithms of intelligent robot path planning
include simulated annealing algorithm, artificial potential
field method (APFM) and fuzzy logic algorithm, and so
on [11], [12], the heuristic algorithm includes A*algorithm,
Dijkstra algorithm and Floyd algorithm [13]-[15], graphic
algorithm includes free-space algorithm, grid algorithm,
visual graph algorithm and topology algorithm, and so on
[16], intelligent bionic algorithm includes ant colony algo-
rithm, genetic algorithm, particle swarm optimization algo-
rithm, and so on [17]-[20].

A novel path planning method for intelligent patrol car
is presented in this paper. Firstly, an intelligent patrol
car platform based on the robot operating system (ROS)
is built to realize the global localization, map-building
and path planning. The system environment of intelligent
patrol car platform also includes OpenCV [21] and Ten-
sorFlow [22] installed. Then, this paper focuses on the
efficiency improvement of global path planning, a collab-
orative optimization method on MOCMCSO and APFM is
proposed to find the global optimal path in indoor envi-
ronment. Finally, the simulation test and actual machine
experiment are executed to verify the superiority of the
proposed algorithm compared with several other artificial
intelligence methods.

Il. GLOBAL PATH PLANNING

The intelligent patrol car obtains its own position, posture
and environmental information through various sensors, and
transforms the detected information into the information that
can be analyzed by artificial intelligence models. The optimal
global path is calculated by relevant algorithms.

A. WORKING PRINCIPLE

In autonomous navigation of mobile robots, global path plan-
ning is the process of planning a collision-free optimal path
from a starting point to a target point based on known infor-
mation about the operating environment [23]. The global path
is composed of line segments between the sub target point and
path discontinuity point. The patrol car will move along these
lines to reach target during navigation stage. In addition to the
shortest total length of the path, the criteria for judging the
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optimal path also includes indicators such as path smoothness
and safety [18]. In particular, the operating space in the indoor
environment is very limited. The optimal path must consider
reducing the adjacent points of the path with large rotation
angle. Best smoothness should also be considered when the
path length is shortest.

In this paper, the artificial potential field method and two-
dimensional grid method are combined for the environment
modeling. The grid method is a widely used environment
modeling method, which decomposes the running space of
the patrol car into a series of grid cells with binary infor-
mation. The representation method of two-dimensional grid
for environment modeling is shown in Fig. 1(a). Once the
shape, size and location information of obstacles is identified,
the grid with obstacles is set as obstacle grid, that is, gray, and
the grid without obstacles is set as free grid, that is, white.
Among them, the expanded grid combination of the obstacles
is taken as the obstacle area, and the expanded radius is set on
the chassis radius of intelligent patrol car, so that the patrol
car can be moved as a particle, and the movement path is a
series of connected free grids. The rectangular coordinates of
grid are expressed as (x,y), and each grid is marked with the
serial number T from 0, T = x+10y. During the movement
process, the combined potential field generated by obstacles
and targets for the patrol car is calculated as the potential field
strength of the current grid T'. The patrol car divides the whole
map into several sub maps and constantly searches for the grid
with the lowest potential field strength in sub maps. The line
between these grids forms an accessible path, and the grid
with the highest potential field strength in a large range is an
obstacle.

B. ARTIFICIAL POTENTIAL FIELD METHOD

Artificial potential field method is a virtual force method
for real-time obstacle avoidance planning for mobile intel-
ligent agents. It regards both the target and obstacles that
can produce the acting force as the force source. The tar-
get point creates attraction to the intelligent agent, on the
contrary, the obstacles produce repulsive force, and thus
the agent operation environment can be abstracted as an
artificial potential field. Under the action of the resultant
force, a smooth path far away from the obstacles is obtained
by searching the direction of potential field falling. In this
paper, the gradient potential field method is adopted to
find the direction of potential function descent, that is,
the negative gradient of potential field is used to represent
the virtual force of agent in the environment, as shown
in Fig. 1(b).

The location coordinate of the intelligent patrol car is
expressed as [x,y], and that of the obstacle and target are
[xi,yi] and [xg,y,] respectively. i is the obstacle number, when
multiple obstacles appear, their coordinates are expressed as
[x1,y1]s [x2,¥21, - . ., [x;,yi]. The gravity of patrol car is directly
proportional to the distance to the target, and the repulsive
force is inversely proportional to the distance to the obstacle.
The g represents the repulsive force parameter of the obstacle,
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FIGURE 1. Experimental environment modeling.

and g represents the attraction parameter of the target point.
The function model of obstacle repulsion field is as follows:

11 1)
®(q) = T«;‘%> p=r M
0 P> po
where p is the distance between patrol car and obstacle, pp is
the action distance of the obstacle that is a representation of
range of obstacle repulsive force, the patrol car is not affected
by the repulsive force of the obstacle when p > po, 1 is the
gain coefficient of the repulsive force.
The negative gradient of repulsion field is set as repulsive
force, and its function model is:

n (1 1 0d 0P
Flg=-Vo(@==5\-———) |7 = 2
p=\p po/[0x 3y
The repulsive force is:

17(1 1)

—(==——) p<m

P2 \p o 3)
0 P > po

According to (3), the repulsive force of the patrol car is
inversely proportional to the distance from the obstacle.

IF ()l =
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The attraction potential field of the target to the patrol car
is as follows:

1
(g) = 3¢ [ =30 + 0= 307 o

where ¢ is the attractive force gain coefficient.
The negative gradient of attraction potential field is set as
attraction force, and the function model is:

F(g) = =V®(g) = =& [(x = xg), (v — )] &)

The attraction force is:

IF(9)] = £/ (x —xg)? + (5 — y? ©)

F(q;) represents the repulsive force produced by the ith
obstacle, as shown in the Fig. 1(b), F(q1) is the repulsive force
of obstacle 1, and F'(g3) is the repulsive force of obstacle 2.

