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ABSTRACT In this article, we have proposed a learning to prediction based novel approach for improving
the accuracy of prediction algorithms in dynamic conditions. The proposed model is composed of two
modules, including the prediction module and the learning module. The learning module is responsible to
regularly examine the prediction module and tune its performance by assessing its outcomes together with
any other external parameters that can affect its performance. In order to determine the effectiveness of the
proposed idea, a learning module based on the artificial neural network (ANN) is developed for improving
the accuracy of the Kalman filter algorithm. Experimental investigations are conducted in a greenhouse
indoor environment to accurately predict indoor climate parameters (temperature, CO;, and humidity) from
noisy sensors readings using the Kalman filter algorithm. Among the various components of the Kalman
filter algorithm includes a fixed value of R (observation error covariance), which significantly degrades the
performance of the Kalman filter algorithm in dynamic conditions. Greenhouse sensor readings are affected
by changing external environmental conditions and internal greenhouse actuators operations. The amount
of error in current readings is estimated using ANN-based learning modules to update the parameter R in
the corresponding Kalman filter module. Performance evaluation of the proposed model based on learning
is conducted in two different case studies using average and maximum based error models. Experimental
results show that the prediction accuracy of the conventional Kalman filter is significantly improved by
proposed learning to prediction scheme.

INDEX TERMS Artificial neural networks (ANN), Kalman filter, learning to prediction, smart greenhouse.

I. INTRODUCTION

Due to global changes in climate conditions, conventional
farming faces a lot of challenges, such as heavy rainfall,
storms, inadequate freshwater, etc. It is estimated that the
population of the world would be approximately 9.7 billion
in 2050 [1]. Hence the FAO urges and encourages the usage
of modern tools and technologies in all kinds of farming to
achieve the desired target of food production for the future
world. According to an estimate, worldwide food production
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must rise by 50% [2]. Currently, 821 Million people suf-
fer under nutrition [3], and it will rise with an increase in
population if necessary corrective measures are not taken.
Therefore, high importance is given by UN to achieve the
Zero hunger (Sustainable Development Goals (SDG)-2) by
2030 [4]. Smart farming is considered as a key solution to ful-
fill the food requirement of the growing population. Just like
fish production is supported by Aquaculture, similarly agri-
culture production can be improved with Greenhouses that
have the potential of achieving 10-12 times higher produc-
tion than open air cultivation. Greenhouse is a framed struc-
ture with transparent covering, providing partially or fully
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FIGURE 1. Typical model of Greenhouse environment.

controlled environment for optimum productivity, throughout
the year. Figure 1 shows a typical model of greenhouse with
essential components. Efficient operation and management
of Greenhouse requires a careful and sound understanding
of various associated greenhouses processes including photo-
synthesis, transpiration, relative humidity in the environment,
respiration, vegetative and generative plant growth, etc.

The Greenhouse industry has received significant attention
and experienced tremendous growth in recent past across the
globe. Greenhouse provides a year-round production facility
for fresh vegetables with around 50% increased production
rate in comparison to open-air cultivation. Contextual infor-
mation about greenhouse indoor environments such as tem-
perature, humidity, illumination, etc. can be collected using
IoT devices. From current context information, we can pre-
dict future conditions and resources requirements using dif-
ferent machine learning algorithms. It is extremely important
to predict energy needs in the future for individuals as well as
for power generating companies. In order to reduce the energy
expenses, users can choose alternate ways, i.e. solar system
etc. when feasible. Knowledge about energy requirement in
advance helps in optimization of the operational hours and
resources. Furthermore, appropriate capacity planning can be
carried out to utilize renewable energy resources and hence
helps to achieve the objective of the zero-energy environment.
It is also very useful for power companies to manage energy
production and accurately distribute power loads. Korean
Energy Economics Institute (KEEI) South Korea, stated in

159372

a report that residential and commercial sectors consumes
40% of total energy. Greenhouses are no exception, energy
consumption and labor cost in greenhouses accounts for more
than 50% of the cost of greenhouse production. Thus, a minor
improvement in performance can lead to significant cost
reduction. Electricity is a major factor in the overall expenses
of greenhouse, hence it is extremely necessary to utilize the
energy efficiently. Therefore, the development of an intel-
ligent IoT-based solution to accurately predict greenhouse
indoor climate conditions is highly desirable for achieving
energy efficiency and maximizing plant productivity.

The latest advancement in communication, computation
and machine learning technologies have assisted in uplifting
the living standard in one way or another. Machine learning
algorithms are based on knowledge and complex patterns that
are usually extracted from current and historical data to make
informed decisions regarding the future for maximization
of profit and minimization of losses [5]. These forecasting
algorithms are usually trained using some historical data.
Afterwards, these trained models are used in the designated
applications environment. As these algorithms are trained for
a particular environment, therefore their performance gets
degraded when operational conditions are changing.

