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ABSTRACT During daily subway operation, station closure has large impact on subway system organization
and has received increasing attention. This article proposes an anomaly detection method based on ensemble
algorithms to determine the range of station closure influence on passenger flow. Firstly, Ensemble Algo-
rithm I is developed to identify the stations with passenger flow volume anomaly and origin-destination
(OD) pairs with volume anomaly. Secondly, Ensemble Algorithm II is proposed to identify the OD pairs
with travel time anomaly. Then, the spatial variation in passenger flow caused by station closure, i.e. shift of
passenger flow to neighboring stations and shift of path flow, is analyzed, and the spatial-temporal influence
range of station closure is determined. A case study of the Beijing subway system is performed to illustrate
the validity of the proposed method.Compared with sub algorithm of ensemble learning and KNN algorithm,
Ensemble Algorithm I and II are more robust and have less misjudgment.

INDEX TERMS Date driven, passenger flow anomaly, spatial-temporal influence detection, station closure,
weighted ensemble algorithm.

I. INTRODUCTION
Because the pressure of city traffic increases, subway is
favored as an advanced urban rapid transit system. Subway
plays a vital role in Beijing traffic, and its normal operation
provides great convenience to people’s life. The total passen-
ger volume per day in the subway system is approximately
12 million per day [1], [2]. However, along with the increase
of large-scale activities, relevant stations are closed and a
large number of subway passengers are inevitably affected.
Therefore, it is crucial for managers to focus on subway
operations under station closure conditions to improve the
service quality.

In fact, local closure of stations will affect the whole
subway system in multiple perspectives. On the one hand,
some passengers cannot follow their daily travel routine and
the inbound and outbound volumes of the affected stations
will change [3], [4]. On the other hand, the closure of transfer
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stations results in some passengers failing to transfer as usual.
Correspondingly, these passengers have to change their travel
route, and passenger distribution across the subway network
will significantly change, as well as the travel time of these
passengers [5], [6]. Therefore, it is critical for managers to
understand which passengers are affected and how they are
affected for better operations under station closure.

The review of relevant research focuses on the follow-
ing aspects: (a) changes of passenger behavior under sta-
tion closure; (b) changes of passenger flow volume under
station closure; (c) anomaly detection algorithms based on
smart card data; and (d) interaction between travel demand
and railway services. Many scholars have widely studied the
changes of passenger behavior in anomalous scenarios [5],
[7]–[12]. Pnevmatikou et al. [5] developed the joint RP/SP
nested logit model to analyze the mode choice during a long-
term subway service disruption. Nazem et al. [7] analyzed
the changes of travel behavior and the impacts on transit
customers’ behavior due to public transit service disrup-
tions. Nguyen-Phuoc et al. [8] studied how public transport
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users adjusted their travel behaviors if public transport was
ceased. Sun et al. [10] proposed a novel approach to identify
disruptions and evaluate their influence on travel time and
delays. Zhang et al. [11] leveraged L-space topology to show
that the Shanghai metro had strong robustness in terms of
connectivity under random interruptions. Akyol et al. [13]
utilized the Eclipse SUMO micro-simulator in conjunction
with TraCI and proposed an adaptive traffic control system
considering the traffic flows of road vehicles and pedestrians
with field data. Akyol et al. [14] adapted Split, Cycle, and
Offset Optimization Technique (SCOOT) in order to manage
the pedestrian and vehicular traffic. However, none of the
above studies focuses on the origin or destination station
selection under station closure.

There are a number of studies analyzing passenger
flow under unconventional subway scenarios in the field.
Sun and Guan [15] proposed a methodology for measuring
the vulnerability of a subway network from line opera-
tion perspective. Louie et al. [16] developed an empirical
model to predict the effect of incident characteristics on
the duration of delays in subway operations in Toronto.
Malandri et al. [17] studied the evolution of interact rela-
tionship between the passenger volume and capacity ratio
throughout the network to measure the spatial and tempo-
ral extents of the impacts caused by an unplanned service
segment disruption. Wang et al. [18] proposed a model
called the elastic abnormality detection for outflow model
to detect passenger outflow anomalies and to alarm admin-
istrators in real time. Wei and Chen [19] proposed a hybrid
empirical mode decomposition and back-propagation neu-
ral networks(EMD–BPN) approach to predict the short-term
passenger flow in metro systems. Liu et al. [20] developed
an end-to-end deep learning architecture to predict the metro
passenger flow, which achieved a high prediction accuracy.
Celikoglu and Cigizoglu [21] used ANN method, general-
ized regression neural network (GRNN) to forecast daily trip
flows. Celikoglu and Cigizoglu [22] used two different ANN
algorithms, feed forward back-propagation (FFBP) and radial
basis function (RBF) to forecast daily trip flow. However,
there are little research on OD and travel time analysis in case
of station closure.

c) Anomaly detection is a problem of finding out-
liers in the data. To date, many anomaly detection
techniques have been specifically developed for various
applications [23]–[29]. Pang et al. [27] adopted statistics
of likelihood-ratio test to describe traffic patterns by using
global positioning system(GPS) data from taxis to monitor
the emergence of unexpected behavior in the metropolitan
area of Beijing. Zhang et al. [29] proposed the dictionary-
based compression theory for regional traffic flow pattern
identification and anomaly detection within a large-scale traf-
fic network. Celikoglu and Silgu [30] used flow dynamics
specific to each of the cells to determine the mode of pre-
vailing traffic conditions and then reconstructed by neural
methods to obtain classification of flow patterns over the
fundamental diagram. Celikoglu [31] proposed a dynamic

approach to simulate specify flow pattern variations and
incorporate the neural network theory to reconstruct real-time
traffic dynamics. Yap et al. [32] developed a new transfer
inference algorithm to infer journeys from raw smart card
transactions in an accurate way during both disrupted and
undisrupted operations. A thorough literature review con-
cluded that despite that much technique was developed in
cluster analysis and anomaly detection [24], no existing tech-
nique was directly applicable to analyze AFC data, so as to
solve the anomaly detection problem for station closure.

