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ABSTRACT Community search is the task of discovering dense subgraph that satisfy a set of given query
parameters. Most community search algorithms consider link structure while ignoring link weight. A recent
study proposed the idea of discovering weighted communities which focuses on both link structure and
link weight using an online search approach and index-based approach. In this paper two online algorithms
are proposed to scale-up the existing online approach efficiency. Performance evaluation of the proposed
algorithms against the existing online approach over different datasets shows a great improvement in terms
of search and query evaluation time.

INDEX TERMS Community search, query processing.

I. INTRODUCTION
Due to the rapid growth of complex data, the graph model has
been increasingly used to model various interactions between
entities. There are many interesting applications such as
social networks, biological networks, and citation networks
that have been modeled as a graph. In such applications, com-
munity structure exists as a subgraph of strongly intercon-
nected vertices [1]. One of the main task is to discover such
community structure using community search approaches.
Community search is the task of discovering communities
that contain a given set of query nodes or satisfy certain
query parameters. Community search with its variations have
been a recent research direction which is studied extensively
in literature especially on large networks [2]–[10]. However,
the majority of those studies ignore other community aspects
and mainly the edge weight. Edge weight is used to indicate
the strength between any two nodes. Ignoring the edge weight
causes the loss of important information within the discov-
ered communities. Below are some examples of real networks
where edge weight has a significant role:
• In the co-authorship networks, the edge weight may rep-
resent the number of papers the two linked authors had
co-authored together in general or in a specific research
area (i.e., Machine Learning, Database, etc) [11]. Ignor-
ing the edge weight within the discovered communities
would conceal the strength of the co-authorship between
different authors.
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• In social networks, the edge weight may denote the sim-
ilarity, or interactions between users [11]. Ignoring the
edge weight would result in communities of dissimilar
users.

• Corporate ownership networks (CON), this is a weighted
economic network that links 406 different countries, and
its weights represent the business ties among countries
[12]. Ignoring the edge weight would obscure and hide
the business ties between countries.

To illustrate the edge weight importance, consider the graph
in FIGURE 1a where the graph represents an example of a
collaboration network. Each vertex in the graph represents
an author while edge weight represents the number of papers
that linked authors had co-authored together. The graph in
FIGURE 1a is a densely connected component given its struc-
ture. On the other hand, some authors mentioned in this graph
are weakly connected in terms of co-authorship (i.e. JEFFRY
and ZHANG had co-authored only one paper together). The
two subgraphs in FIGURE 1b are densely connected given
their structures. In addition, the high weight on the edges of
each subgraph show a strong co-authorship between authors.
For Example, in the two subgraphs the minimum number of
papers that any linked authors co-authored is 20 and 7. The
subgraph with minimum edge weight 20 is considered as the
top weighted subgraph while the subgraph with minimum
edge weight 7 is considered as the second weighted subgraph.

Motivated by the importance of edge weight, this paper
focuses on discovering top weighted communities. More
specifically, we are interested in discovering the top-r
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FIGURE 1. Motivation example.

weighted k-truss communities. k-truss community detection
model is chosen to ensure cohesiveness by applying a con-
straint that each edge must be contained in at least k-2 tri-
angles where each triangle models the relationship between
three nodes.

Formally a weighted k-truss community in a graph G is a
subgraph H ⊂ G where edges in H have a minimum number
of k-2 common triangles between them. In addition, H is the
maximal subgraph with the highest weight.

A. EXISTING APPROACHES AND THEIR DRAWBACKS
The Existing approaches to discover top-r weighted k-truss
communities can be classified as an online search algorithm
and an index-based search algorithm.
Online Search Algorithms [11]: The online search algo-

rithms compute the communities based on the k-truss decom-
position of the entire graph. The edges with the minimum
weight are iteratively removed, and with each removal the
maximal connected component procedure is run to find the
next connected component. Nevertheless, the online search
algorithm can’t scale for large graphs as it has to run the
maximal connected component procedure multiple times.

Index-based Algorithms [11]: The index-based algorithms
are used to efficiently retrieve the top-r weighted k-truss com-
munities from a pre-built index that stores all the weighted k-
truss communities for each k in the main memory. The index
strategy has improved the query processing time while dis-
covering communities; however, the index size has increased
enormously. Besides, it would be time-consuming to update
the index with such enormous index size.