This study is focused on enabling prediction algorithms
to adapt with changing environmental conditions dramati-
cally. Previously, we have developed a general architecture
to improve the performance of the prediction algorithm using
the learning module [6]. In this article, we have used the
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same model in a smart greenhouse environment to predict
indoor parameters accurately. Greenhouse indoor environ-
ment is continuously changing due to the operation of various
actuators installed inside the greenhouse. Furthermore, exter-
nal weather conditions also have a strong influence on the
greenhouse indoor climate. The conventional Kalman filter
algorithm fails to predict actual parameter in such a dynamic
conditions. Therefore, we propose an improved learning to
prediction algorithm to improve the performance of Kalman
filter algorithm. The learning module is based on ANN and
it continuously monitors the performance of prediction algo-
rithm by analyzing its output. Learning module also con-
siders other internal and external factors that have influence
on the performance of prediction algorithm. Internal factors
includes operational status of various actuators inside green-
house and external factors include weather conditions such as
wind speed, solar radiation, etc. After analysis, ANN based
learning module updates the parameter R (observation error
covariance) to improve the prediction accuracy of Kalman
filter algorithm. In comparison to existing related studies,
the key contributions of this study are highlighted as follows.

o A general conceptual model for learning to prediction
is presented for improving the accuracy of prediction
algorithms in dynamic conditions.

o Proposed model evaluation and experimental analysis
is conducted in Greenhouse environment to accurately
predict indoor climate conditions from noisy sensor
readings.

o ANN algorithm is used to improve the performance of
the conventional Kalman filter algorithm in dynamically
changing external conditions.

The Remainder of the paper is structured as follows:
Section II presents brief overview of related studies. Working
of Kalman Filter algorithm for indoor climate prediction is
explained in Section III. Conceptual design of the proposed
model along with description of the selected case study
is given in Section IV. Section V is dedicated to present
experimental setup, noise models, simulation scenarios, and
training/testing of learning modules. Comprehensive perfor-
mance analysis of proposed model is presented in Section VI.
Finally, this study is concluded in Section VII.

Il. RELATED WORK

Numerous researchers have developed many methods for
controlling greenhouse environment. Akkas et al. proposed a
methodology based on IoT in order to control the greenhouse
temperature, light pressure, and humidity [7]. Yongtao et al.
suggested an approach based on the prediction model in order
to fulfill the energy demand. In this method the unknown fac-
tors of the model are tuned through particle swarm optimiza-
tion algorithm [8]. Chen et al. proposed another model based
on HPSO-GA in order to predict energy demand in smart
greenhouse [9]. Similarly, another model has been devel-
oped based on ANN to predict energy in greenhouse [10].
However, these studies do not consider the impact of external
weather conditions and resultant system dynamics.
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Machine learning algorithms are extensively used in a
lot of applications, such as in stock market prediction, risk
prediction, weather prediction, etc. A lot of prediction algo-
rithms have been proposed, such as Kth-nearest neighbor
(KNN), artificial neural network (ANN), classification and
regression tree (CART), etc. KNN is a simple and a very
important algorithm that is used normally for both regres-
sion and classification [11], [12]. Support vector machines
(SVM) are another important class of predictions algorithm.
Normally, knowledge interpretation and extraction from a
trained prediction algorithm by using training data in a human
readable format are extremely hard. In such a situation,
the decision tree has the capability to solve this problem.
There are many types of decision tree algorithms among
them the most significant algorithm is decision and classifi-
cation tree (CART) [13], iterative dichotomizer 3 (ID3) [14],
C4.5 [15], and chi-squared automatic interaction detector
(CHAID) ) [16]. Recently, the CART algorithm has attracted
a lot of researcher’s attention and has been extensively used
in different fields for prediction purposes. It is extremely
difficult to solve the complicated interrelation between pre-
dictive parameters, in order to overcome this problem the
CART has been introduced which has the ability to construct
predictive models from the data. The construction of the
CART model is normally carried by using two trees (clas-
sification and regression). The classification tree is designed
for the dependent variable with order and the regression tree
is designed for dependent variable without order. The error
is the square of the difference between predicted and original
values. In a random forest algorithm, numerous decision trees
are generated by using random sampling [17], hence the over-
fitting problem is eliminated. However, the major problem
with all these prediction algorithms is that once the model is
trained using some historical data, it remains fixed and can
be used only in the designated application environment. The
main issue with these algorithms is their static nature and
those are not suitable for a dynamic environment.

ANN is thought to be the most efficient natural-inspired
prediction algorithm that mimic the working neurons in the
human brain [18]. ANN algorithms can be applied to solve a
lot of problems, i.e. regression, classification, clustering, pat-
tern recognition, forecasting and time series data processing,
etc. [19]-[22]. The ANN architecture is formed by using dif-
ferent layers (input, hidden, and output). There are different
methods to train the ANN, such as error back propagation,
gradient calculation methods, etc. [23]. In the conventional
ANN methods, it is required to pre-process the inputs, extract
features of interest and then normalization the extracted fea-
tures. The number of neurons in the inputs layer depends on
the number of inputs, the number of neurons in the hidden
layer are decided through hit and trial method, the number
of neurons in the output layer depends on the number of
outputs. The selection of activation function is also decided
through hit and trial method. Deep learning algorithms are
an advance form of conventional ANN and are extensively
used in different applications for predictions. There are
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different types of deep neural networks, such as a convo-
lutional neural network (CNN), recurrent neural network
(RNN), long short-term memory (LSTM) [24]-[27] etc.
In deep learning algorithms, the features extraction and
reductions steps are eliminated, however their application
in dynamic conditions is restricted due to the fixed trained
model.

Many research studies are conducted to improve the perfor-
mance of prediction algorithms. A commonly used approach
is to use several prediction algorithms in combination to get
better accuracy such as ensemble models [28], stacked gen-
eralization [29], [30]. Jacobs et al. proposed another method
called mixture-of-experts with the aim that by combining the
statistical estimations methods, the accuracy is increased as
compared to a single estimation method [31]. Qiao et al
proposed a methodology based on an optimization algorithm
to improve the prediction accuracy of short-term natural gas
consumption [32], [33]. Several hybrid models are developed
to improve the prediction accuracy e.g. integration of an
improved whale swarm algorithm (IWOA) and empirical and
relevance vector machine (RVM) [34], a hybrid model of
wavelet transform (WT), stacked auto-encoder (SAE) and
long short-term memory (LSTM) [35]. Another important
family of predictive algorithms is reinforcement learning
which enables the algorithm to improve its performance
by using previous outcomes [36], [37]. These algorithms
to constantly improves their performance and consequently
gets converged. After convergence, the learning process is
stopped and no change occurs with changes in the environ-
ment and thus fails to perform well in dynamically changing
environment.