The artificial potential field of a certain point in the map is
the sum of the attraction potential field on the target point and
the repulsion potential field on the obstacle. The expression
is as follows:

O = d(g) + P(g) @)

The resultant force of the patrol car at a point in the map
consists of the resultant force of attraction for target point and
repulsion for obstacle, the expression is as follows:

F=-V®=F(g)+F(q) ®)

If the repulsive force generated by obstacle and the attrac-
tion generated by the target reach a balance at a certain place,
especially near the target point, it is easy to cause the problem
of unreachable target. In this paper, the method on changing
the repulsive force in potential field is adopted to change
the repulsion potential field function. The expression is as
follows:

1 1 1 2 _ —xg P +0-vg)
nl= = =) .1 = 72
() = 2%p m) ’ re

0 P = po

where R is the radius of chassis, the closer the patrol car
is to the target, the less repulsion it receives. Finally, the
repulsion returns to zero at the target point, thus, the problem
that the target near the obstacle is cannot be reachable can
be solved.

C. MULTI-OBJECTIVE CAT SWARM OPTIMIZATION
ALGORITHM

In the multi-objective optimization problem, each objective
function represents one type of optimization strategy for a
specific dimension, which may have cross and restriction
relationship with each other, therefore, there is usually not an
optimal solution for all objectives, but a set of Pareto optimal
solutions [24]. The curve containing all the Pareto-optimal
solutions is defined as Pareto-optimal front, which is a ball of
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radius. According to the Pareto advantage ranking method,
Pareto optimal solution is obtained to archive in an external
container, and the optimal solution set can be determined
by comparing the external optimal solution with the current
solution [25].

Classical cat swarm optimization (CSO) algorithm is
a global optimization method which imitates the natural
behavior of cats, and has shown the advantages in solving
accuracy and convergence speed compared with other intel-
ligent algorithms. The multi-objective cat swarm optimiza-
tion (MOCSO) algorithm is a multi-objective version of the
classical CSO algorithm. As a new evolutionary computing
method, the MOCSO algorithm has some unique advan-
tages: simple and easy to implement, convenient parameter
adjustment, and high optimization accuracy. At present, it has
been widely used in function optimization, neural network
training, fuzzy system control and other intelligent multi-
objective problem solving [26]-[30].

Cats are focused on hunting and catching moving prey,
even during breaks, moving slowly to seek potential hunting
opportunities. This behavior is called “‘seeking mode” . After
targeting prey, the cat quickly increases its speed and uses a
great deal of energy to capture the moving prey. This behavior
is called “tracing mode’. The seeking mode improves the
global search ability, while the tracking mode improves the
search efficiency and precision. According to the mixture
ratio (MR), the cats are assigned patterns to determine which
cats are in seeking mode and which cats are in tracking
mode [31].

The significant parameters of MOCMCSO include: PMO
(Probability of Mutation Operation), CDC (Counts of Dimen-
sions to Change), SMP (Seeking Memory Pool), and SRD
(Seeking Range of the Selected Dimension).

The solution space is i-dimensional. In the ¢-th iteration,
x*k.i(t) is the position of kth cat in ith dimension, v*y ;(f)
is velocity vector. The global optimal position is x*g ;(¢).
According to MR, the cats are randomly assigned to the ranks
of seeking mode and tracing mode.

The steps of MOCSO algorithm can be detailed as follows:

1) SEEKING MODE

Step 1. Initialize the parameters of MOCMCSO, and generate
the K-copy backup information of the K cat based on SMP.
Initialize the position and velocity of cats in i-dimensional
space.

Step 2. Select one of the K copies of the cat, maintain the
current position, and mutate the rest of the copy (K — 1)
under the influence of mutation operator. The dimension of
each of the K — 1 copies is randomly mutated by adding or
subtracting SRD to the parent individual. x*; ;(¢) represent
the initial population.

Step 3. Calculate the fitness value of the K-copy backup of
the k-th cat.

Step 4. The position of the optimal cat is calculated based
on the fitness value of each cat, and is stored in an external
container as Pareto optimal solution.
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Step 5. Based on SMP, the position of Pareto optimal
solution is compared with that of current cat, and the solu-
tion with better fitness value is used to replace the current
position.

2) TRACING MODE
In tracing mode, the motion direction of each cat at the next
moment depends on the speed of the cat and the optimal
position in cats. The algorithm flow is:

Step 1. The dimension in solution space is i. The speed
vector of the k-th cat in the (¢ + 1)-th iteration v,i" J(t+1)can
be expressed as:

Vi it + 1) = wxvi () + cxr ok (g (1) — xg (1) (10)

where w is the inertia weight value, ¢ is acceleration con-
stant. r is a random number between [0,1], it adopts the
uniform distribution and the probability density function is
same as (12). In the external container, the initial global
optimal position x*, ;(¢) is assigned by the optimal solution
of artificial potential field method.

Step 2. A cat moves quickly and tracks its prey. After each
movement, the new position information of the k-th cat is
calculated as follows:

X+ 1) = x5, +vit+1) (11)

Step 3. If the new position of the k-th cat in any dimension
exceeds the search range, the speed vector of the cat is set as
the boundary value and the reverse search is performed.

Step 4. Evaluate the fitness value of each cat in the
population.

Step 5. The final Pareto optimal solution set can be deter-
mined based on the value of fitness function, and the corre-
sponding value is output.

D. MULTI-OBJECTIVE CAUCHY MUTATION CAT SWARM
OPTIMIZATION ALGORITHM
The mechanism on updating population position does not
fully consider the information of other optimal cats, so the
classical MOCSO is unable to ensure the population diversity
and may gradually fall into the local optimum [32]. This paper
introduces a multi-objective Cauchy mutation cat swarm
algorithm (MOCMCSO), which introduces Cauchy mutation
operators to improve the performance of search patterns [33],
expand the range of swarm search, and continuously improve
population information during the seeking process to avoid
premature convergence and localization optimal solution,
fundamentally improve population diversity.

Cats are distributed to seeking mode and tracing mode
according to a linear mixture ratio (MRp).

t
MRy, = MRpax — (MRmax - MRmin) * T (12)

max
where the MRy,x and MRy, are the maximum value and
minimum value of MR, ¢t is the current number of iterations
and IT,,,, is the maximum number of iterations.
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The steps of MOCMCSO algorithm can be detailed as:

1) SEEKING MODE
Step 1. Initialize the parameters of MOCMCSO, and generate
the K-copy backup information of the K cat based on SMP.
Step 2. One among K copies maintains the present posi-
tion and the rest (K — 1) copies carry out the mutation
process under the influence of Cauchy mutation operator.
Cauchy mutation can generate a large random number inter-
val, which improves the search range of the cats, thus avoid-
ing falling into the local optimal solution and improving the
global convergence ability. x* ;(f) represent the initial popu-
lation, the new individuals produced by Cauchy mutation are
x*’k,,-(t), the expression is:

X k,i(t) = x g i(t) + o % C(0, 1) 13)

where C(0, 1) is a random number between 0 and 1, and
adopts the uniform distribution, its probability density func-
tion is:

1
ma<x<b (14)
0 else

fa&* =

The mutation value in the current dimension is set as the
standard deviation o * C(0, 1).