d) Some studies analyzed the interaction between travel
demand and railway services. Xu et al. [33] learned the
route choice behavior of passengers from Auto Fare Col-
lection (AFC), timetable, and train loading data using a
method combined with Bayesian inference and Metropolis-
Hasting sampling. Pineda et al. [34] considered the important
expansion of Metro network, compared the information of
origin-destination (OD) matrices, transfers, and passenger
load levels from two data sources for Metrode Santiago.
However, few studies have analyzed the relation between
travel demand and railway service in case of station closure,
so as advice the subway managers to make targeted practical
countermeasures.

Moreover, these above studies hardly involve AFC data
mining to investigate the field of station closure, although
AFC data are widely used to analyze various behavior charac-
teristics of subway passengers. In fact, AFC data can be used
to split travel time [35], predict passenger route choices [33],
and identify passenger flow characteristics [2], [36]–[38].
In this study, AFC data are applied to explore the anomalous
characteristics of passenger flow under station closure.

The changes in passenger flow under station closure in
subway networks are mostly considered, while the changes
in passenger behavior under station closure are not. Further-
more, few studies have examined the spatiotemporal change
mechanism of the OD volume under station closure from
AFC data, although there are many excellent anomaly detec-
tion approaches. This article contributes to the current field
of study by developing a data-driven approach for detecting
passenger flow anomalies to accurately capture passenger
travel choice and passenger flow distribution across the net-
work. The main contributions of this article are summarized
as follows:

(1) A data-driven algorithm based on two ensemble algo-
rithms is proposed to detect anomaly of passenger flow under
station closure. The data-driven algorithm can compensate for
detection errors caused by a single distribution algorithm of
anomaly detection, considering the fact that the data might
follow different distributions. Moreover, it effectively over-
comes the single-learner disadvantage of being too sensitive
or dull to detect anomaly data of passenger flow due to the
parallel calculation of the sub-algorithms.The algorithm can
process a large amount of data quickly.The result is reason-
able and better than the traditional algorithm.

(2) The spatial and temporal impact of station closure
on subway passenger flow is analyzed, and a series of
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phenomena caused by station closure from multiple aspects
are examined, such as the inbound and outbound volumes
in stations, passenger flow between OD pairs, and passenger
travel time. The analysis of inbound and outbound volumes
can help to grasp the overcrowding situation of station. Fur-
ther, the analysis of passenger flow and travel time between
OD pairs can help to avoid overcrowding or too long travel
time between OD pairs by adjusting the operation of subway.
This study is the first attempt to analyze passenger flow
under station closure in various perspectives and contributes
to understand the change mechanism of passenger flow in
stations, OD pairs, and paths under station closure, as well
as the change mechanism of travel time.

(3) A case study of the Beijing subway is conducted and
two unique phenomena caused by station closure are dis-
cussed, including a shift in passenger flow to neighboring sta-
tions and a shift in path flow of some OD pairs. These results
contribute to accurately managing affected stations, affected
passengers, and affected OD under station closure, which can
help subway managers to identify abnormal or overcrowded
stations and passenger flow and making targeted practical
countermeasures.

The remainder of this article is organized as follows: in
Section 2, the methodology to identify passenger flow and
OD anomalies from a spatiotemporal perspective is proposed.
In Section 3 and Section 4, a case study of the Beijing
subway network verifies the proposed method. In Section 5,
the conclusions are made.

II. METHOD
This section proposes two ensemble algorithms of anomaly
detection at the spatial and temporal levels. The test results
of these two algorithms are complementary and computed in
parallel..

A. ENSEMBLE ALGORITHM I
Ensemble Algorithm I, an anomaly identification method
based on passenger flow volume, consists of two steps. The
first step is to conduct a Kolmogorov-Smirnov (K-S) test
to determine the distributions of the inbound and outbound
volumes; and the second step is to apply the anomaly iden-
tification algorithms based on the Poisson distribution, local
outlier factor algorithm, and Grubbs criterion to identify the
passenger flow anomalies and combine them by weighting to
obtain the final result.

1) KOLMOGOROV-SMIRNOV TEST
Let N be the total number of stations in a subway network.
Let the passenger flow volume in ith station be xi, and let
the cumulative distribution function of the passenger flow
volume at the first i stations be F (xi). In this study, the
theoretical distributions of the passenger flow volume at
station i are assumed to be normal distribution G1(xi) and
Poisson distributionG2(xi). The test statistics are then defined

as follows:

DN1 = max
1≤i≤N1

{|F (xi)− G1 (xi)| , |F (xi−1)− G1 (xi)|} (1)

DN2 = max
1≤i≤N2

{|F (xi)− G2 (xi)| , |F (xi−1)− G2 (xi)|} (2)

where N1 represents the sample number of passenger flow
data in the K-S normal distribution test, and N2 represents
the sample number of passenger flow data in the K-S Poisson
distribution test. The distribution of passenger flow volume
can be determined as follows: if DN1 < dN1 , the passenger
flow is subject to the normal distribution; if DN2 < dN2 ,
the passenger flow is subject to the Poisson distribution.
Herein, dN1 and dN2 are the test thresholds obtained by the
threshold table of K-S test statistics.