B. OUR MAIN CONTRIBUTION IN THIS PAPER
The goal of this work is to propose two new algorithms,
the BACKWARD ALGORITHM, and WEIGHT-SENSITIVE
LOCAL SEARCH ALGORITHM (WSLSA) to overcome the
drawbacks of the existing algorithms, more specifically the
online search algorithm [11]. The concept of local search is
employing in developing the two proposed algorithms for
discovering top-r weighted communities. The BACKWARD
ALGORITHM algorithm detects the top-r weighted k-truss
communities by iteratively attaching the edges with the high-
est weight after reducing the graph to its k-truss. On the
other hand, the WEIGHT-SENSITIVE LOCAL SEARCH
ALGORITHM (WSLSA) detects the top-r communities by
visiting only the highest weighted edges in the graph without
the need to reduce the graph into its k-truss.More specifically,
our contributions are as follows:

• A BACKWARD ALGORITHM is proposed for the fast
discovery of the top-r weighted communities. This algo-
rithm performs efficiently to detect communities by vis-
iting edges with the highest weight and satisfying at least
a certain level of trussness.

• A WEIGHT-SENSITIVE LOCAL SEARCH ALGO-
RITHM (WSLSA) is proposed to detect communities
by visiting edges with the highest weight regardless of
their trussness level. The algorithm time complexity is
linearly proportional to the number of edges visited to
detect the top-r weighted communities.

• Extensive experiments are conducted on different graphs
with different sizes. Experiment results prove the effi-
ciency of the proposed algorithms.

The rest of this paper is organized as follows: Section II
presents related work. Section III overviews some of the basic
concepts used in the paper including weighted graph, edge
support, and weighted k-truss communities. In section IV
the proposed algorithms are presented. Section V presents
the empirical results and discusses them. Finally, Section VI
concludes the paper and highlights possible directions for
future work.

II. RELATED WORK
Extracting communities from the graph is classified as either
the task of community detection or community search.

Community detection is well studied in literature
[13]–[16], and is defined as the task of discovering a group
of nodes that are highly intra-connected to each other and
weakly connected to outside vertices. In [17], [18] the authors
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proposed different techniques to divide the graph into a set of
partitions with a predefined number of nodes such that the
number of inter-edges is minimized.

Different models have been studied in literature to discover
dense subgraphs such as cliques [19], [20], quasi-clique [21],
k-core [22], [23], edge density [24], [25], edge connectiv-
ity [26], [27], and k-truss [2], [3]. A k-core is a subgraph
in which each node has at least degree k. A k-truss is a
subgraph in which each edge must be contained in at least
k-2 triangles, k-truss is also (k-1)-core but not vice-versa;
k-truss is a k-1 edge connected. Both k-core and k-truss
models can be computed in linear time regardless of graph
size. Authors in [28] proposed a new model called KTMiner
to detect k-truss communities in a disturbed manner using
Map-Reduce framework on Apache Spark environment.

Another direction of community detection is the com-
munity search which focuses on finding a subgraph that is
cohesive and contains a given query vertex or a set of query
vertices. The community search problem was well studied in
literature [5]–[7], [29]–[31]. In [29] the authors proposed a
global search technique to find a community containing a
query vertex in linear time by iteratively removing vertices
with the minimum degree. In [5] the authors proposed a
more efficient local search technique for the same problem.
A novel α-adjacency γ -quasi-k-clique model was proposed
by the authors in [30] to study the overlapping community
search problem. In [6], [31], the k-truss model is utilized to
study the community search problem, where the maximal
connected k-truss component containing a query vertex is
considered as a community. However, all this work does not
consider the weight of the community. A community search
in a node-weighted network -influential community search-
was studied first by the authors in [4]. The authors in [4]
proposed two techniques online based and index based to find
top-r most influential communities based on k-core model.
Influential community search is also recently studied in [9],
[32], the authors in [9] proposed two useful extensions to the
online search algorithm proposed in [4], namely forward and
backward algorithms. The backward algorithm starts with the
most influential node and builds communities from the most
important one to the least important one unlike the forward
algorithm. An efficient local search algorithm was presented
by the authors in [32] which is considered as the state of the
art. It starts by minimizing the size of the original graph to
a subgraph having only nodes with influence greater than a
threshold. All these techniques are node-weight based which
utilize the k-core model as their cohesion measure.