Step 3. Calculate the fitness value of the K-copies.

Step 4. The position information of the optimal cat is cal-
culated and stored in an external container as Pareto optimal
solution.

Step 5. Based on SMP, the best copy among K copies from
Pareto optimal solution is chosen and the position of kth cat
is replaced by the position of the best copy.

2) TRACING MODE

The tracing mode process of the MOCMCSO is remains
unchanged as the tracing mode process of classical MOCSO.
If the termination condition of the MOCMCSO is not
reached, the optimization process will continue and the global
optimal solution can be output finally.

3) SIMULATION TEST ON MOCMCSO

The Cauchy mutation operator is introduced in the seeking
process to enhance the global search ability of the MOCM-
CSO algorithm. Simulation study is carried out in MATLAB
to demonstrate the optimization capability of MOCMCSO for
complex multi-objective optimization problem. The MOCSO
and MOPSO is introduced for comparison with MOCMCSO
on standard test functions as in Table 1. The initialization
parameters for MOCMCSO and MOCSO are as follows:
SMP = 2.8, SRD = 0.15, CDC =75%, MR = 0.65, C = 2,
w = 0.5, the archive size = 100, r is in [0,1], the maximum
iteration number is sett as 500. The initialization parameters
for MOPSO are: the archive size = 100, the inertia weight =
0.25, the acceleration constant = 3.5, the random number
is in [0,1]. These parameters are the same in the three test
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TABLE 1. Test function expressions.

Function Expression
1
minfl(x, y): (xz +y2)§,
Tgst .
MeIOn i £ (v, ) = (x— 0.5) + (y=0.5F Jr, x € [-5,10]
min f, = x,,
2
T n
functon2 | min, = 1—[’(—‘] g=le S =30, efo]
g n-13
—xife <,
min /. (x)— —2+x,if x<3,
Test J1 - Iy
function 3 4-xif3(x<4,
—4+x,ifx)4,

min f, (x)=(x-5),xe [75,10]

TABLE 2. Comparison of MOCMCSO with MOCSO, MOPSO on all the three
test functions.

Parameter MOCMCSO MOCSO MOPSO
Test function 1
Min f;(x) 0.8750 0.9170 0.9068
Min f5(x) 0.0013 0.0029 0.0037
Computation time (s) 0.085 0.091 0.088
Test function 2
Min f;(x) 0.0000e+241 0.0000e+256 0.0000e+252
Min f5(x) -1.5804¢+248 -7.7113e+250 -2.6928e+250
Computation time (s) 2.294 2.388 2.125
Test function 3
Min f1(x) 1.472 0.915 1.653
Min_f5(x) 1.960 4.544 3.962
Computation time (s) 0.023 0.029 0.026

functions, and the results obtained from 20 independent sim-
ulations based on the MOCMCSO, MOCSO and MOPSO
are recorded and the best average result is shown in Table 2.
All of the test function 1~3 contain two objective functions
J1(x)f2(x), to solve the minimum. The position of the cats is
initialized firstly, and then calculated by the two objective
functions to obtain Pareto-optimal solutions.

All of MOCMCSO, MOCSO and MOPSO can achieve
global optimization, compared with the MOCSO and
MOPSO, the MOCMCSO performs better with respect to
minimum solution on fi(x) f>(x), and the computation time
is relatively shorter. Through the Cauchy mutation opera-
tor is used to mutate the position of individuals to avoid
premature convergence, which increases the diversity of
the cats, and achieves excellent results in the classical test
function, so MOCMCSO reflects the advantages for global
convergence, and is very suitable for solving complex multi-
objective problems.

E. CO-OPTIMIZATION OF APFM AND MOCMCSO
An APFM and MOCMCSO co-optimization algorithm is
proposed in this section. The initial path is generated by
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APFM as the initial optimal position in cats, and then the
MOCMCSO algorithm is used to iteratively find the optimal
path, which can reduce the convergence time and make the
cat swarm quickly approach the global optimal solution. The
path planned by APFM and MOCMCSO co-optimization
algorithm is expressed as {No,N1,N2,N3,...,Ng}, No and N,
are the starting point and the target point in the path. The line
segment connecting Ny with N, as the X’ axis of the new coor-
dinate axis, a new coordinate system X OY’ is established
with Ny as the origin, and the conversion equation between
the new coordinate and the original coordinate is as follows:

/ .
- ) fe) e
Yy sing cosg y YNy
where ¢ is the angle between the new coordinate axis X’
and the original coordinate axis X, the X axis in the new
coordinate is MoM,, divided into i + 1 equal parts with the
vertical line, and the target point M, is also expressed as M 1,
the crossover point of the vertical line and the original coordi-
nate represents the optimal path [Mo,M,M>,M3,...,M,], the
length is:

1
Lip = Y \J0xgy = %y P+ Oy =g P (16)
j=0

The new vertical coordinate system and path points is
shown in Fig. 2, The sum of the horizontal axis distance is
a constant. The optimal distance in global path planning is to
find the optimal solution set in the space of ij(j =1,2,...,0),
the path sequence [My,M1,M>,M3,...,M;] is set as the initial
optimal position in cats, each path from M to M, is repre-
sented as an vector in i-dimension P, = [Xu1 Xn2, Xn3... Xnil-
After the conversion from original coordinates to new coor-
dinates, the goal is to find the optimal cat with the minimum

distance sum between two adjacent points on the path.

X

0

FIGURE 2. Schematic diagram of new vertical coordinate system and path
points.