Coping with dynamically changing external conditions is
a very challenging problem and has attracted tremendous
research attention, particularly in the field of feedback control
systems. The Presence of an external uncertain disturbance
often keeps the system in an unstable state, often results in
oscillation around the equilibrium position. The sliding mode
control (SMC) algorithm is commonly used to achieve stabil-
ity but it often results in chattering and high-speed switching.
This can potentially damage the system if switching gain is
not selected appropriately. Chengxiang Liu ez al. have studied
this problem and proposed an ANN-based adaptive solution
(NNSMC) to address chattering and high-speed switching
of control input problems in the conventional SMC for an
uncertain robotic system [38]. The proposed system results in
simplification of control design without requiring modeling
of the complex dynamics, instead ANN module is designed
to select optimal switching gain to improve system robustness
and stability analysis is conducted using Lyapunov method
dynamically. Dead-zone nonlinearities and output constraints
have a significant impact on the performance of flexible
structures and components. Boundary control schemes are
commonly used for suppression of vibration and achieve
stability. Zhijia Zhao et al. have developed an adaptive neu-
ral network based boundary control scheme to improve the
stability of string systems while addressing the challenges
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of dead-zone nonlinearities, output constraints and system
uncertainties [39], [40]. They have used radial basis function
neural network (RBFNN - a variant of ANN) is used to pre-
dict the unknown system information such as error estimate,
a mass of the payload, the tension of the string, and external
disturbance and robust control theory is employed to design
disturbance adaption law for appropriate handling unknown
external disturbance. The theme of these studies is similar as
ours i.e,. using ANN based learning module to improve the
performance of conventional algorithm/schemes. Whereas,
in this study, we have used the ANN algorithm to improve
the performance of conventional Kalman filter algorithm in a
dynamically changing external conditions. Furthermore, our
field of application is also different.

The prediction algorithms must adapt to the changing con-
ditions of the environment. This will require a method that can
somehow - in one way or another - detect the changes in the
environment. Consequently, the prediction algorithms can be
adapted accordingly to avoid the degradation of performance.
Usually, this is achieved by attaching a learning module with
the prediction algorithm to tune its performance. For instance,
Kang et al. proposed a method based on fuzzy inference-
based for tuning the performance of the Kalman filter algo-
rithm [41]. By using this model, the attitude of a humanoid
robot is accurately estimated. Kalman filter smooths the noise
of gyros sensors reading in order to predict the correct orien-
tation of the robot. Nevertheless, when robot starts to move
then the noise in gyro sensor occur. In order to overcome this
problem, the accelerometers sensors have been used to detect
the current state of the robot and fuzzy inference system
has been used to tune the Kalman filter parameters. In the
same way, Ibarra et al. suggested an approach named adaptive
neuro-fuzzy inference for tuning Kalman filter algorithm for
correct attitude estimation base on the gyroscope and accel-
eration sensors [42]. Markov models have also been used
for this purpose [43]. Our proposed conceptual model for
learning to prediction is inspired from these studies. However,
in this study, we have used different learning and prediction
algorithms with different sets of parameters in a Greenhouse
environment to accurately predict indoor climate conditions
from noisy sensor readings.

IlIl. KALMAN FILTER ALGORITHM FOR

INDOOR CLIMATE PREDICTION

Kalman filter is a lightweight technique that is used to predict
the actual state by using the previous state information with-
out requiring all historical data. One of the most important
components of the Kalman filter is Kalman again commonly
expressed as K. The value of the Kalman gain is updated
when needed to control weights given to the system own
predicted state or sensor reading. The working mechanism
of the Kalman filter is illustrated in Figure 2.

Noise factors are often dependent on environmental con-
ditions and can extremely affect the reading of the sen-
sors. Three important factors namely temperature, CO; level,
and humidity, have been considered in the proposed work.
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FIGURE 2. Working of Kalman filter algorithm for indoor temperature prediction in Greenhouse.

Next, the Kalman filter formulation has been presented to
predict the actual temperature from noisy readings provided
by the temperature sensor. The formulation for CO; and
humidity sensors readings is also the same and skipped here
for brevity.

Let’s suppose T; is the greenhouse indoor temperature at
time f. The Kalman filter algorithm makes an intelligent
estimate about actual temperature 7y at time ¢ 4+ 1 using
internal prediction and current sensor readings. Firstly, pre-
dicted temperature T}, obtained from the last estimated value
of temperature 7;_; using the following equation.

T,=A-T,_1 +Bu 1

where T, is Kalman filter internal predicted temperature,
A represent the state transition matrix, B represents the control
matrix and control vector is expressed as u;.

We know that Kalman filter internal prediction will have
some error which is determined by computing the covariance
factor Ppredicrea as below.

@

where A represents the state transition matrix and A7 is its
transpose. P;_; expresses the last value of the covariance
factor and Q is the estimated error in the process.

Next, the updated value of Kalman’s gain K is computed
using an internal estimate about indoor temperature and
updated covariance as below.

Ppredicted = A-Pt_l.AT + 0

_ Ppredicted~HT
H-Ppredicted-HT +R

K (3)
where H represents the observation matrix, H T is its trans-
pose and R is the estimated error in the measurements process.