2) AN ENSEMBLE ALGORITHM FOR PASSENGER FLOW
VOLUME ANOMALY DETECTION
The basic principle of ensemble learning is to train multiple
individual learners or base learners, and then combine them
to produce better performance using a certain strategy such
as Voting.

The hypothesis tests based on the Poisson distribution,
LOF algorithm, and Grubbs criterion are regarded as the base
learners, and weighted combinations are made according to
the results of passenger flow anomaly detection. Among the
base learners, the anomaly index of the Poisson distribu-
tion hypothesis test is recorded as the Poisson distribution
statistic (AI1), the anomaly index of the LOF algorithm is
recorded as the local outlier factor (AI2), and the anomaly
index of the Grubbs criterion is recorded as the residual
of the predicted value (AI3). Note that the coefficient of
variation represents the dispersion degree of an anomaly
index. If the anomaly dispersion degree of the algorithm is
high, the algorithm is sensitive. In contrast, if the degree is
low, the algorithm is not sensitive. To reduce the impact of
the algorithm sensitivity differences on the ensemble results,
the weight of one anomaly index is defined as follows:

ωj =
1
cvj
, ∀j = 1, 2, 3 (3)

where cvj is the variation coefficient of anomaly index AIj.
Then, the final anomaly index is

AI =
3∑
j=1

ω∗j AIj (4)

Briefly, the flow chart is shown below. Next, more details of
the algorithm will be discussed.

a: ANOMALY TEST OF PASSENGER FLOW VOLUME BASED
ON THE POISSON DISTRIBUTION
Let IXNi and OXNi represent the sets of the inbound volume
and outbound volume, respectively, at station i during the
normal period. Let xCi and oxCi be the inbound volume and
outbound volume, respectively, at station i during the sta-
tion closure period. Let IXi and OXi be the inbound volume
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and outbound volume, respectively, at station i during each
period, i.e., IXi = IXNi ∪ x

C
i and OXi = OXNi ∪ ox

C
i . Let

IXC and OXC be the whole sets of inbound volume data
and outbound volume data, respectively, of all stations under
station closure. Let �I and �O be the sets of the abnormal
inbound volume and outbound volume data, respectively,
at all stations.

Assuming that the inbound volume and outbound volume
in a station during the station closure period are both normal,
they should be subject to the same distribution as that of the
volume data in normal period. Therefore, a hypothesis test is
performed by establishing the null hypothesis and alternative
hypothesis as follows:

Null hypothesis H0: The inbound/outbound volume obeys
the original Poisson distribution;

Alternative hypothesis H1: The inbound/outbound volume
does not obey the original Poisson distribution.

The hypothesis test is performedwith the significance level
of 0.01. The data of the inbound and outbound volumes at all
stations during the closure period are checked as follows:

Step 1: Estimate the parameters of Poisson distribution
based on normal data sets IXNi ,OX

N
i ;

Step 2: Input the passenger flow data sets IXC and OXC

during station closure and calculate the distribution probabil-
ity of the inbound/outbound data in all stations AI1 based on
the Poisson distribution during station closure;

Step 3: Evaluate whether to accept the original hypothesis
to determine whether the data are abnormal. If H1 is accepted
for the inbound (or outbound) data at station i, the data are
abnormal and �I = �I ∪ {i} (�O = �O ∪ {i});
Step 4: Output the abnormal stations in the set of�I ∪�O.

b: PASSENGER FLOW ANOMALY TEST BASED ON THE LOF
ALGORITHM
The LOF algorithm [40] determines the local outlier factor
based on density detection. The algorithm calculates an out-
lier factor LOF for each data point and identifies the outliers
by evaluating the closeness of their LOF with 1. It is mainly
judged whether the point is anomalous by comparing the
density of each point p with that of other points. The lower
the density of point p is, the more likely the point is to be
identified as anomalous.

Let the first quantile of the passenger flow volume (i.e., the
inbound and outbound volumes) be Q1 and the third quantile
of the passenger flow volume be Q3. The main steps are as
follows:

Step 1: Calculate the local outlier factor of the pas-
senger flow volume in all stations during the station
closure period and form these factors into a series
{LOF1 (p) ,LOF2 (p) , . . .LOFN (p)}. The local outlier factor
of the passenger flow volume (i.e., inbound and outbound
volumes) at station i can be calculated as follows:

LOFi (p) =

∑
o∈NK (p)

LRDK (o)
LRDK (p)

|NK (p)|
, ∀i = 1, 2, . . . ,N (5)

LRDK (p) =
1∑

o∈NK (p)
RD(p,o)

|NK (p)|

=
|NK (p)|∑

o∈NK (p) RD (p, o)
(6)

RD (p, o) = max {dK (o) , d (p, o)} (7)

d (p, o) = x (p)− x (o) , ∀o, p ∈ IXi(OXi) (8)

where x (p) represents the passenger flow volume of point p,
dK (p) is the distance between p and the K th point closest
to p, NK (p) is the p neighborhood with distance dK (p), and
|NK (p) | is the number of points in the neighborhood, for
|NK (p) | ≥ K . Herein, K is a given parameter.
Step 2: Calculate the threshold of anomaly recognition for

the local outlier factor as follows:

ω = Q3 + 1.5 (Q3 − Q1) (9)

Step 3: Determine whether station i is an abnormal station.
If the local outlier factor of the passenger flow volume at
station i is higher thanω, station i is regarded as an anomalous
station, i.e., �I = �I ∪ {i} (�O = �O ∪ {i}).