The scene in this paper is the indoor data center equipment
room, the smoothness and safety of the path must be taken
into account. The patrol car should be as far away from the
obstacles as possible, and the angle between the two adjacent
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path segments should be as large as possible. The angle of
direction change required by the patrol car is smaller, and
the smoothness of path is higher. The angle between the two
adjacent path segments is § = |8 — «|, « is the angle of the
previous path segment, § is the angle of the last path segment,
the total turning-angle variation in the global environment can
be obtained as follows:

My — Y Yo, — Y

Q= Z arctan —/H (17)

— arctan —~
iy ;g

Therefore, the shortest global path length and the minimum
total turning-angle variation are set as two objective functions
for path planning algorithm on MOCMCSO. The evaluation
for Pareto optimal solution needs to avoid over close to the
optimal solution of any single objective function and reflect
the constraints and restrictive relation between the two objec-
tive functions. The multi-objective function can be expressed
as:

i
: _ _ r 2 N 2
Minfi () = Ly = Y \[(xgy, = ig 2 + Oy, = Vi)
=0
/
i~V v,
Minf> (x) = Q _Z arctan#—arctan !
j=1 Xty ~ Xy, =gy,

(18)

)’MJ .

The algorithm process of APFM and MOCMCSO co-
optimization is shown in Fig. 3, such as the following:

Step 1. The population is initialized, k is the number of
the cats, n is the population number. Each individual in cats
is represented as a set of vector representing the path. P, =
earts Yenras y;{’Mj,..., Veis k= 1.2,...m), G = 1,
2,..., 1). Initialize the position ngj and speed v,?Mj of cats on
each dimension.

Step 2. The global optimal path [Mo,M,M2,M3,...,M,] is
obtained by APFM as the initial value of the optimal solution
for the subsequent MOCMCSO algorithm, the fitness value
can be calculated based on (18) and stored in an external
container as Pareto optimal solution.

Step 3. In the seeking mode of MOCMCSO, the K — 1 copy
of the ith cat is updated with the Cauchy mutation operator
as (13), ¢ is the iteration number. The Pareto optimal solution
is compared with the updated cat’s position, and the solution
with better fitness value is regarded as the updated global
optimal position.

In the tracking mode of MOCMCSO, The fitness value
of the optimal solution gi pess(¢) in the current ¢-th iteration
of the k-th cat is calculated and compared with the fitness
value of the optimal solution gi pes: (t-1) stored in the external
container. The gi pes () With better fitness value are set as
the global optimal solution, otherwise the iteration will con-
tinue. Finally, the Pareto optimal solution set g pes: (f) can be
obtained in the 7-th iteration through the fitness evaluation,
8k,best(t) = [i,m1®)s Yim2(®), ooy Yimi(t)s -y Yemi(@)],
k=12,..,nj=12,..,0).
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FIGURE 3. APFM and MOCMCSO co-optimization algorithm process.

Step 4. Check the termination condition, whether the max-
imum number of iterations is reached, if so, the algorithm
process ends.

Step 5. The Pareto optimal solution set is output as global
path, otherwise, repeat steps 2 to 4, and the algorithm contin-
ues to iterate.

F. FITNESS FUNCTION SELECTION
The output of MOCMCSO is a set of Pareto optimal solu-
tions, any point on the Pareto curve represents a path
scheme on multi-objective optimization for global path
length and total turning-angle variation, but only one set
of value can be input into the navigation module of intel-
ligent patrol car. Therefore, the value at the midpoint of
Pareto curve is selected as the optimal path based on the
actual situation. At this time, the weighting ratio about the
global path length and the total turning-angle variation is
1:1, representing that the importance on the shortest path
length is the same as that of the minimum turning-angle
variation.

The two objective functions are (18), respectively. Since
the global path length and the total turning-angle variation
are not in the same order of magnitude, they are normalized
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with the expressions as follows:

Lk
nor Ly = M (19)

n
> Ly
k=1

Qk
nor_ = — (20)
> Qk
k=1
Jror(x) = 0.5%(nor_Lyy) + 0.5%(nor _Q) @3}

By normalizing the two objective functions and setting
them to equal weights, they can be transformed into a single
objective function f,,,(x), which is the sum of the normalized
values of the two objective functions with equal weight. Thus,
the comprehensive evaluation on global optimal solution by
two objective functions is solved. The global path with 50%
of the shortest path length and 50% of the minimum total
turning-angle variation is selected as global optimal value
and transferred to the ROS navigation module of intelligent
patrol car.

IIl. SIMULATION RESEARCH

In this section, the simulation test on the APFM and MOCM-
CSO co-optimization algorithm is carried out, and then the
MOCSO and MOPSO algorithm are introduced with APFM
to verify the performance of MOCMCSO. In the simulation,
the two-dimensional grid environment is built on the basis
of actual data center equipment room, the path planning
and navigation are carried out by the intelligent patrol car
to determine the effect of the APFM and MOCMCSO co-
optimization algorithm in terms of shortest path length and
optimum path smoothness.

The experiment is conducted by Matlab on PC, and the
computer configuration is Core i7 CPU (3.8 GHz), 16 GB
RAM, and Winl0 system. The area of two-dimensional grid
map is set as 100*100, the starting point is (0,0), and the
target point is (99,99), so as to realize the simulation for the
actual environment. The path planning algorithm is affected
by the path points i, too many path points will lead to the
global path length redundancy and larger total turning-angle
variation, too few path points will lead to the collision risk.
Therefore, a reasonable value selection on i in the experiment
is necessary.

A. SOFTWARE SYSTEM

The ROS integrates a variety of practical tools, libraries and
protocols, which greatly reduces the difficulty of complex
task creation and movement control based on robot plat-
form, and can support developers to quickly implement task
creation, programming and control for robot applications,
so the ROS is selected to build the software system of
intelligent patrol car in this paper. The main functions of
ROS include that abstract description for hardware device
in robot, management for bottom-level drivers, execution
of common functions, messages transmission among Sys-
tem function modules, published applications management
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TABLE 3. MOCMCSO algorithm initialization parameter.

Parameters Value
Initial cats 50

i (cats dimension) 32
SMP 3
SRD 0.05
cDC 80%
MR o 0.95
MR, 0.15
w 0.1-0.9
c 2

r [0,1]
€ 0.01
C [0,1]
1T e 100

and visualization tools, and so on. The software system of
intelligent patrol car is designed mainly based on the ROS
navigation package. The path planning function package
outputs two types of messages (angular velocity w and linear
velocity v) to the driving function package. These messages
are subscribed by the bottom driver and converted to the
speed of the left and right wheels. The motor drives the
intelligent patrol car to move or avoid obstacles controls with
PID algorithm.