III. PRELIMINARIES
In this section we discuss some of the basic concepts that will
be used in the rest of this paper. In this paper, an undirected
and edge-weighted graph is denoted as G = (V, E, W), where
V is the set of vertices,E is the set of edges and W is the
set of edge weights where each edge e(u, υ) ∈ E is assigned a
weightω(e). The set of neighbors of each vertex υ are denoted

by nb(υ), i.e., nb(υ) = { u ∈ V: ∃ e (u, υ) ∈ E}, and degree
of υ is denoted by d(υ) = |nb(υ)|.
A graph H = (VH, EH, WH) is called an induced subgraph

of G iff: VH ⊆ V, and EH = {(u, υ): u,υ ∈ VH ∧ (u,υ) ∈
E }. The weight of H is defined as the minimum weight of
edges since the minimum weight would ensure that all the
edges in H have at least the minimum weight. In addition,
the minimum weight would be robust to outliers unlike using
the average of edge weights which is sensitive to outliers as
discussed in [4].
Definition 1 (Community Weight): Given a subgraph H =

(VH, EH, WH), the weight value of H denoted by f (H),
is defined as the minimum weight of the edges, i.e., f (H) =
mine∈EH{ω(e)}

For cohesiveness measure to discover dense subgraph,
there are many algorithms that have been proposed like k-
core [33], [34], k-truss [2], [3], edge-connectivity [26], [27],
and clique or quasi-clique [21], [30].

In this paper, we consider k-truss for our community search
model as it leads to strongly connected communities com-
pared to other algorithms. k-trussmodel deduces the cohesion
of a community through counting the number of triangles for
each edge in the graph.

A triangle is the concept used to describe a cycle of con-
nections between 3 nodes in the graph G. A triangle involving
vertices u,υ,w, is denoted by

a
uυw. Then the support of an

edge (u,υ) ∈ E in H is defined as follows:
Definition 2 (Edge Support): The support of an edge e(u,

υ) ∈ EH, denoted as sup(e,H), is the number of triangles
containing e, i.e., sup(e,H) = {|

a
uυw|: w ∈ VH}

Based on the definition of Edge Support and triangle,
we define the connected k-truss community as follow:
Definition 3 (k-Truss Community): Given a subgraph H=

(VH, EH, WH)⊆ G, and k≥ 2, H is a k-truss community, if it
satisfies the following two conditions:
• k-Truss: for each edge e(u,υ) ∈ EH, sup(e,H) ≥ (k−2);
• Maximal Subgraph: there exists no other k-truss H′ of
G such that H ⊂ H′.

The definition of k-truss community implies another two
definitions for community trussness and edge trussness.
Definition 4 (Community Trussness): The trussness of a

community H⊆ G, denoted as τ (H), is the minimum support
of edges in H, such that τ (H) = min{sup(e, H): e ∈ EH}.
By this definition, the edge can reside in multiple sub-

graphs for different k values. Truss number for an edge is
defined to be the largest k value for which there is a k-truss
community that contains the edge.
Definition 5 (Edge Trussness): The trussness of an edge

e(u,υ) ∈ E(G), denoted as τ (e), is the trussness of the maxi-
mal subgraph containing e, such that τ (e) = maxH⊆G{τ (H):
e ∈ EH}
Based on the previous definitions of community weight,

and k-truss community, we define the weighted k-truss com-
munity as follow:
Definition 6 (Weighted K-Truss Community): Given an

undirected and edge-weighted graph G = (V, E, W) and an
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integer k, a Weighted K-Truss Community is an induced
subgraph H of G that satisfies the following:

• Connectivity: H is a connected subgraph;
• Cohesiveness: Each edge e in H has minimum support
at least k − 2 triangles;

• Maximal: H is a maximal induced subgraph that
is a connected, cohesiveness, and there exists no
other induced subgraph H′ of G satisfying condi-
tions(connectivity and cohesiveness), and additionally
¬∃: H ⊂ H′∧ f (H′)=f (H).

Since the minimum weight of the k-truss community is
used as the community weight, then the edge with minimum
weight is used as a key-edge for the k-truss community. key-
edge is defined as below.
Definition 7: An edge e is a key-edge regarding k value,

if there is a subgraph H such that the weight of H f(H) = w(e)
and the minimum support of edges in H is at least k − 2.

By applying cohesiveness and connectivity constraints
during extracting a community, the resulting community is
guaranteed to be a k-truss community. And by applying the
maximal constraint the resulting weighted k-truss community
is guaranteed not to be a subset from another weighted k-truss
community with the same weight.
Example 1: Consider the graph in FIGURE 2a. Suppose

for instance k = 3, as clarified in Definition 6 the graph itself
is a weighted 3-truss community with weight value = 3. Also,
there are two weighted communities; the 3-truss subgraph
shown in FIGURE 6c with weight value 18, and 4-truss
subgraph shown in FIGURE 2c with weight value 15. The
subgraph shown in FIGURE 2d also has weight 15; however
it is not weighted 3 − truss community as it is contained in
the subgraph shown in FIGURE 2c with the same weight 15.
Problem Statement: Given an undirected and edge-

weighted graph G = (V, E, W), and two query parameters
r and k, the problem of weighted k-truss community is to
discover the top-r weighted k-truss community.
Example 2: Consider the example illustrated in

FIGURE 2a, suppose r = 3 and k = 3, the top-
3 weighted 3-truss communities, denoted as Hk,r, are, H3,1
has shown in FIGURE 6c with weight value 18, H3,2 shown in
FIGURE 2c, with weight value 15, and H3,3 shown in
FIGURE 2e with weight value 8.