Step 4: Output the abnormal stations in the set of�I ∪�O.

c: PASSENGER FLOW ANOMALY DETECTION BASED ON THE
GRUBBS CRITERION
TheGrubbs criterion is themost efficient in those cases where
abnormal values are mixed in the sample data [39], [40]. The
Grubbs criterion states that if the residual Vi corresponding
to a measured value xi (i.e., the inbound volume of station
i) satisfies the following equation, then the measured value
(i.e., the inbound volume) has a large error, and, as a result,
xi should be eliminated as an abnormal datum:

|Vi| = |xi − x̄i| ≥ g(|IXi|, a)σ (xi) (10)

where x̄i represents the sample mean; σ (xi) represents the
sample standard deviation; and g(|IXi|, a) depends on the
number of measurements |IXi| and the significance level.
Herein, x̄i =

∑
x∈IXi

x/|IXi|,∀i = 1, 2, ..,N , and σ (xi) =√
1
|IXi|

|IXi|∑
k=1

(xi − x̄i)2 for the inbound volume. Note that the

level of significance is usually 0.01 or 0.05. Note that |Vi|
is also the anomaly index AI3 of the ensemble algorithm.

B. ENSEMBLE ALGORITHM II
Ensemble Algorithm II is based on the distribution detection
of the travel time data in the closure period and the normal
period. The independent sample t-test, Wilcoxon signed rank
test, andMann-Whitney rank sum test are used as basic learn-
ers, and these anomaly detection results are weighted and
combined to generate the final result. The weighting method
is defined similarly as in the above section. The anomaly
indexes of the independent sample t-test, Wilcoxon signed
rank test, and Mann-Whitney rank sum test are defined as
AI4,AI5, and AI6, respectively. The basic process of Ensem-
ble Algorithm II is as the following Fig. 2. Next, more details
of Ensemble Algorithm II will be discussed.
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FIGURE 1. Structure of the ensemble algorithm for passenger flow
anomaly detection.

FIGURE 2. The structure of Ensemble Algorithm II.

1) TRAVEL TIME ANOMALY DETECTION METHOD BASED ON
THE INDEPENDENT SAMPLE T-TEST
The independent t-test is introduced to test the difference in
the data obtained from two groups of independent samples to
check whether the two samples come from the same popula-
tion. The steps are detailed as follows:

Step 1: Establish the original hypothesis and alternative
hypothesis to determine the significance level.

Step 2: Choose the test method and calculate the statistic.
The equation of the T statistic is as following:

t =
X̄1 − X̄2√

(n1−1)S21+(n2−1)S
2
2

n1+n2−2

(
1
n1
+

1
n2

) (11)

where X̄1 and X̄2 represent the mean travel time during
the normal period and station closure, respectively; S21 and
S22 represent the standard deviations of the travel time dur-
ing the normal period and station closure, respectively; and
n1 and n2 represent the corresponding two sample sizes,
respectively.

Step 3: Calculate the t statistics, determine the P value
according to the t critical value table, and finally obtain
the conclusion. The t statistic is also the anomaly
index AI4.

2) TRAVEL TIME ANOMALY DETECTION METHOD BASED ON
THE WILCOXON SIGNED RANK TEST
The Wilcoxon signed rank test [37] is developed on the basis
of the symbolic test of paired observation data, which is
more effective than the traditional test of the sign alone. It is
suitable for pairwise comparisons in the T-test since it does
not require that the difference between the paired data obeys
the normal distribution. Since the travel time data may be
subject to different distributions, the Wilcoxon signed rank
test has a wider scope of application than the T-test in travel
time anomaly testing applicability.

Let the mean travel time during the normal time period
be T̄ . Since passenger volumes during station closure and
normal time differ, the data need to be paired first. The
matching rules are as follows: first, the passenger flow data
are sorted according to the travel time of the passenger flow.
Then, the ith data during station closure are matched with
the data during the normal time period, round( i·n2n1 ), where
round(x) represents the rounding of x. Next, the Wilcoxon
signed rank test is performed as follows:

Step 1: Calculate the difference between the pairs of
observed data and rank the corresponding absolute values in
order of size.

Step 2: Calculate the difference between all travel time data
and the mean travel time during the normal time period. If the
difference is positive, the value will be assigned to aggregate
the positive signs T+. If the difference is negative, it will be
assigned to aggregate the negative signs T−.
Step 3: The positive and negative signs, T+ and T−,

respectively, are restored, and the sum of the positive and
negative grades, T+ and T−, respectively, are calculated.
The smaller value between T+ and T− is selected as the
Wilcoxon test statistic T.

Step 4: A judgment is made according to the Wilcoxon
test statistic T. Note that the Wilcoxon test statistic T is the
anomaly index AI5.

3) TRAVEL TIME ANOMALY DETECTION METHOD BASED ON
THE MANN-WHITNEY TEST
TheMann-Whitney rank sum test [38] as a nonparametric test
method is often used to test whether the populations of two
independent samples have significant differences. Compared
with the Wilcoxon signed rank test, the Mann-Whitney test
does not make any assumptions about the data distribution.
At the same time, there is no requirement for the amount of
data of the two samples, and it is not necessary to pair them,
and the information in the samples is fully utilized.

The steps of theMann-Whitney rank sum test are described
as follows:

Step 1: The travel time data during the normal time period
are combined with the travel time data during station closure,
and the ranks Ri are sorted in ascending order of the data size.
Theminimum data level is 1, the second lowest data level is 2,
and so on.