This paper focuses on the novel global path planning
method of intelligent patrol car. The driving patrol car is
realized by using the navigation package by registering the
novel path planning algorithm proposed in this paper to the
BaseGlobalPlanner module in ROS. The optimized global
path by the algorithms of MOCMCSO, MOCSO and MOPSO
is written into the navigation module of intelligent patrol car
to drive it to move. In addition, the 3D visualization tool RVIZ
(ROS visualization tool) is selected as the human-computer
interaction tool to conduct real-time observation and control
for patrol car, which can display the map constructed by the
function of simultaneous localization and mapping (SLAM),
and identify the position, heading, planned path and obstacle
avoidance situation in real time.

B. SELECTION OF PATH POINTS

In order to verify the effect of path planning with different
values on i, the optimization method of APFM+CMCSO
(single object optimization version of MOCMCSO) is used
to carry out the path planning simulation, and the collabora-
tive optimization method on the CSO and PSO with APFM
are introduced to compare with the APFM+CMCSO. The
initialization parameters of the three algorithms are shown
in TABLE 3. The population number is 50, the maximum
number of iterations is 100, and the dimension of cats is the
path point existing in a global path. In order to simplify the
experimental process, two types of independent optimization

VOLUME 8, 2020

tests on single objective function are carried out to find the
optimal value on i.

Each algorithm achieves the independent simulation exper-
iment ten times to calculate the average value of the global
path length and the total turning-angle variation, where the
change range of path point i is 20 to 40, and the interval of
each value change is 4 path points. In the two-dimensional
grid environment, obstacle avoidance and global path opti-
mization are carried out, the effect of path planning with
different value of i is shown in Fig. 4. It can be seen that the
path planning effect of the three algorithms are all affected
by path point i, among which, the global path length of the
three algorithms obtain the minimum when path pointi = 32.
Besides, the total turning-angle variation is relatively low, and
the path smoothness can be guaranteed simultaneously. When
the value of i continues to increase, the path planning length
and total turning-angle variation gradually increase, thus, the
path smoothness is affected. This is because the larger the
path point i is, the higher the dimension of the cats to be
calculated is, and computational complexity is also greatly
increased, resulting in slower convergence speed as a whole.
In this situation, the patrol car fails to obtain the optimal
solution within the specified calculation time for real-time
response, and the increase of path points will also increase
the additional turning-angle variation, which will affect the
movement efficiency.

As can be seen from Fig. 4(a), the global path length
planned by CMCSO is shorter than that of CSO and PSO.
When i = 32, the average length of global path is the shortest,
that of CMCSO is 35.87 m, which is better than 39.05 m of
CSO and 48.57 m of PSO. When the path point i is 20, 24,
28 or 36, 40, the global path length gradually becomes longer.
This is because when the path points are too few, the patrol car
prefers the grid area with less obstacles to avoid overlapping
with the obstacle coordinates in different line segments of
the global path, and the broken line created by the redundant
path points also violates the principle of the shortest straight-
line distance between the starting point and the target point,
resulting in the increase of the global path length. It can be
seen from Fig. 4(b) that when i is 20, 24, the total turning-
angle variation of the three algorithms is relatively low, but
increases rapidly when i is greater than 28. At the point of
i = 32, the total turning-angle variation of APFM+CMCSO
reaches the minimum value 4.5 rad (1 rad=57.3°), which is
better than 5.04 rad of CSO and 5.68rad of PSO. Then, the
value of total turning-angle variation continues to increase
significantly with the increase of i. According to the simula-
tion results, the path line segments are straighter in the case of
fewer path points and the total turning-angle variation is low,
which is also easy to produce collision in a complex obstacle
environment. In the case of more path points, the increase
of path points can expand the global optimization range,
guaranteeing that the algorithm can select the grid far away
from the obstacles. Meanwhile it will increase the number
of corners, resulting in the increase of total turning-angle
variation and insufficient path smoothness.
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Therefore, the value of path point i will definitely affect
the path planning results, including the path length, smooth-
ness and security. The APFM+-CMCSO algorithm performs
better than APFM+-CSO and APFM+PSO in the global path
planning of indoor environment for the intelligent patrol car,
the global path is shorter and the total turning-angle variation
is lower, the optimal value of path point i in this experimental
environment is 32.

C. MULTI-OBJECTIVE OPTIMIZATION

In this section, the multi-objective optimization experiment
is carried out to verify that the APFM+MOCMCSO algo-
rithm can ensure the global path length is shorter and the
total turning-angle variation is lower simultaneously. Firstly,
the initial global path can be obtained by APFM, which is
the initial position of the cats. Then, MOCMCSO is executed
for global optimal solution, in which, the objective function
of multi-objective optimization model is (18), f1(x) and f>(x)
represent the global path length and the total turning-angle
variation respectively, both of the objective functions require
the minimum value, and the path safety is controlled by the
repulsion potential field generated by APFM in each grid to
ensure the safe distance between patrol car and obstacles.
The global optimal solution is set as the midpoint with
50% weight of each objective function in Pareto curve. The
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TABLE 4. Fitness value and optimization time on global optimal solution
obtained by MOCMCSO, MOCSO and MOPSO with APFM.

Para

meter APFM+MOCMCSO APFM-+MOCSO APFM-+MOPSO
Optimal Mean Optimal Mean Optimal ~ Mean
value value value value value value
Min
fi 31.98 35.87 34.42 39.06 39.45 48.57
(m
Min
¥ 4.12 4.50 4.81 5.69 6.37 7.89
(rad)
Time

1.1885 1.5392 1.9362 2.4655  2.0452 2.1804

()

MOCSO and MOPSO are used to compare the optimization
effect with MOCMCSO, each algorithm performs 20 rounds
of experiments independently, and output the optimal value
and mean value.

It can be seen from Fig. 5 that the optimal solutions
of the three algorithms with APFM are all uniformly dis-
tributed on the effective surface of Pareto curves, and the
multi-objective optimization effect of the three algorithms
are relatively excellent. Among them, the Pareto curve of
MOCMCSO is the clearest and most complete, and the
optimization effect for the two objective functions is rela-
tively more balanced compared with MOCSO and MOPSO,
achieving the goal of the shortest global path and the min-
imum total turning-angle variation with 1:1 ratio on (21).
The Pareto curve of MOCSO is more concentrated in the
lower part of the graph, and the optimization result is more
affected by the global path length. Although the MOCSO can
ensure the global path is shorter, it may reduce the safety
and smoothness of the path due to the larger turning-angle
variation and the too close distance between the patrol car
and the obstacles. Meanwhile, the optimal solution is very
sparse at both ends of the Pareto curve of MOPSO, mainly
concentrated in the middle part, the curve is not smooth and
evenly distributed, and the optimization effect at both ends
is not good, so the global optimization ability of MOPSO is
insufficient.