Let z; be the recent reading of noisy temperature sensor at
time ¢. Then, the following equation is used by Kalman’s filter
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algorithm to predict the actual temperature of the greenhouse
indoor environment.

T, = Tpredicted +K(z — H~Tpredicted) 4

Lastly, covariance factor P; is updated using the following
formula for the next iteration.

Pr=( - K~H)Ppredicted ©)
IV. PROPOSED LEARNING TO PREDICTION SCHEME

Prediction algorithms are very helpful in maximizing the
benefits or avoiding potential losses by making informed
decisions about an unknown future through learning from
previous data. For that purpose, prediction algorithms usually
rely on a training model that is learned from previous data
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before deployment. Such a prediction algorithm works fine
when conditions remain the same as observed in training
data. However, the major problem with this approach is that
it restricts the capability of prediction algorithms to work
in dynamic situations. In this study, we have proposed a
novel learning to prediction based approach for improving the
accuracy of prediction algorithms in the dynamic conditions.
The proposed model is comprised of two modules, namely the
prediction module and learning module. The learning module
has the responsibility to regularly examine the prediction
module and enhance the efficiency of the prediction module
by assessing its outcomes together with any other external
parameters that can affect the performance of the prediction
module.

This study is concentrated on enabling prediction algo-
rithms to adopt with changing environmental conditions
dynamically. Previously, we have developed a general archi-
tecture to improve the performance of the prediction algo-
rithm using the learning module as shown in Figure 3 [6].
In this article, we have used the same model in a smart
greenhouse environment to predict indoor parameters accu-
rately. The Greenhouse indoor environment is continuously
changing due to the operation of various actuators installed
inside the greenhouse. Furthermore, external weather condi-
tions also have a strong influence on the greenhouse indoor
climate. The Conventional Kalman filter algorithm [44], [45]
fails to predict actual parameters in such dynamic conditions.
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Therefore, we propose improved learning to prediction algo-
rithm for performance improvement of the Kalman filter
algorithm. The learning module is based on ANN and it
continuously monitors the performance of the prediction
algorithm by analyzing its output. The learning module also
considers other internal and external factors that affects the
performance of prediction algorithm. Internal factors include
operational status of various actuators inside greenhouse and
external factors include weather conditions such as wind
speed, solar radiation, etc. After analysis, ANN based learn-
ing module updates the parameter R (which is further used
to compute the Kalman gain K) to improve the prediction
accuracy of the Kalman filter algorithm.

Figure 2 presents the flow diagram of the Kalman filter that
works perfectly fine when environmental conditions remains
same. When error in sensor reading is changing because of
some external factor, then updating of estimated error in the
measurements (R) is needed. In this work, the Greenhouse
indoor scenario is considered where actuator operational con-
ditions effect the sensors readings. The prediction accuracy
of conventional Kalman filter algorithm suffer significant
degradation under dynamic conditions. Figure 4 presents
the abstract diagram of the proposed learning to prediction
scheme. As we have three parameters (temperature, CO»,
humidity), therefore three separate instances of Kalman filter
algorithm are used. Each Kalman filter algorithm have its
own learning module. Internal structure of these learning
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modules is different as each module takes different set of
input data.

Detailed design of the proposed learning to prediction
model for temperature sensor readings is given in Figure 5.
The learning module is based on ANN algorithm taking
twelve (12) inputs i.e. 3 external environment parameters,
08 inputs related to selected actuators operation level and
duration and current noisy temperature sensor readings. (see
Table 1 for details). Experiments are conducted with vary-
ing number of neurons in hidden layer, different activa-
tion functions, learning algorithms and learning rates. The
best results were obtained and are reported in this article
with 20 neurons in hidden layer, sigmoid activation function,
Levenberg-Marquardt learning algorithms and learning rate
of 0.1. The prediction error in sensor reading is the generated
outcome of the ANN. The predicted error is then divided by
a static factor F' for computing the error estimation in sensor
reading, i.e. R. The updated value of R is then used as input to
the Kalman filter for tuning its prediction accuracy through
appropriate adjustment of Kalman gain K. The suggested
learning to prediction approach makes able the Kalman filter
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to correctly do the estimation of real temperature from noisy
sensor reading with dynamic error rate.

Table 1 present the configuration summary of learn-
ing modules for temperature, CO, and humidity sensing
data.

V. METHODS

A. EXPERIMENTAL SETUP

Performance evaluation of proposed learning based predic-
tion scheme is carried out through a custom-built greenhouse
simulator by modeling greenhouse indoor environmental pro-
cesses which take into account the impact of external environ-
mental parameters and actuator operational level on indoor
parameters. These applications are developed in Visual Stu-
dio C#. Table 2 present specification of the system and tools
used in the development of these applications.

Accord.NET framework [46] is used for development of
ANN based learning module. Configuration details of ANN
algorithms for each parameter is given in Table 1.

For experimental analysis, we have used 15 days weather
data obtained from online weather site Meteoblue [47] for
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TABLE 1. Configuration summary of ANN based learning modules for Greenhouse indoor parameters prediction.