IV. PROPOSED ALGORITHMS
In this section the proposed algorithms to discover all the
top-r weighted k-truss communities are discussed. The con-
cept of local search is utilized to find communities from
the highest weight to the smallest one. First the online
search BACKWARD ALGORITHM is introduced to find top-r
weighted k-truss efficiently. Then, a WEIGHT-SENSITIVE
LOCAL SEARCH ALGORITHM (WSLSA) is proposed to
accelerate the BACKWARD one and efficiently discover all
top-r weighted k-truss communities. Before proceeding fur-
ther, two important lemmas are introduced:

FIGURE 2. Graph example and its weighted communities.

Lemma 1: Upon the insertion of an edge e(u, υ) in sub-
graph H, if a triangle of

a
uυw is formed, then the support of

the affected edges e′(u,w), and e′′(υ,w) increases by 1.
Proof by Contradiction:By removing an edge e, the sup-

port of the affected edge e′ will be reduced by only one, as e
and e′ exist in only one triangle. Using edge removal effect,
the insertion of an edge effect can be proved by contradic-
tion. Suppose inserting as edge e increases the support of
the affected e′ edge by more than 1, then deleting an edge
reduces support by more than one as well. This contradicts
with deletion.
Lemma 2: Upon the insertion of an edge e(u, υ) in sub-

graph H, if H is found to be a connected k-truss community,
then e(u, υ) support in H has to be at least k − 2. In other
words, e(u, υ) exists in at least k−2triangles with k−2 differ-
ent nodes. Consequently, e(u, υ) is connected to 2 ∗ (k − 2)
affected edges having support at least k − 2.

Proof: By definition, any k-truss connected component
must have at least k nodes with a degree at least k-1.

A. BACKWARD ALGORITHM
The BACKWARD ALGORITHM initially starts by finding the
maximal k-truss H of G. Based on H, communities are built
incrementally, a candidate subgraph is generated by attaching
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edges with the highest weight. The generated candidate has to
be verified to confirm the existence of a k-truss community.

Algorithm 1 shows the pseudo-code of this process.

Algorithm 1 BACKWARD ALGORITHM

Input: An undirected graph G = (V, E, ω) and two parame-
ters r, k

Output: The top-r weighted k-truss communities
1: Find The Maximal K-Truss H of G
2: for each e ∈ EH do
3: Initialize disconnected[e] = true
4: Initialize support[e] = 0
5: end for
6: i=1
7: minsup=0
8: Initialize Graph_Instance(G′) = ∅
9: repeat
10: Find e(u,υ) ∈ EH with the highest weight edge
11: Move e(u,υ) from H to G′

12: if (nb(u) ∩ nb(υ) 6= ∅) then
13: Flag1 = UpdateSupport(G′, e(u, υ))
14: end if
15: if (Flag1 == True) then
16: Flag2 = VerifyCandidate(G′, e(u, υ))
17: end if
18: if (Flag2 == True) then
19: Hk,i = EnumComm(G′, e(u, υ))
20: end if
21: i = i+ 1
22: output Hk,i
23: until ((i = r)or(H = ∅))

In the algorithm shown, all the sets of edges involved
in a k-truss community for a given k (i.e., ∀ e ∈ Ek) are
considered disconnected. Then edges with the highest weight
are iteratively attached. The attached edge is moved from H
to another graph instance G′. After that, UPDATESUPPORT
PROCEDURE is called to update the support of the currently
attached edge e and its affected set of edges e* based on
lemma 1. Using the conditions applied in UPDATESUPPORT
PROCEDURE, we either conclude the existence or absence
of a candidate community based on lemma 2. Neverthe-
less, concluding that we have a candidate community would
require verification of its existence. VERIFYCANDIDATE
PROCEDURE is called to verify the currently attached edge
is part of a resulting community by checking the effect of all
edges with support less than k−2 as detailed in subsection IV-
A2. Finally, ENUMCOMM PROCEDURE is called to discover
the verified community where the currently attached edge
would be the community key-edge.