The values of optimal solution and average optimiza-
tion time of the three algorithms are shown in TABLE 4.
Because the Cauchy mutation operator is introduced to
increase the population diversity and avoid falling into the
local optimum, the average time on multi-objective prob-
lem in APFM+MOCMCSO is the shortest, which is only
1.5392 s, while the average optimization time of MOCSO and
MOPSO is 2.4655 s and 2.1804 s, ensuring that the intelligent
patrol car can accept control command and respond quickly
in complex indoor environment.

The global optimal path comparison for MOCMCSO,
MOCSO and MOPSO in the grid map for real environment
simulation is shown in Fig. 6. The MOCMCSO not only has
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FIGURE 5. Multi-objective optimization effect of three algorithms with
APFM.

the shortest global path length, but also takes into account the
lower total turning-angle variation, and its curve smoothness
is the best because it avoids large-angle turns in adjacent
grids. Then, the global path length of MOCSO is slightly
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FIGURE 6. Comparison for global optimal paths obtained by MOCMCSO,
MOCSO and MOPSO with APFM.

longer compared with that of MOCMCSO, the algorithm
selects a grid relatively far away from the obstacles to ensure
the safety in the 14th-18th segment shown in Fig. 6, resulting
in a significant increase in total turning-angle variation, and
the global optimization effect is slightly worse. Besides,
the MOPSO chooses the path with longer global length
and more broken lines for obstacle avoidance, which does
not converge to the global optimal solution, this is because
too many obstacles exist in 10th-20th segments, leading
to grid selection falling into the local optimal solution for
MOPSO. Therefore, the APFM+MOCMCSO takes shortest
time in terms of global path optimization compared with
the APFM+MOCSO and APFM+MOPSO, and the optimal
value of global path length and total turning-angle varia-
tion are lowest (31.98 m, 4.12 rad). In addition, the Pareto
curve of APFM+ MOCMCSO is also more complete,
the Pareto optimal solution distribution is more balanced,
and a good balance is achieved in terms of path planning
efficiency, path smoothness and path safety, so it is most
suitable for solving the multi-objective problem on global
path planning of intelligent patrol car in complex indoor
environment.

IV. EXPERIMENT AND ANALYSIS

The experiment system of patrol car for inspection has been
built, and the global path optimization experiment is carried
out in the indoor power distribution equipment room.

A. HARDWARE PLATFORM

The hardware platform of patrol car built in this paper is
mainly a two-wheeled difference driven control mobile robot
(EAI smart model) based on ROS. As shown in Fig. 7,
the platform integrates various intelligent devices, including
visible/thermal imaging camera, laser radar, obstacle avoid-
ance sensor, inertial measurement unit (IMU), mobile super-
computing platform, industrial personal computer (IPC),
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FIGURE 8. Control control system flow chart of intelligent patrol car.

wireless customer premise equipment (CPE), drive controller,
and brushless DC hub-motor, and so on. The platform is
divided into three layers. The bottom layer is equipped
with drive wheel, universal wheel and motor, the middle
layer includes power board, navigation board, chassis con-
trol board, laser radar and supercomputing platform, and
the upper layer is equipped with camera, smoke sensor and
display device.

--Dahua BF2221, a thermal imaging camera with temper-
ature measurement, is a video acquisition device for defect
detection for industrial equipment, which grabs the equip-
ment images in two modes of visible and thermal imaging,
and transmits them to the cloud computing center for pro-
cessing based on computer vision models through wireless
network.

--The navigation board (host computer) adopts the embed-
ded industrial computer (Intel i5 processor, 16GB memory,
256G SSD solid-state disk), and the ROS operating system is
installed.
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--The control processor (embedded data processing board)
adopts Arduino Mega 2560, which receives the navigation
information from host computer and drives motor.

--The sensor unit includes a driving wheel odometer and
two four thread lidars (EAI G4 model) on the underside and
top of the platform chassis, and an ADI16488 of six-axis
inertial sensor located in the patrol car.

The control board is connected with the navigation board
through USB-B interface to control the position, speed
and torque mode of the patrol car. The lidar is connected
to the navigation board through USB interface, and the
scanned environmental information is fed back in real-time
to avoid obstacles. In addition, the experimental platform
adopts embedded supercomputing platform (MYNT CUBE)
to run various deep-learning models to process the video
data obtained by HD camera and conduct computer vision
model training. The operating system of control board is
Ubuntu 16.04, with OpenCV 3.4 [21] and TensorFlow 1.6
[22] installed.
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The hardware structure of intelligent patrol car for data
acquisition and driven control is shown in Fig 7. The Hi-
Definition video is processed with MYNT CUBE to realize
object recognition and defect detection. The navigation data
calculation and central control are carried out with IPC in
the mobile robot platform. The navigation information is sent
to the control board and is transformed into angular speed
and linear speed so as to drive the patrol car to move. Then,
the control board receives the pulse data of driver to calculates
the real-time motion information, and returns the results to
IPC to obtain real-time posture of patrol car.

B. CONTROL SYSTEM

The control system flow chart of intelligent patrol car is
shown in Fig 8. The whole platform can be divided into
three parts: environment sensing control part, data processing
control part and network communication control part.

——The environmental sensing control part includes a series
of sensors, such as thermal imaging camera, visible light
high-definition camera, smoke sensor for patrol car inspec-
tion, and lidar, posture sensor and pulse encoder for location
and navigation.

——The data processing control part is the operation and
control unit of patrol car, including IPC, embedded data pro-
cessing board, drive board, brushless DC hub-motor, commu-
nication module, etc. The embedded data processing board
can collect data from multiple sensors for data measurement
and data fusion to control the drive board and DC hub-motor,
and can also communicate with cloud computing server clus-
ter. IPC is the core of the whole platform, which provides
a series of functions, such as positioning, navigation, path
planning, etc., to achieve reliable movement and inspection.