S.No. | Learning Module Inputs Hidden Layer Output
1 ANN based Learning | 1.External Temperature Number of Neurons=20, Predicted error is tempera-
Module for tuning Kalman | 2. Solar radiation Activation Function= Sigmoid (o« = 2), ture readings (err) which is
filler —of Temperature | 3. Wind Speed Learning algorithm= Levenberg-Marquardt divided by a constant fac-
Sensor Readings 4. Temperature Sensor Readings Learning rate=0.1 tor F to get updated value
5. Natural Ventilation Level of R for corresponding
6. Natural Ventilation Duration Kalman filter algorithm.
7. Forced Ventilation Level
8. Forced Ventilation Duration
9. Heater Level
10. Heater Duration
11. Chiller Level
12. Chiller Duration
2 ANN based Learning | 1.External COa2 Number of Neurons=20, Predicted error is CO2
Module for tuning Kalman | 2. Solar radiation Activation Function= Sigmoid (o = 2), readings (err) which is di-
filter of CO2 Sensor | 3. Wind Speed Learning algorithm= Levenberg-Marquardt vided by a constant factor
Readings 4. Sensor Readings Learning rate=0.1 F to get updated value of R
5. Natural Ventilation Level for corresponding Kalman
6. Natural Ventilation Duration filter algorithm.
7. Forced Ventilation Level
8. Forced Ventilation Duration
9. CO2 Generator Level
10. CO2 Generator Duration
3 ANN based Learning | 1.External Humidity Number of Neurons=20, Predicted error is Humid-
Module for tuning Kalman | 2. Solar radiation Activation Function= Sigmoid (o« = 2), ity readings (err) which is
filter of Humidity Sensor | 3. Wind Speed Learning algorithm= Levenberg-Marquardt divided by a constant fac-
Readings 4. Humidity Sensor Readings Learning rate=0.1 tor F to get updated value
5. Natural Ventilation Level of R for corresponding
6. Natural Ventilation Duration Kalman filter algorithm.
7. Forced Ventilation Level
8. Forced Ventilation Duration
9. FogSys Level
10. FodSys Duration
11. Dehumidifier Level
12. Dehumidifier Duration

TABLE 2. System configuration for simulator implementation and
performance analysis.

Module Specifications

CPU Intel® Core(TM) 13-2120 CPU@ 3.30GHz,
3.30GHz

RAM 16 GB

Graphics NVIDIA GeForce 9600 GT

Operating System Window 7 Ultimate

Development Visual Studio Enterprise 2015 (C#) with .Net

Environment Framework 4.7

Libraries and tools Accord.Neuro

Jeju, South Korea. The data includes outdoor temperature,
humidity, wind speed and solar radiation information col-
lected over hourly interval bases. In this study, our objective
is to maintain Greenhouse indoor temperature, CO, level
and humidity within desired user settings. Original data is
collected over hourly interval thus having 15 x 24 = 360
total instances. In our simulation setup, we consider interval
size of 10 minutes, therefore we have used linear interpo-
lation to expand the collected and total data instances are
15 x 24 x 6 = 2160. Outdoor temperature, CO», and rela-
tive humidity data along with user specified minimum and
maximum settings for each parameter is given in Figure 6.
Besides these three parameters, solar radiation and wind
speed data is also presented in Figure 6 (d) as these two
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external parameters are very crucial and have significant
impact on indoor parameters.

Table 3 presents brief summary of collected data and
user desired minimum and maximum setting for temperature,
humidity and CO; level.

B. NOISE MODELS FOR EVALUATING

ACCURACY OF PREDICTION

1) AVERAGE BASED MODEL

To create dynamically changing conditions, we have assumed
variable error in senor readings based on external param-
eters and actuators operational level using uniform dis-
tribution. The amount of error is randomly generated
but its proportional to the average of accumulated error
components for each parameter. In other words, noisy
sensor readings are generated for temperature (senr),
humidity (seny) and CO; (senc) level using following
expressions.

seny = GHy +errp - N(—1,1) - St (6)
seny = GHy +errg - N(—1,1) - Sy (7)
senc = GHe +errc -N(—1,1) - S¢ (8)

where GH7y, GHy, and GH¢ denotes the greenhouse actual
temperature, humidity and CO, level. St, Sy, and Sc is
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a random number generator between —1 and 41 using
uniform distribution. Accumulated error factor for tem-
perature (errr), humidity (errg) and CO; level (errc) is
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FIGURE 6. Outdoor environment data (15 days) with user desired settings.
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Outdoor parameters
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values

10, Sy

error scaling factor for temperature, humidity and CO»
level. Results reported is this study are collected with

TABLE 3. Summary of collected data used
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given by
eT +eS+eW +eNVLevel +eNVDur +eFVLevel
errr =
11
n eFVDur +eHLevel +eHDur +eCLevel +eCDur
11
)]
eH+eS+eW +eNVLevel +eNVDur +eFVLevel
erry =
11
+eF VDur + eHumLevel + eHumDur + eFogLevel
11
eFolngur (10)
eC + eS + eW + eNVLevel + eNVDur + eFVLevel
errc =
9
eFVDur + eCGenLevel + eCGenDur
+ (1D

9
where €T, eH, eC, eS, eW, eNVLevel, eNVDur, eFVLevel,
eFVDur, eHLevel, eHDur, eCLevel, eCDur, eHumLevel,
eHumDur, eFogl evel, eFogDur, eCGenLevel, eCGenDur are
the normalized error factors due to indoor and outdoor tem-
perature difference, indoor and outdoor humidity difference,
indoor and outdoor CO; level difference, solar radiation,
wind speed, natural ventilation level and duration, forced ven-
tilation level and duration, heater level and duration, chiller
level and duration, dehumidifier level and duration, fogging
system level and duration, CO, generator level and duration,
respectively. Table 4 presents the summary of resultant error
measure due to above formulation in temperature, CO, and
humidity sensor readings collected from experimental results.