Step 2: Determine the sum of grades of all samples sepa-
rately, for example, R1,R2.
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Step 3: Calculate U1 and U2 of the travel time data during
the normal time period and the travel time data during station
closure, respectively, and the calculation equations are as
follows:

U1 = R1 − n1(n1 + 1)
/
2 (12)

U2 = R2 − n2(n2 + 1)
/
2 (13)

Step 4: Select the smaller value between U1 and U2 to com-
pare with the critical valueUα in the critical value table. If the
selected value is larger than the critical value, the assumption
is established, and there is no significant difference in the
travel time. Let the smaller value between U1 and U2 be the
anomaly index AI6.

III. EXPERIMENT
A. DATA SOURCE
The Olympic Park Station located on both Line 8 and Line 15
in the Beijing subway system was closed from 06:00 on
April 23, 2019, to 20:00 on April 26, 2019. During the station
closure timespan, each train passed through the station with-
out stopping. To analyze the passenger flow using the pro-
posed method, AFC data on all working days from April 8 to
April 26, 2019 are selected. The data includes important
information such as entry time, inbound station, outbound
station, and exit time (see TABLE 1). Accordingly, station
inbound volume, station outbound volume, OD volume, and
travel time of all OD pairs are calculated. The 374 stations
in the Beijing subway system are represented in the form of
sequences for simplicity, as listed in TABLE 2, and the related
OD pairs are summarized in TABLE 3.

TABLE 1. The recorded AFC data.

TABLE 2. The representative sequence of each station in Beijing subway
system.

The influence scope of the closure in the Olympic Park
Station from 7:00-9:00 (i.e., the morning peak hours) on

TABLE 3. The representative sequence of each od in Beijing subway
system.

April 24, 2019 is analyzed. Taking the AFC data during the
morning peak hours on working days of April 8 to April 22 as
the recent passenger flow data, the inbound and outbound
volumes of the 374 stations during the morning peak hours
on April 24 are selected.

B. ANOMALOUS STATION DETECTION BASED ON THE
INBOUND VOLUME
1) ANOMALY DETECTION PROCESS OF THE INBOUND
VOLUME
The stations with anomalous inbound volume are identified
by the proposed Ensemble Algorithm I, which is imple-
mented with MATLAB R2019a. Run the program 100 times
to calculate the average running time. The computer informa-
tion and average running time are as follow:

Model: IFUNK STE003A;
CPU: Intel Core i7-7700HQ;
Memory: 16G;
Video card: Nvidia GeForce GTX 1060(6GB);
Average running time: 35.72s.
First, the corresponding individual identification results

are shown in Fig. 3. According to the first LOF algorithm,
the number of affected stations under station closure is
32 shown in Fig. 3a, such as the Forest Park South Gate
Station (marked by 224), Anli Road Station, Olympic Sports
Center Station, and Olympic Park Station. The 32 stations
are either on Line 8 or Line 15, the same lines with the
closed station. Specifically, the stations with significantly
increased inbound volume are Anli Road Station, Olympic
Sports Center Station, North Beach Station, Yubo Station,
Lincui Bridge Station, South Gate of Forest Park Station,
Shaoyaoju Station, and Wangjingxi Station and the stations
with significantly reduced inbound volume are Olympic Park
Station and Yuzhi Road Station.

The second individual algorithm identifies 16 stations with
anomalous inbound volumes, as shown in Fig. 3b, and more
than half of them coincide with the anomalous points of
the LOF algorithm, which indicates that the two algorithms
are capable of capturing the anomaly in passenger flow to
some extent. Moreover, some stations do not have large
variability but are still marked as anomalous based on the
Poisson distribution anomaly detection results. One possible
explanation is that the variance in the inbound volume in
the Poisson distribution is related to the mean value of the
inbound volume, and the discriminant index of the anomaly
is related to the variance. Sensitivity to fluctuation varies

VOLUME 8, 2020 149607



Y. Wu et al.: Data-Driven Approach to Detect Passenger Flow Anomaly Under Station Closure

FIGURE 3. Abnormal detection results of the inbound volume.

along with the average inbound volumes of different stations.
In the third Grubbs criterion, the inbound volumes in the
stations near the closed station change significantly and these
stations are identified as shown in Fig. 3c, such as the Forest
Park South Gate Station, Anli Road Station, Olympic Park
Station, Olympic Sports Center Station, North Beach Station,
Jiandemen Station, Lin Cui Bridge Station, and Wangjing
West Station (marked by 7, 9, 10, 27, 151, 180, 224, 280,
respectively).

Next, the weights of the three individual algorithms based
on the abnormal indices are calculated according to Eq. (3)
and the results are calculated. The sensitivity of the LOF algo-
rithm is the highest (i.e., 0.2383), followed by that of Poisson
distribution (i.e., 0.3004), and the sensitivity of Grubbs crite-
rion is the lowest (i.e., 0.4613).

Then, the anomaly index of Ensemble algorithm I is shown
in Figs. 4. Note that in Fig. 4, the anomaly detection result
is closer to 0, and the anomaly degree of inbound passenger
flow is lower. Most stations have low anomaly degree, that
is, only certain stations are influenced, such as the stations
near the closure station or near the transfer stations (such as
the Olympic Sports Center Station) marked by color yellow
shown in Fig. 4.

Finally, the results are obtained shown in Fig. 5, the sta-
tions with anomalous inbound volumes aremainly distributed
across the following types of stations.

FIGURE 4. Anomaly detection results of Ensemble Algorithm I based on
inbound volume.