The top− r weighted k − truss communities are correctly
found by the proposed algorithm. For example, Given e is the
least weight edge in the attached edges at a certain iteration.
If the sup(e,G′) is greater than or equal to k − 2 and isn’t
affected by the previously attached edges with support less

FIGURE 3. An example for discovering top-2 4-truss community.

than k−2 (their removal wouldn’t affect the recently attached
edge support), then e is the key-edge of a discovered commu-
nity Hk,i where Hk,i is a weighted k-truss community with
rank i between the top-r communities. Edge e is the key-edge
with the least weight between all edges in the community
and represents the community weight (i.e., w(ek,i) < (w(e′) :
∀e′ ∈ EHk,i ))
Example 3: Consider the graph shown in FIGURE 2a,

we need to find the top-2 weighted communities with k=4
(i.e., r=2, and k=4). The graph in FIGURE 2a is first decom-
posed into a 4-truss community by removing the two edges
{(v1, v5), (v3, v6)}. FIGURE 3a shows the subgraph that is
found to be verified and contains the top-1 weighted 4-truss
community after the consecutive edges attachment with the
highest weight. FIGURE 3b shows the final resulting com-
munity. Similar to FIGURE 3a and FIGURE 3b, FIGURE 3c
and FIGURE 3d show the verified subgraph and top-2 4-truss
resulting community.

1) UPDATE SUPPORT PROCEDURE UPON EDGE
ATTACHMENT
Upon attachment of an edge e(u,υ) into a graph instance G′,
the support of the attached edge is either updated to be equal
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to the number of common neighbors between nodes u and
υ (sup(e,G′) 6= 0)) or the support of the attached edge is
assigned zero if the ending points of the inserted edge e(u,
υ) has no common neighbors (i.e., nb(u) ∩ nb(υ) = ∅)
which means that no community will be detected upon this
attachment. On the other hand, the support of the newly
attached edge is changed when the ending points of the edge
have common neighbors between them (i.e., sup(e,G′) =
|nb(u) ∩ nb(υ)|). According to lemma1, adjacent edges e*
support are changed by at most one. While updating the
support of the affected edges e*, the number of affected edges
with support greater than or equal to k − 2 is tracked. If the
support of the newly attached edge e and at least 2 ∗ (k − 2)
from affected edges is ≥ k − 2, then a candidate community
is found. Having at least 2 ∗ (k − 2) affected edges with
support ≥ k − 2 is a case that appears with the existence
of a connected component according to lemma 2. Detecting
such a case means that edge attachment has affected enough
edges with a good number of connections to create a possible
community that needs a verification step.

Algorithm 2 UPDATESUPPORT PROCEDURE

Input: An edge e(u, υ),G′, and k
Output: Candidate Community State
1: Initialize min_sup=0
2: Initialize Flag=False
3: count=0
4: for each node w ∈ nb(u) ∩ nb(υ) do
5: push w into a queue
6: end for
7: sup(e,G′) = |nb(u) ∩ nb(υ)|
8: repeat
9: pop a node w from queue;

10: I .add(w)
11: sup(e(w, u),G′) = sup(e(w, u),G′)+ 1
12: if (sup(e(w, u),G′) ≥ k − 2) then
13: count ++
14: end if
15: sup(e(w, υ),G′) = sup(e(w, υ),G′)+ 1
16: if (sup(e(w, υ),G′) ≥ k − 2) then
17: count ++
18: end if
19: until (queue is empty)
20: if (sup(e,G′) ≥ k − 2 and count ≥ 2 ∗ (k − 2)) then
21: Flag = True
22: end if
23: return Flag

Example 4: Consider for example a graph in FIGURE 4a:
upon attaching of the edge e(v2, v3), the support of the edge
would be 2 which is equal to k − 2 in our search for 4-
truss community. On the other hand, the edge attachment
has affected four edges where their new support is equal to
one which is less than k − 2. In other words, the number of
affected edges with support ≥ k − 2 is zero which is less

FIGURE 4. An example for non-candidate versus candidate subgraph for
4-truss community.

than (2 ∗ (k − 2)). Then, the subgraph in FIGURE 4a is not
a candidate solution. In FIGURE 4b, the subgraph in FIG-
URE 4a is enlarged by attaching the two edges e(v4, v5) and
e(v1, v4). Upon attaching the edge e(v1, v4), the subgraph in
FIGURE 4b would be a candidate solution since the attached
edge support is 2 which is equal to k − 2. Besides, 4 affected
edges which are equal to (2 ∗ (k − 2)) edges have support
value equal to 2 which is equal to k − 2.

2) VERIFY AND ENUMERATE WEIGHTED K-TRUSS
COMMUNITIES
Traditionally enumerating communities is tackled by decom-
posing the graph into k-truss communities which removes all
edges that have minimum support less than k−2. Then Max-
imal Connected Component(MCC) procedure is called to
discover connected components. Removing edges with min-
imum support less than k − 2 doesn’t represent any problem
since the edges won’t belong to the resulting communities in
any case. On the other hand, the proposed algorithms discover
communities by attaching edges incrementally. Removing
edges to discover communities would ruin the sequence of the
proposed algorithms. A new algorithm is devised to discover
community containing the key-edge e without the need to do
physical edges removal.