TABLE 4. Error measures in temperature, CO, and humidity sensor
readings using average based model.

where GH7, GHy, and GH¢ denotes the greenhouse actual
temperature, humidity and CO, level. St, Sy, and Sc is
error scaling factor for temperature, humidity and CO; level.
Results reported is this study with maximum based model are
collected with S7 = 5,8y = 5,and S¢ = 50. N(—1, +1)isa
random number generator between —1 and 41 using uniform
distribution. Accumulated error factor for temperature (errr),
humidity (erry) and CO» level (errc) is given by

errr = Max(eT + eS + eW + eNVLevel + eNVDur

+ eFVLevel + eFVDur + eHLevel + eHDur

+ eCLevel + eCDur) (15)
erryg = Max(eH + eS + eW + eNVLevel + eNVDur

+ eFVLevel + eFVDur + eHumlLevel

+ eHumDur + eFogLevel 4 eFogDur) (16)
errc = Max(eC + eS + eW + eNVLevel + eNVDur

+ eFVLevel + eFVDur + eCGenLevel

+ eCGenDur) (17)

Table 5 presents the summary of resultant error measure
due to above formulation in temperature, CO; and humidity
sensor readings collected from experimental results.

TABLE 5. Error measures in temperature, CO, and humidity sensor
readings using maximum based model.

Measure Temperature | CO2 | Humidity
Min Error -5 -49 -5
Max Error 4 33 4
Average Error 0.05 | -0.39 -0.26

Measure Temperature | CO> Humidity
Min Error -1.66 | -34.74 -2.16
Max Error 2.11 26.13 2.5
Average Error 0.07 -0.07 0.03

2) MAXIMUM BASED MODEL

Initially, the average based model was used to generate noise
in sensor readings. However, the resultant error was very
small as shown in Table 4. Therefore, another set of exper-
iments were conducted with maximum based error model
to highlight the gain in accuracy by learning to prediction
scheme. This is to create dynamically changing conditions,
we have assumed variable error in senor readings based on
external parameters and actuators operational level using uni-
form distribution. Amount of error is randomly generated but
its proportional to the maximum error components for each
parameter. In other words, noisy senor readings are generated
for temperature (sent), humidity (seng) and CO; (senc) level
using following expressions.

seny = GHr +errr -N(—1,1) - St (12)
seny = GHy +errg - N(—1,1) - Sy (13)
senc = GHc +err¢c -N(—1,1) - S¢ (14)
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C. SIMULATION SCENARIOS FOR

PERFORMANCE EVALUATION

Experimental results are collected for two different scenarios.
In Case Study-A, error in sensor readings is generated using
the average based model. In Case Study-B, error in sen-
sor readings is generated using the maximum based model.
Table 6 presents the summary configuration of various mod-
ules and experimental setup for the two selected scenarios.

D. TRAINING AND TESTING OF LEARNING MODULES
For training and testing of learning modules, we have con-
ducted repeated number of experiments and collected the
simulation data. During simulation execution, we maintain
log/trace files that holds various required data e.g. current
indoor parameters values, corresponding actuator operational
status and outdoor environmental conditions. In the following
subsections, we briefly discuss about the collected data and
results of training and testing of learning modules, separately.
Sample view of collected data for the training of tem-
perature based Kalman filter learning module is provided
in Table 7. This is just to give an idea about data distribution.
Similarly, we have training dataset collected for training of
learning modules for error prediction and tuning of Kalman
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TABLE 6. Simulation scenarios for performance analysis.

Scenario Scheme Algorithm Used Noise Model
Baseline -
Case Study-A | Prediction . Kalman filter Average based Model
Learning to Prediction | Kalman filter with ANN
Baseline -
Case Study-B Predlc-tlon . Kalman filter . Maximum based Model
Learning to Prediction | Kalman filter with ANN
TABLE 7. Sample data for training of ANN based learning module for temperature.
Inputs Output
Natural Vent. | Forced Vent. | Heater chiller
S.No. | Ext. Temp | Solar Radiation | Wind Speed | Sensor Temp | Level [ Dur | Level [ Dur | Level [ Dur | Level | Dur | errinTemp
1 17.16 0 24.63 26 10 10 0 0 0 0 0 0 -2.58
2 17.19 0 24.44 17 0 0 0 0 10 10 0 0 -2.76
3 17.22 0 24.26 23 0 0 9 10 0 0 0 0 -2.34
4 17.24 0 24.07 33 0 0 10 10 0 0 0 0 -2.88
5 17.27 0 23.89 26 0 0 10 10 0 0 0 0 -2.56
6 17.3 0 2377 31 7 10 0 0 0 0 0 0 -2.51
7 17.33 0 23.51 34 0 0 0 0 0 0 0 0 -1.1
8 17.2 0 23.14 22 9 10 0 0 0 0 0 0 -2.28
9 17.07 0 22.77 24 0 0 0 0 0 0 0 0 -0.65
10 16.94 0 22.39 35 8 10 0 0 0 0 0 0 -2.78
10000 16.54 0 21.27 22 0 0 6 10 0 0 0 0 -2.01

filter modules for noise removal in CO, and humidity sensors
readings.

In these experiments, we have used 75% of available data
for training and 25% is used for testing. The training data in
these experiments have 10000 records. During the training
process, different settings of ANN algorithms are tested with
different number of neurons in the hidden layer, changing
learning rates and activation function using 4-fold cross-
validation technique to eliminate biasness in training.

The comparison of the predicted and actual errors in sen-
sors readings is illustrated in Figure 7 for training data. The
results indicate that our proposed prediction algorithm per-
forms well. In order to present the comparison results more
effectively for better understanding, the absolute error has
been calculated as shown in Figure 7. The absolute error
values indicate that the majority of the values lies in the
range of [—.5, +.5], [-2, +2], [-0.1, 40.1] for temperature,
CO;, and humidity, respectively. The root mean square error
(RMSE) for temperature is 0.067, for CO; is 1.324, and for
humidity is 0.8. These values indicate that the performance
of the proposed method is quite impressive. These results
measure the performance of the model as well as make us
confident to utilize the training model to predict the error and
tune the related Kalman filter modules.