——The network communication control part realizes the
data exchange function between the intelligent patrol car and
the control center. The intelligent patrol car transmits internal
data and receives external data through wireless gateway and
antenna. The intelligent devices in the platform can real-
ize reliable communication through LAN, and communicate
with cloud computing server cluster through 5G network,
the thermal imaging data of power distribution equipment,
image data of instruments and meters, status and posture
of patrol car, and fault data of the system can be uploaded
to the control center. The platform receive the control data
and inspection task data sent by the control center to realize
routine and specific inspection task.

The control software of intelligent patrol car is used to
integrate the core algorithms on environment modeling, posi-
tioning, path planning and navigation to perform inspection
task.

C. GLOBAL PATH PLANNING EXPERIMENT

The EAl-smart intelligent patrol car is selected as hardware
platform for experiment, and is controlled by management
software deployed in PC in the same WLAN, the PC and
patrol car are installed with Ubuntu 16.04 and ROS indigo
system of the same version. The management software drives
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FIGURE 9. Comparison for global optimal paths obtained by several
algorithms by experiment in the indoor equipment room.

patrol car movement by calling ROS navigation module and
communicating with chassis, and the experiment environ-
ment and movement path can be observed by RVIZ software.

In the process of path following, the intelligent patrol car
adopts Adaptive Monte Carlo localization (AMCL) algorithm
to locate its own position based on the generated grid map
information. The motion model and sensing model of the
patrol car are brought into the particle filter to solve the
approximate probability distribution of the posture of patrol
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car. The location module on AMCL subscribes the coordinate
transformation data published by lidar driver and data pro-
cessing module, and map information published by grid map
management module, so the coordinate transformation from
“map” to ‘“coordinate system’ of lidar can be calculated.
According to the TF transform tree in ROS, the specific
location information of the patrol car can be obtained.

The experimental environment is the data center room
in a large electrical manufacturing enterprise, with an area
of 20 m*20 m=400 m?, including 48 sets of electrical, power
and communication equipment such as servers, distribution
cabinets, and so on. In the navigation process of intelligent
patrol car, the obstacles in the experimental environment
are identified by multi-threaded LIDAR, so as to plan the
best path to reach the target point. The map information of
patrol car is obtained based on the SLAM function, the nav-
igation module receives the path information planned by
APFM+MOCMCSO to drive the chassis to move. The res-
olution ratio of grid is 0.5 m, the maximum linear speed of
patrol car is set as 0.6 m/s, and the maximum angular speed
is 0.4 rad/s.

The map created by SLAM is shown in Fig. 9, the envi-
ronment of indoor equipment room is transformed into a
cost map, the gray area in the map represents obstacles, i.e.
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all kinds of servers, power cabinets, distribution cabinets,
network switches, and concrete pillars. The black wrapped
area outside the obstacles represents the obstacle range of the
opened door in an electrical or communication equipment due
to heat dissipation. According to the turning radius of patrol
car, it is necessary to ensure no collision after expansion,
the collision threshold for the obstacle is set as 20 cm based
on practical experience. Meanwhile, the white area is a safe
area and the patrol car can move freely.

In order to verify the simulation results in TABLE 4. The
path planning experiment of intelligent patrol car based on
APFM-+MOCMCSO is carried out. The APFM+ MOCSO
and APFM+MOPSO are introduced for comparison. In addi-
tion, the A*, the most widely used heuristic search algo-
rithm, is also introduced as an object of comparison in
experiments. The intelligent patrol car constructed in this
paper carries out 40 rounds of navigation experiments
in the indoor equipment room, the APFM+MOCMCSO,
APFM+MOCSO, APFM+MOPSO and A*algorithm are
used to find the optimal path, and each algorithm is run
10 times. The global path length, total turning-angle vari-
ation, total motion time and collision times recorded in
the experiment is shown in TABLE 5. The global optimal
paths obtained by APFM+MOCMCSO, APFM+MOCSO,
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TABLE 5. Experimental results on path planning based on APFM+MOCMCSO, APFM+MOCSO, APFM+MOPSO and A* algorithm.

APFM+MOCMCSO APFM+MOCSO APFM+MOPSO A* algorithm
Experiment Global Turning- Global Turning- Global  Turning- Globa  Turning-
number path angle Total path angle Total path angle Total 1 path angle Total
length variation time(s) length variation  time(s) length  variation time(s) length  variation  time(s)
(m) (rad) (m) (rad) (m) (rad) (m) (rad)

The Ist 37.62 10.93 1132 40.89 12.35 144.6 42.50 11.97 176.2 47.82 12.08 189.0

The 2nd 38.83 9.12 107.1 41.63 12.88 137.2 44.12 13.05 161.9 46.58  12.24 188.4

The 3rd 40.05 9.79 1355 39.01 9.27 146.8 47.86 14.99 189.0 5095 14.17 205.7

The 4th 36.52 8.37 98.8 45.70 15.61 152.9 47.77 13.37 178.3 50.17  13.75 211.4

The 5th 38.03 9.25 120.5 41.18 13.02 150.2 43.24 11.23 156.8 4493 11.72 180.2

The 6th 37.58 10.07 130.0 39.98 14.68 138.2 40.50 9.97 147.2 4734 11.90 192.9

The 7th 38.75 10.52 148.6 44.59 15.34 165.8 43.19 12.01 158.6 49.92 1258 195.7

The 8th 39.47 9.36 1329 49.62 17.19 147.4 49.82 15.28 196.8 5225 1476 218.6

The 9th 40.28 13.44 156.8 44.37 14.86 136.9 47.71 12.86 165.5 48.77  12.99 203.3

The 10th 36.94 8.83 104.1 48.54 15.50 146.1 49.11 12.75 167.3 45.21 13.50 183.4

Mean value 38.41 9.97 124.8 43.55 14.07 146.6 45.58 12.75 169.8 4839 1297 196.9

Optimal value ~ 36.52 8.37 98.8 39.01 9.27 146.8 40.50 9.97 147.2 4493 11.72 180.2

APFM+MOPSO and A*algorithm is shown in Fig. 9. The
optimal path obtained by APFM+ MOCMCSO in the 4th
experiments is 36.52 m in global path length and 8.37 rad
in total turning-angle variation, which are both the mini-
mum in 10 results, ensuring the highest movement efficiency
for the patrol car while taking into account the global path
smoothness, and there is no obstacle collision in the whole
movement process. Based on the APFM+MOCMCSO algo-
rithm, the total movement time of the patrol car from the
starting point to the target point is 98.8s, which can meet
the efficiency requirements for automatic inspection in the
400 m? equipment room.