To overcome the physical edges removal problem,
VERIFYCANDIDATE PROCEDURE is performed to check
whether the currently attached edge and its set of affected
edges have enough connections to output a community or not.
VERIFYCANDIDATE PROCEDURE tracks the state of

the currently attached edge and its affected set of edges while
logically removing edges with support less than k-2. If the
currently attached edge isn’t removed, then a community
existence is verified with the currently attached edge denoted
as the community key-edge. Once a community existence
is verified, the connected component of this community has
to be discovered. For example, the candidate solution in
FIGURE 3a would have a verified community as removing
edges with support less than k-2 (which is the edge e(v4, v5))
wouldn’t affect the recently attached edge e(v1, v4).

The next step is to discover the connected component exist-
ing in the verified subgraph. Two approaches for discovering
connected components are proposed; Traditional Approach
and Enumerate Weighted K-truss Communities Approach.
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a: TRADITIONAL APPROACH FOR DISCOVERING
CONNECTED COMPONENTS
The traditional algorithm traverses all the edges of the log-
ically decomposed version of the graph starting from the
community key-edge. During traversal, all edgeswith support
≥ k − 2 are added to the resulting community.

By observing the results of the traditional approach,
we noticed that the resulting communities may be contained
in each other. For example, FIGURE 3b shows the first
resulting community which is contained in the resulting com-
munity shown in FIGURE 3d. The resulting community in
FIGURE 3b has been already discovered and we don’t have
to go over the connections more than once to discover the
largest community as in FIGURE 3d. This was the motiva-
tion to implement Enumerate weighted k-truss communities
algorithm to incrementally discover communities.

b: ENUMERATE WEIGHTED K-TRUSS COMMUNITIES
APPROACH
Enumerate weighted k-truss communities algorithm discov-
ers a community through its key-edge. The key-edge and its
affected set of edges will either form a complete resulting
community or will be just a part of the resulting community.
If the key-edge and its sequence of edges form a part of
the community, then the remaining part consists of a subset
of the previously discovered communities. In other words,
the algorithm can detect the containment of one community
in other communities. The relation between communities is
discovered using the concept of the bitmap to define nodes
states. The state of each node is stored in a bitmap where
each bit would show whether the node already belongs to a
discovered community or not. For a community H, the nodes
of the key-edge and nodes of the affected edges resulting
from VERIFYCANDIDATE PROCEDURE are used as the
community initial nodes. Then, the algorithm retrieves the
bitmaps of all community H initial nodes to do a logical
ORing operation over all of them. The resulting bitmap shows
which communities that the nodes in H belong to. Then,
the nodes in H and the communities which nodes in H belong
to -if there are any existing- are merged into H as a new top
weighted community. The logical ORing operation allowed
the algorithm to discover the containment of already dis-
covered communities in the currently discovered community
through one step using only the nodes bitmaps.

Algorithm 3 shows the pseudo-code for the enumerate
weighted k − truss communities algorithm. It takes as an
input a key-edge e and a set of affected edges returned by
VERIFYCANDIDATE PROCEDURE. In the algorithm pre-
sented, there are two global data structures to be shared
among different runs; List_Keys which holds the key-edges
incrementally (i.e. the size of List_keys indicates the num-
ber of communities observed till the current step), and
dic_BitMaps which holds the affected nodes for each key-
edge e and their bitmaps. The bitmap defined for each node
in the affected nodes is of size r (number of communities).

Algorithm 3 EnumComm
Input: AffectedEdges, and e
Output: A weighted Community H
1: List_Key.add(e)
2: Affected_Nodes=Nodes(AffectedEdges)
3: Initialize H = Affected_Nodes
4: TempBitArray = bitarray()
5: for each node u ∈ Affected_Nodes do
6: if (dic_BitMaps.has(u)) then
7: TempBitArray = TempBitArray |

dic_BitMaps[u]
8: dic_BitMaps[u][index of e in List_Key]=1
9: end if
10: if (dic_BitMaps.has(u)= False) then
11: Define BitArray_u=bitMap()
12: BitArray_u[index of e in List_Key]=1
13: dic_BitMaps.add[u]=BitArray_u
14: end if
15: end for
16: i=0
17: repeat
18: if (TempBitArray[i]=1) then
19: H.append(output_Communities[List_Key(i)])
20: end if
21: i=i+1
22: until (i >= index of e in List_Key)
23: output_Communities.add(H)