VI. RESULTS AND DISCUSSION

A. CASE-STUDY A

In this part, we have used average based model for simulating
noisy sensor reading in greenhouse indoor environment due
to calibration and locality errors. Figure 8 presents prediction
results for temperature sensor reading of the three schemes.
It should be noted that actual temperature reading indicate
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the real sensor readings (without error). Furthermore, actual
temperature sensor readings in each case looks different
and this is because of the different optimization procedure
and resultant actuators operations. Baseline scheme does not
use any prediction algorithm and it simply make decision
based on the noises sensor reading. In prediction scheme,
temperature prediction results by Kalman filter (without
learning) attempts to remove the fluctuation and noise from
sensor readings and resultant graph is smoother as com-
pared to baseline scheme. In the proposed learning to predic-
tion scheme, Kalman filter algorithm is continuously tuned
by learning module and its prediction results are further
improved.

Figure 9 presents prediction results for CO, sensor reading
of the three schemes. It should be noted that the actual CO,
reading indicates the real sensor readings (without error).
Furthermore, actual CO, sensor readings in each case looks
different and this is because of the different optimization pro-
cedures and resultant actuators operations. Baseline scheme
does not use any prediction algorithm and it simply makes
decision based on the noisy sensor reading. In the prediction
scheme, CO, prediction results by Kalman filter (without
learning) attempts to remove the fluctuation and noise from
sensor readings and resultant graph is smoother as compared
to the baseline scheme. In the proposed learning to prediction
scheme, the Kalman filter algorithm is continuously tuned
by learning module and its prediction results are further
improved.

Figure 10 presents prediction results for humidity sen-
sor reading of the three schemes. It should be noted that
actual humidity reading indicate the real sensor readings
(without error). Furthermore, actual humidity sensor readings
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FIGURE 7. Testing results of learning modules for prediction part after training.

in each case looks different and this is because of the dif-
ferent optimization procedure and resultant actuators opera-
tions. Baseline scheme does not use any prediction algorithm
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FIGURE 8. Temperature prediction results for the three schemes (Case Study-A).

and it simply makes decision based on the noises sensor
reading. In prediction scheme, humidity prediction results
by Kalman filter (without learning) attempts to remove the
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FIGURE 9. CO, prediction results for the three schemes (Case Study-A).

fluctuation and noise from sensor readings and resultant
graph is smoother as compared to baseline scheme. In the
proposed learning to prediction scheme, the Kalman filter
algorithm is continuously tuned by learning module and its
prediction results are further improved.

Comparative analysis of prediction part results for indoor
parameters predictions from noisy sensor readings given
in Figure 8, Figure 9, Figure 10 reveals that proposed learning
to prediction scheme perform slightly better than the other
two schemes in predicting the actual indoor parameters values
from noisy sensor readings. However, the difference is not
clearly visible in the graphical results, therefore we conduct
statistical analysis of the prediction results using root mean
squared error (RMSE) metric (Equation 18).

(18)

Statistical summary of the results for case-study A is pre-
sented in Table 8. Best results for Kalman filter algorithm
(without learning module) were obtained with a fix value of
R = 10 and presented in this table. Similarly, best results for
Kalman filter with ANN learning module are reported in this
table with F = 0.01. Proposed learning to prediction model
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TABLE 8. Statistical summary of prediction part results (Case Study-A).

Parameter | Scheme RMSE
Baseline Scheme 0.32

Temperature Pred@cted (Kalme}n Filter) ' 0.18
Predicted (Learning to Kalman Filter) 0.15

Baseline Scheme 3.21

COs Predicted (Kalman Filter) 1.26
Predicted (Learning to Kalman Filter) 1.22

Baseline Scheme 0.35

Humidity Pred%cted (Kalme}n Filter) . 0.2
Predicted (Learning to Kalman Filter) 0.18

results outperforms other two schemes for each of the selected
greenhouse indoor parameter.

However, very low relative improvement can be observed
in prediction accuracy of proposed learning to prediction
model when compared to results of Kalman filter without
learning module. This is due to the fact that average based
model results in very low noise in sensor readings. We can see
from Table 4 that absolute error in CO; is higher and therefore
relative improvement of proposed scheme is also significant
for CO; sensor readings.

B. CASE-STUDY B
In this part, we have used maximum based model for
generating noise in sensor readings. Figure 11 presents
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FIGURE 11. Temperature prediction results for the three schemes (Case Study-B).

prediction results for temperature sensor reading of the three
schemes. It should be noted that the actual temperature
reading indicates the real sensor readings (without error).
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Furthermore, actual temperature sensor readings in each
case looks different and this is because of the different
optimization procedure and resultant actuators operations.
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FIGURE 12. CO, prediction results for the three schemes (Case Study-B).

The baseline scheme does not use any prediction algorithm
and it simply makes decision based on the noises sensor
reading. These results have higher noise as compared to the
results of Case Study-A with average based noise model.
In the prediction scheme, temperature prediction results by
the Kalman filter (without learning) attempts to remove the
fluctuation and noise from sensor readings and resultant
graph is smoother as compared to baseline scheme. In the
proposed learning to optimization scheme, the Kalman filter
algorithm is continuously tuned by learning module and its
prediction results are further improved.