FIGURE 5. Anomaly detection results of the stations by Ensemble
Algorithm I.

I. The stations are near the closed station, such as the
South Gate of the Forest Park Station and the Olympic Center
Station. The inbound volumes in the South Gate of Forest
Park Station and National Olympic Sports Center Station
during regular time are 1682 and 2725, while in the station
closure period, they are 4123 and 4850, respectively. The
change in passenger flow at such stations is clear, and there
are 6 stations near the closed station that are significantly
affected marked by red color in Fig.5. These stations can be
easily identified as anomalous by the three algorithms and
Ensemble Algorithm I.

In fact, due to the zero inbound volume of the closed
station, the inbound volumes of the stations near the
closed station are generally higher. Based on historical data,
the reduction in the inbound volume at Olympic Park Sta-
tion is 10781 while the total number of people entering the
stations near Olympic Park Station increased by 7730. The
percent reduction in the inbound volumes is 28.3%, indicating
that 28.3% of travelers have to abandon their travel routine
or change to other travel modes, and the rest of the travel
demand allocates to the surrounding stations.

II. The other stations are the interchange stations of Line 8
and Line 15, such as the Lin Cuiqiao Station and Huoying
Station. In comparison, the variation of the inbound volume
in these stations is less affected by the closed station. For
example, the average inbound volume of Lin Cuiqiao Station
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is 3229, while in the condition of station closure, the value
is reduced to 2956. As the transfer station is closed, the pas-
senger flow at the nearby transfer stations increases, and the
inbound volumes at the stations increase accordingly for the
reason that the passenger flow of the transfer line transfers to
other transfer lines.

2) COMPARISON OF ENSEMBLE ALGORITHM I WITH
INDIVIDUAL ALGORITHMS BASED ON THE INBOUND
VOLUME
The results of the individual algorithms are compared in
TABLE 4, and their similarity rates are 0.84,0.73, and 0.78,
respectively.The Ensemble Algorithm I is also comparedwith
KNN anomaly detection algorithm.

TABLE 4. The detection results of the stations according to the inbound
volume.

The similarity rates between the anomaly recognition
results of Ensemble Algorithm I and the individual algo-
rithms are higher than 70%, which indicates that the results
are roughly the same. The consistency between Ensemble
Algorithm I and the individual algorithms indicates that the
results of each sub-algorithm are reasonable. There are no
cases where the results of Ensemble Algorithm I are greatly
affected by an unreasonable algorithm. Since the error of
each sub-algorithm is small, Ensemble Algorithm I will not

produce wrong results. That is why the Ensemble Algorithm I
is robust.

Moreover, because the LOF algorithm is sensitive to
passenger flow variability, the normal fluctuation error is
recognized as an anomaly (e.g., Lin Cuiqiao Station is dis-
tinguished as having anomalous data by the LOF algorithm),
but Ensemble Algorithm I avoids the aforementioned.

Further, anomaly detection based on the Poisson distri-
bution considers that a station with large passenger flow
has a large range of passenger flow variation. However,
the algorithm has strict requirements for data distribution.
It is sensitive to data volatility, so it is more prone to
misjudgment.

In addition, some stations are misjudged as anomalous by
the Grubbs criterion, such as the Feibo Station. The normal
average inbound volume in Feibo Station is 1044. However,
on a normal day the inbound volume in Feibo Station is
only 522. Thus, the Grubbs criterion determines the inbound
volume of Feibo station to be anomalous because its inbound
volume is less than the normal average inbound volume.
Ensemble Algorithm I avoids this mistake because the station
is evaluated by the weighted discrimination indicator of the
three algorithms.

KNN algorithm is easier to recognize the normal fluctu-
ation of data as abnormal,such as Lin Cuiqiao, Fengbo and
Wangjing West.For these stations,the difference of inbound
volume during station closure and normal time for these
stations are 273,136,328 respectively,which can be regarded
as normal fluctuation. However,KNN algorithm misjudges
them as anomalous.Ensemble Algorithm I avoids this mistake
because it is more robust.

Ensemble algorithm I combines the characteristics of the
above three algorithms, which not only avoids the shortcom-
ing of the high sensitivity of the LOF algorithm but also
considers the changing proportion and density degree of the
passenger flow data to avoid misjudging normal passenger
flow data.

In short, Ensemble Algorithm I performs better in predic-
tion than individual models alone and KNN algorithm.

3) ANOMALOUS STATION DETECTION BASED ON THE
OUTBOUND VOLUME
a: ANOMALY DETECTION PROCESS OF THE OUTBOUND
VOLUME
Similar to the anomaly detection of inbound volume,
the anomaly identification of outbound volume is also based
on the proposed Ensemble Algorithm I.

The individual identification results of outbound vol-
ume are obtained shown in Figs. 6. Specifically, the LOF
algorithm identifies 18 stations whose outbound volume
is affected by the closed station. The Poisson distribu-
tion anomaly detection algorithm identifies 14 stations with
affected outbound volumes. The Grubbs criterion identifies
15 stations whose outbound volume is affected by the closed
station.
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FIGURE 6. Anomaly detection results of the outbound passenger flow.

The weights of the outbound anomaly detection algorithms
are then calculated and listed in TABLE 5. The final anomaly
index of Ensemble Algorithm I is shown in Fig. 7.

FIGURE 7. Anomaly degree of the outbound volume for each station.

TABLE 5. Weights of anomaly outbound detection algorithms.

Compared with Fig. 4, Fig. 7 has similar visual effects.
That is, the inbound volume and outbound volume in the same
station are positively correlated.