In each bitmap of the affected nodes, the bit value correspond-
ing to the index of the key-edge community is updated to
1. First, community H is initialized with the list of affected
nodes returned by VERIFYCANDIDATE PROCEDURE in
addition to the nodes of the key-edge. In other words, the list
of affected nodes is initially added to be part of the output
community H. From step3 to step14, for each node in the
affected list, the existence in the dic_BitMaps is checked.
If the bitmap of node u already exists, then its bitmap is
retrieved for an incremental logical ORing. Bitmap existence
means that the node has appeared at least once in the already
discovered communities. Note that the incremental ORing
between affected nodes’ bitmaps ensures identifying all the
already discovered communities which contain any of the
affected nodes. If a node u does not exist in the dic_BitMaps,
then a bitmap is defined with 1 in the bit index corresponding
to the index of e in the List_Keys where e is the key-edge cur-
rently being discovered community index. The newly defined
bitmap is added to dic_BitMaps. From step12 to step15, all
the already discovered communities which contain any of the
affected nodes are retrieved using the bits whose values are
equal to 1 in the output bitmap of the logical ORing operation.
Once a community is retrieved, its nodes are added to the
currently discovered community.
Example 5: In this example enumerating the top-2 4-truss

communities in FIGURE 3d is shown. The key-edge
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FIGURE 5. Enumerating community example.

of this community is e(v4, v7) and the set of edges
are {(v4, v5),(v4, v6),(v6, v7),(v5, v6),(v5, v7)} as shown in
FIGURE 5a. The bitmap of each vertex of the affected edges
is shown in FIGURE 5, the bitmap of v4 has ones in the
first and second bit which means that v4 belongs to the
first and second community. The remaining set of vertices’
bitmaps have 1 only in the second bit. The vertex v4 would be
the bridge between the first and the currently discovered sec-
ond community. FIGURE 5b shows the output of the ORing
operations between nodes’ bitmaps, the resulting community
bitmap has two ones in the first and second bit. The first bit is
referring to the first community already discovered and thus
all vertices are added to the currently discovered second com-
munity. The top-2 community will contain the set of vertices
{v1, v2, v3, v4, v5, v6, v7}as shown in FIGURE 5b.

B. WEIGHT SENSITIVE LOCAL SEARCH
So far the algorithms proposed in the literature, either the
recent one (OnlineAll) proposed in [11], or the newly one pre-
sented in section IV-A, discover the top-weighted communi-
ties using different ways but both initially start with the detec-
tion of the maximal k-truss community. While BACKWARD
ALGORITHM performance is much better than OnlineAll
algorithm as will be shown in section V, it still suffers from
the long time that it takes in the decomposition step of the
whole graph. In addition, the graph has to fit in themainmem-
ory to do the decomposition step. This may be a constraint if
the size of the graph is too large to fit in the main memory

and consequently BACKWARD ALGORITHMwill not be able
to discover top weighted communities.

In this section, the WEIGHT-SENSITIVE LOCAL
SEARCH ALGORITHM (WSLSA) is proposed to discover
the top-r weighted k-truss communities from graph Gwithout
the need to decompose the whole graph as an initial step.
The idea behind WSLSA is to search for the top weighted
communities using a small portion of the graph rather than
the whole graph. And the decomposition step is done only
on the part of the graph that contains the top weighted
communities. Thus, the WSLSA can overcome the problem
when the graph is too large to fit in main memory. WSLSA
can be run while the graph needed is in main memory or disk
resident. The main challenge of the WSLSA is determining
which edges are used to start the search due to the availability
of the whole graph rather than the decomposed version of the
graph. WSLSA tackles this challenge by assuming that the
edges of the graph are pre-sorted in decreasing order of their
weights and starts the search from the edge with the highest
weight. Then, the communities are built by incrementally
adding edges in decreasing order with respect to their weight.
Edges with highest weight will be added one after another
and with each addition the support of the affected edges
are updated. Once we reach a candidate for the k-truss
community, a logical decomposition step is performed on
a small portion of the graph that was built so far using the
edgeswith the highest weight to verify the existence of k-truss
community.

The algorithm initially defines an empty graph instance
G′ to hold the resulting communities. The resulting commu-
nities are enumerated while attaching the sorted edges with
the highest weight following the same steps presented in
the BACKWARD ALGORITHM algorithm. At any given edge
attachment step t , if the edge attachment et increases themini-
mum support to be equal or greater than k-2 then G′ contains
one or more communities induced by the set of edges with
weight at least w(et ). The motivation is to discover the same
communities discovered by the BACKWARD ALGORITHM
more efficiently.