The optimal path obtained by APFM+MOCSO is 39.01 m
in global path length and 9.27 rad in total turning-angle
variation, that of APFM+MOPSO is 40.5 m and 9.97 rad.
Moreover, the mean values of the three algorithms are
calculated through 10 experiments respectively. Compared
with the APFM+MOCSO and APFM+MOPSO, APFM+
MOCMCSO algorithm has a shortest global path length
(3841 m) and a minimum total turning-angle variation
(9.97 rad). In the process of global navigation, the mean value
of total movement time of APFM+MOCMCSO is the mini-
mal (124.8 s) in the algorithms, so the APFM+ MOCMCSO
has maximum efficiency on path planning process. As a clas-
sic heuristic search algorithm, A*algorithm is also applied
to this experiment for comparison. It can be seen that
the mean value of global path length, total turning-angle
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variation and total time of A* algorithm is relatively poor
compared with APFM+MOCMCSO, APFM+MOCSO and
APFM-+MOPSO, and the value is only 48.39 m, 12.97 rad
and 196.9 s. The reason for this phenomenon is that,
A*algorithm has too much meaningless search paths in the
global search process, which is inefficient, and the planned
path fails to reach global optimum, the mean value of total
time is also too long. In addition, it can be seen from
Fig. 9 that the optimal path obtained by APFM+MOCSO
ensures the shortest path between the starting point and
the target point. Compared with the other three algo-
rithms, the optimal path is shorter and smoother, in partic-
ular, the turning-angle variation between the adjacent lines is
the smallest, so the patrol car will not reduce the movement
efficiency and avoid collision with obstacles. On the whole,
for the experiment based on the navigation module in the
intelligent patrol car, the APFM+MOCMCSO algorithm
proposed in this paper has the shortest global path length,
the minimum total turning-angle variation, and the minimum
total movement time. The effect of APFM+MOCMCSO is
better than that of APFM+MOCSO, APFM+MOPSO and
A* algorithms in terms of global path planning, and is more
suitable for the path planning task on intelligent patrol car in
the indoor environment.

In the navigation process, the image of the patrol car at
12 important path points is shown in Fig. 10, proving that the
patrol car can complete the inspection task without making
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collisions in the indoor environment. The path planning by
APFM+MOCMCSO has a high degree of compliance in
simulation and experiment. The optimal global path length
is similar, which is 31.98 m of simulation and 36.52 m of
experiment, but the experimental value (8.37 rad) is much
larger than the simulation value (4.12 rad) on total turning-
angle variation. The space of indoor equipment room is nar-
row, and the distance between equipment is very close. Some
equipment doors must be kept open due to heat dissipation,
the expansion radius of this obstacles is enlarged. The patrol
car often triggers emergency braking during operation and
adjusts direction to avoid obstacles based on the guidance of
ultrasonic sensors. Therefore, it is inevitable that the turning-
angle variation between adjacent path segments is signifi-
cantly greater than the ideal simulation results.

In the 10 rounds of experiment on APFM+MOCMCSO,
there is only one obstacle collision in the 9th experiment,
the patrol car is too close to the obstacle. It triggers the
emergency brake on ultrasonic sensor, and need to adjust the
position, posture and path several times for coordinate correc-
tion, resulting in the total turning-angle variation increases
to 13.44 rad, and the total movement time increases up to
156.8 s. Therefore, the algorithm needs to take the emergency
braking factors of ultrasonic sensor into account to avoid the
influence of too close obstacle avoidance distance.

V. CONCLUSION AND FUTURE WORK

This paper mainly studied the global path planning algo-
rithm of intelligent patrol car in the indoor scene of data
center equipment room. According to the two-dimensional
grid mapping of known operating environment, a collision-
free optimal path is planned from the starting point to
the target point. The evaluation criteria includes the short-
est total length, the best path smoothness, and safety. A
co-optimization method on the APFM and MOCMCSO are
presented, the path generated by APFM is set as initial posi-
tion of cats in MOCMCSO algorithm. The global path length
and total turning-angle variation are set as two objective func-
tions. The optimal path obtained by the APFM+MOCMCSO
is written into the navigation module to drive the patrol
car to move quickly. The solution of the Pareto curve
with equal weight of two objective functions is taken as
the global optimal solution. According to the simulation
results, the APFM+MOCMCSO has faster searching speed,
shorter optimization time, lower fitness value, better bal-
ance between multiple objective functions compared with
APFM+MOCSO and APFM+MOPSO, and is more suit-
able for path planning of intelligent patrol car in complex
indoor environment. Finally, an actual navigation experiment
is carried out in the data center equipment room (400 m?) of
a large electrical manufacturing enterprise. The global path
length optimized by APFM+MOCMCSO algorithm is only
36.82 m, and the total turning-angle variation is 5.33 rad.
It apparently improves the effectiveness, stability and accu-
racy of the APFM+ MOCMCSO in the complex indoor
equipment room, and the optimal path can be obtained in the
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shortest time. The proposed algorithm will be used in various
inspection scenes of intelligent patrol car.

Through the analysis on the experimental results, the per-
formance of path planning on APFM+MOCMCSO algo-
rithm for intelligent patrol car will be continuously improved
in the following two aspects:

1) The environment for obstacle avoidance and navigation
in indoor equipment room is very complex, sometimes,
the patrol car needs to go deep into the narrow access
to cabinets for sudden patrol tasks. It is difficult for
patrol cars to ensure that the global path is beyond
the safe distance (20 cm) of anti-collision. Therefore,
in addition to the shortest path and the minimum total
turning-angle variation, it is necessary to increase anti-
collision security optimization strategy based on the
repulsion of the potential field to ensure that the patrol
car can plan a particular path even in extremely narrow
spaces.

2) In the inspection scene of the equipment room, patrol
car is required to detect the equipment in the way of
daily operation. In the inspection process, it may occur
that the same path points are repeatedly reciprocating
in one operation. In the case of multiple target points,
the path planning algorithm needs to solve the problems
of shortest overall path length, minimum movement
time and highest efficiency in the reciprocating motion
of the same path points.
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