The final detection results in Ensemble Algorithm I are
obtained shown in Fig. 8. The results are similar to the
anomaly identification results of the inbound volume. The
stations with anomalous outbound volume are also classified
in the following two types.

FIGURE 8. Anomaly detection results of the outbound volume based on
Ensemble Algorithm I.

I. The stations around the closed station, such as the North
Beach Station and Olympic Sports Center Station are marked
by red color in Fig.8.

II. The interchange stations of Line 8 and Line 15, such
as the South Exit of Huixin West Street Station and Lishui
Bridge Station are marked by blue color in Fig. 8.

This finding shows that in a bidirectional rail transit sys-
tem, station closure results in the transfer of both inbound and
outbound passengers to the stations near the closed station.
The effects on bidirectional passenger flow between the two
stations are also similar.

b: COMPARISON OF ENSEMBLE ALGORITHM I WITH
INDIVIDUAL ALGORITHMS BASED ON THE OUTBOUND
VOLUME
The detection results of Ensemble Algorithm I are com-
pared with the results of the individual algorithms and KNN
anomaly detection algorithm shown in TABLE 6, and their
similarity rates are 0.85, 0,73, and 0.79, respectively.

The similarity rates between the anomaly recognition
results of the ensemble algorithm and the individual algo-
rithms are higher than 70%. Compared with the anomaly
detection of inbound traffic, the characteristics of single algo-
rithm and Ensemble Algorithm I remain.

Moreover, the performance of these algorithms is dis-
cussed. Firstly, LOF algorithm is sensitive to passenger flow
variability, the normal fluctuation error is recognized as
anomaly. For example, Anli Road Station is distinguished as
having anomalous data by the LOF algorithm (see TABLE 6).
Secondly, the anomaly detection based on the Poisson
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TABLE 6. The detection results of the stations according to the outbound
volume.

distribution has the highest error rate because it has the
strictest requirements for data distribution. For example,
Wangjing West Station is distinguished as abnormal by the
the algorithm (see TABLE 6). Thirdly, the Grubbs crite-
rion judges the outbound volume of Lin Cuiqiao Station to
be anomalous because its outbound volume under station
closure is higher than the normal outbound volume, how-
ever, its outbound volume under station closure is normal
(see TABLE 6). Last,compared with KNN algorithm,
the Ensemble Algorithm I is more accurate in judging the
normal fluctuation of data.For example,Wangjing East Sta-
tion andWangjingWest Station are distinguished as abnormal
by KNN algorithm (see TABLE 6). In summary, the above
Ensemble Algorithm I is applicable to detect anomaly of
inbound and outbound volume, and the results of Ensemble
Algorithm I are more accurate than single algorithms.

IV. IDENTIFICATION OF OD PAIR AFFECTED BY STATION
CLOSURE
A. ANOMALY DETECTION OF OD PAIR BASED ON OD
VOLUME
To further analyze the spatial influence, the proposed Ensem-
ble Algorithm I based on passenger flow volume is applied to
identify anomalous OD pairs. Note that the selected path set
contains 22830 transfer OD pairs at the Olympic Park Station.

The detection results of the individual algorithms are
shown in Fig. 9. Specifically, a total of 653 anomalous traffic
OD pairs are identified according to the LOF algorithm, and
848 anomalous OD pairs are identified based on the Poisson
distribution, while 603 anomalous OD pairs are identified
based on the Grubbs criterion.

FIGURE 9. Anomaly detection results of the passenger flow between the
OD pairs.

The corresponding weights are listed in TABLE 7, and the
final anomaly degree of the OD pairs is shown in Fig. 10.
Most OD pairs are with normal OD volume, and the station
closure has a limited scope of influence on OD pairs.

TABLE 7. Weights of anomaly detection between the OD pairs.

Finally, 553 anomalousODpairs are obtained by Ensemble
Algorithm I shown in Fig. 11. Note that if the color in
the grid tends to be white, the volume of the OD pair is
abnormal. Among these OD pairs, the anomalous OD pairs
are mainly distributed between Line 8 and Line 15. Further,
there are 160 anomalous OD pairs that need to transfer at the
Olympic Park Station. These anomalous OD pairs should be
paid attention to because the shortest paths of these OD pairs
pass through the closed station. In addition, the stations with
abnormal inbound and outbound volume have significantly
more abnormal OD pairs than the other stations. For example,
a station with abnormal inbound and outbound volume is
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FIGURE 10. Anomaly detection results of the passenger flow between
the OD pairs.

FIGURE 11. Anomaly OD pairs detection based on Ensemble Algorithm I.

South Gate of the Forest Park Station (noted as 178), and
it has 74 anomalous origins and 62 anomalous destinations,
which are much more than that of other stations.

B. ANOMALOUS OD DETECTION BASED ON THE TRAVEL
TIME
1) ANOMALOUS OD DETECTION PROCESS BY ENSEMBLE
ALGORITHM II
The above Ensemble Algorithm II is applied to detect the OD
pairs with anomaly travel time from the whole OD pairs.And
it is implemented with the same computer and software.The
average running time is as follow:

Average running time: 103.66s.
The results of detection are shown in Fig.12. Note that if

the color in the grid tends to be white, the travel time of the
OD pairs is abnormal. It is found out that some stations as an
origin station or a destination station are easy to be abnormal,

FIGURE 12. Anomaly detection results of Ensemble Algorithm II.

such as Olympic Sports Center Station (noted as 119). Most
of these stations are identified as abnormal stations in the
abnormal identification of inbound and outbound traffic.