Figure 12 presents prediction results for CO; sensor read-
ing of the three schemes. It should be noted that actual
CO; reading indicate the real sensor readings (without error).
Furthermore, actual CO; sensor readings in each case looks
different and this is because of the different optimization pro-
cedure and resultant actuators operations. Baseline scheme
does not use any prediction algorithm and it simply make
decision based on the noises sensor reading. These results
have higher noise as compared to Case Study-A results with
average based noise model. In prediction scheme, tempera-
ture prediction results by the Kalman filter (without learning)
attempts to remove the fluctuation and noise from sensor
readings and resultant graph is smoother as compared to base-
line scheme. In the proposed learning to prediction scheme,
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the Kalman filter algorithm is continuously tuned by learning
module and its prediction results are further improved.

Figure 13 presents prediction results for humidity sen-
sor reading of the three schemes. It should be noted that
actual humidity reading indicate the real sensor readings
(without error). Furthermore, actual humidity sensor readings
in each case looks different and this is because of the different
optimization procedure and resultant actuators operations.
Baseline scheme does not use any prediction algorithm and
it simply makes decision based on the noises sensor reading.
These results have higher noise as compared to Case Study-A
results with average based noise model. In prediction scheme,
temperature prediction results by the Kalman filter (without
learning) attempts to remove the fluctuation and noise from
sensor readings and resultant graph is smoother as compared
to baseline scheme. In the proposed learning to prediction
scheme, the Kalman filter algorithm is continuously tuned
by learning module and its prediction results are further
improved.

Comparative analysis of prediction part results for indoor
parameters predictions from noisy sensor readings given
in Figure 11, Figure 12, and Figure 13 reveals that proposed
learning to prediction scheme perform slightly better than the
other two schemes in predicting the actual indoor parameters
values from noisy sensor readings. Due to relatively higher
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FIGURE 13. Humidity prediction results for the three schemes (Case Study-B).

TABLE 9. Statistical summary of prediction part results (Case Study-B).

Parameter | Scheme RMSE
Baseline Scheme 0.8

Temperature Pred%cted (Kalmz.m Filter) . 0.26
Predicted (Learning to Kalman Filter) 0.2

Baseline Scheme 6.26

CO, Predicted (Kalman Filter) 2.27
Predicted (Learning to Kalman Filter) 1.29

Baseline Scheme 0.98

Humidity Pred%cted (Kalmz.m Filter) . 0.25
Predicted (Learning to Kalman Filter) 0.14

error rate, the difference is more visible in the graphical
results as compared to Case Study-A results. For further
quantification, we conduct statistical analysis of the pre-
diction results using root mean squared error metric given
in Equation 18. Statistical measures are used for quantifi-
able comparative analysis by summarizing the results in the
form of a single statistical value. Statistical summary of the
results for case-study B is presented in Table 9. Best results
for Kalman filter algorithm (without learning module) were
obtained with a fix value of R = 10 and presented in this
table. Similarly, best results for Kalman filter with ANN
learning module are reported in this table with FF = 0.1.
Proposed learning to prediction model again outperforms
other two schemes for each of the selected greenhouse indoor
parameter.

Contrary to the case-study A, significant relative improve-
ment can be observed in prediction accuracy of proposed

159386

learning to prediction model when compared to results of
Kalman filter without learning module. This is due to the fact
that maximum based model results in relatively high noise
in sensor readings. We can see from Table 5 that absolute
error in all parameters is much higher as compared to average
based model and therefore relative improvement of proposed
scheme is also significant for all sensor readings.

VIi. CONCLUSION AND FUTURE WORK

A novel model based on learning to prediction is presented in
this article to improve the accuracy of prediction algorithms
in dynamically changing conditions. Conventional prediction
algorithms are locked after training and they fail to adapt with
changing operational conditions. To address this limitation,
the proposed learning to prediction model continuously mon-
itor the environment and performance of the prediction algo-
rithm and when triggers are observed then internal parameters
of prediction algorithm are tuned. For experimental anal-
ysis of the proposed model, we have considered a green-
house indoor environment where the Kalman filter algorithm
prediction accuracy is degraded due to changing external
environmental weather and internal operational condition of
various actuators. A learning module based on ANN is used
to improve the performance of the Kalman filter algorithm
by tuning its parameter R. In this study, separate instance of
Kalam filter algorithm is used for each selected indoor param-
eter i.e. temperature, CO, and humidity. With each Kalam
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filter instance, we have a learning module based on ANN.
These learning modules take appropriate parameters as input
such as external weather and internal actuator operational sta-
tus, to predict estimated error err in sensor readings as output.
Afterwards, err is divided by a constant factor F' to obtain
updated value of R in corresponding Kalman filter module
which is further used in computation of Kalman gain K.
Experiments are conducted with different noise models to
generate noise in sensor reading i.e. average and maximum
based noise models. Results of proposed learning model are
compared with baseline scheme and conventional Kalman
filter algorithm. Comparative analysis of the results clearly
indicate that proposed learning to prediction model have sig-
nificantly improved the accuracy of Kalman filter algorithm.
Furthermore, it was also observed that performance gain in
prediction accuracy is directly proportional to the amount
of noise introduced in sensor readings. By comparing the
accuracy of proposed model based on learning with con-
ventional Kalman filter algorithm in terms of RMSE metric,
relative improvement in results is 16.66% and 23.07% for
temperature, 3.17% and 47.17% for CO;, and 10% and 44%
for humidity, with average and maximum based error models,
respectively. In the future, we are looking forward to extend
this study in two directions (a) use deep learning algorithms
(instead of ANN) to tune the performance of other prediction
algorithms (b) conduct experimental analysis with big data in
more complex real world applications to further establish the
validity of proposed learning to prediction mechanism.
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