The T-test detects 746 abnormal OD pairs, the Wilcoxon
signed rank test detects 665 abnormal OD pairs, the Mann-
Whitney rank sum test detects 921 abnormal OD pairs, and
Ensemble Algorithm II detects 571 abnormal OD pairs. The
origin stations of the OD pairs with anomalous travel time are
mainly distributed on Line 8, while the destination stations
with abnormal travel time are on Line 14. This is because
Line 14 is only connected to Line 15.When the Olympic Park
Station is closed, the passengers on Line 8 will transfer to
Line 14, which can only be detoured from Line 13, resulting
in unusual travel time.

Compared with the OD pairs with abnormal volume,
ODpairs with abnormal travel time are significantly different.
Only 78 OD pairs are the same in these abnormal detection
results, that is, the time and space impact of station closure
on subway is different. Among the 78 OD pairs, their origins
and destinations are the stations with abnormal inbound and
outbound volumes (i.e. North Beach Station and Anli Road
Station). That is, the abnormal OD pairs are highly related
with the abnormal stations.

In summary, abnormal OD pairs are not only determined
by passenger flow volume in stations, AFC data should be
mined from more dimensions for managers to understand the
shift in passenger flow under station closure.

2) COMPARISON OF ENSEMBLE ALGORITHM II WITH THE
INDIVIDUAL ALGORITHMS
The results of Ensemble Algorithm II are compared with the
results of the individual algorithms are listed in TABLE 8,
and the similarity rates are 0.67, 0.62, and 0.57, respectively.

As shown in TABLE 8, all anomaly detection algorithms
have certain misjudgment. Specifically, the independent sam-
ple T test requires the travel time data to obey the normal
distribution. For example, the OD pair from Beijing South
Railway Station to Anli Road Station has multiple paths,
the normal distribution may not be satisfied and the corre-
sponding detection result is misjudged. The Wilcoxon signed
rank test requires data pairing. However, the number of travel
time data during normal station operation is not necessarily
equal with that during station closure, resulting in certain
degree of information loss and data variation. Thus, the OD
pair from ShaoYaoJu Station to West Exit of Tsinghua East
Road Station is misjudged. The Mann-Whitney test mixes
data and processes the information in the form of ranks,
losing some information which may lead to misjudgment
(i.e., the OD pair from Xinjiekou Station to Wangjing-
dong Station). KNN algorithm identifies data fluctuations as
anomalies(i.e., theODpair fromBeijing South Station toAnli
Road Station).

The similarity rate of the anomaly detection results based
on the travel time is significantly lower than that of the station
anomaly recognition result, and the average similarity rate
is 62.18%.
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TABLE 8. The detection results of the stations according to the travel
time.

In summary, Ensemble Algorithm II is applicable to
detect anomalous OD pair with travel time, and the results
of Ensemble Algorithm II are more accurate than single
algorithms.

C. DISCUSSION
The following topics should be focused on in further studies:

(1) A shift in passenger flow to neighboring stations. Due
to station closure, the travel volume originating from or des-
tining to a closed station is reduced to 0, but this part of
the travel demand still exists. These passengers may change
to another travel mode, and some passengers may choose
to enter or leave the stations nearest to the closed station.
Therefore, the traffic volume of nearby subway stations will
be relatively changed, but how this change occurs needs
further research.

(2) A shift in path flow of some OD pairs. If the closed
station is a transfer station, the travel volumes along the paths
with the closed station as O or D are affected. The travel
volume transferring through the closed station is reduced
to 0. At the same time, the traffic flow along the other paths
between the OD pairs increases.Moreover, the change of path
travel time due to the closed station will cause a shift in path
flow of given OD pairs. There are two interactive steps to

determine the final volume of path flow, so the mechanism of
the shift in path flow should be further discussed.

V. CONCLUSION
This article develops an anomaly detection method to deter-
mine the range of spatial and temporal influence of a station
closure on the passenger flow. First, Ensemble Algorithm I
that integrates the Poisson distribution anomaly test, LOF
algorithm, and Grubbs criterion is developed to evaluate
anomalous passenger flow from the passenger volume per-
spective during station closure. Then, Ensemble Algorithm II
based on independent sample t-test, Wilcoxon signed rank
test, and Mann-Whitney rank sum test is proposed to identify
the anomalous OD pairs from the anomalous travel time per-
spective during station closure. Finally, the proposed method
is applied to a case study of the Beijing subway network to
evaluate the accuracy and applicability of the method. The
results show that: compared with existing anomaly recogni-
tion algorithms, Ensemble Algorithm I and II are robust and
have less misjudgment.

In practice, the proposedmethod can provide abundant pas-
senger flow information to subway managers: 1) the stations
with abnormal inbound or outbound volume contributes to
making passenger flow control strategies and train operation
adjustment strategies (i.e., short turning) under overcrowd-
ing [1], [2]; 2) The OD pairs with abnormal volume con-
tributes to adjusting train operation on certain lines to quickly
satisfy the passenger demand; 3) the OD pairs with abnor-
mal travel time contributes to exactly guiding passengers to
optimize their travel routes.Besides,appropriate sub classi-
fiers can be selected to solve different anomaly recognition
problems.It can obtain more accurate classification results
and optimize the performance of the algorithm.

The proposed method only considers the difference of total
passenger flow during station closure and normal time.It does
not consider the change of passenger flow pattern.In the
future, more data such as land use information of stations
and passenger individual characteristics can be combined to
further quantify the impact of the station closure. In addition,
as the detection of inbound, outbound, passenger flow and
travel time are independent of each other.
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