Algorithm 4 shows the pseudo-code of the (WSLSA).
In the algorithm shown, an empty instance G′ is initialized
as an empty graph. Iteratively, edges are added from the
sorted list to G′. Upon the existence of common neigh-
bors between ending points of the newly added edge,
the UPDATESUPPORT PROCEDURE is called to update the
support of the newly added edge and the affected set of
edges. Then, UPDATESUPPORT PROCEDURE checks the
existence of a candidate solution using the support of the
affected set of edges based on Lemma 2. Once a candi-
date solution is found, a verification of its existence is per-
formed using VERIFYCANDIDATE PROCEDURE. Then,
ENUMCOMM PROCEDURE is called to discover the nodes
of the verified community. Given its similarity with the
BACKWARD ALGORITHM, the WSLSA eventually discovers
the correct top-r weighted k-truss communities. For example,
given the graph in FIGURE 2a, the WSLSA discovers the
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Algorithm 4 WEIGHT-SENSITIVE LOCAL SEARCH
ALGORITHM (WSLSA)
Input: An undirected graph G = (V, E, ω) and two parame-

ters r, k
Output: The top-r weighted k-truss communities
1: Initialize Graph_Instance(G′) = ∅
2: repeat
3: Find e(u,υ) ∈ EH with the highest weight edge
4: add e to G′

5: if (nb(u) ∩ nb(υ) 6= ∅) then
6: Flag1 = UpdateSupport(G′, e(u, υ))
7: end if
8: if (Flag1 == True) then
9: Flag2 = VerifyCandidate(G′, e(u, υ))
10: end if
11: if (Flag2 == True) then
12: Hk,i = EnumComm(G′, e(u, υ))
13: end if
14: i = i+1
15: OutputHk,i
16: until ((i = r)or(G′ = G))

FIGURE 6. A running example for WSLSA.

top-2 weighted community presented in FIGURE 3b and
FIGURE 3d.
Example 6: To illustrate (WSLSA) in a better way, con-

sider the graph example in FIGURE 6a as we need to dis-
cover top weighted community with k = 4 (top weighted
4-truss community). In FIGURE 6b, edges with the highest
weight are added one after another and the support of the

TABLE 1. Datasets description.

edges are updated incrementally until the edge (v1, v3) is
added. Once the edge (v1, v3) is added, a candidate solu-
tion is found since the subgraph in FIGURE 6b satisfies
lemma2. Then VERIFYCANDIDATE PROCEDURE is per-
formed to verify the existence of a community with key-edge
(v1, v3). As VERIFYCANDIDATE PROCEDURE does logi-
cal decomposition on the subgraph in FIGURE 6b, all edges
with support less than k − 2 are logically removed. Edges
(v3, v5), (v4, v5), (v4, v7) will be logically removed since their
trussness is less than 4. FIGURE 6c shows the top-weighted
4-truss community with weight=14.

V. EXPERIMENTS
Extensive experiments are conducted to evaluate the pro-
posed algorithms in terms of their efficiency against the
state-of-the-art Basic algorithm proposed in [11]. The Basic
algorithm as described in related work section, is one of
the most recent algorithms to perform online weighted k-
truss community search. Experiments are conducted on five
publicly available datasets. All algorithms are implemented
using Python environment. In addition, all experiments are
conducted on a machine with an Intel i5 2.5GHz CPU and
8GB main memory.

A. DATASETS
Eight public datasets as availed in [35] are used in our
experiments to evaluate the proposed algorithms. Graphs of
each dataset described in TABLE 1, where V represents the
number of vertices, E represents the number of edges, and
kmax represents the maximum k-truss that can be found in
the graph. For all graphs, the weight of each edge e(u, υ)
is represented by the number of common neighbors between
nodes u, and υ. Either the edge weight is calculated or given
in the graph, the proposed algorithms are expected to extract
the top-weighted communities. As clarified in TABLE 1,
the datasets used for evaluation vary from large to small
size. The largest datasets are the Wiki-Talk, Skitter, Live-
Journal and Orkut graphs. Wiki-Talk, LiveJournal, and Orkut
are social networks, whereas Wiki-Talk represents commu-
nication network between Wikipedia users, LiveJournal and
Orkut represent frienship networks between users and Skit-
ter represents internet topology network. The moderate size
dataset are DBLP, and Youtube, where the DBLP graph
represents the collaboration network between authors, and
Youtube is a social network that represents the friendship
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FIGURE 7. k=10 vary r.

between Youtube users. The last two datasets Wiki-Vote and
Email-Enron are of small sizes, whereWiki-Vote is the voting
network between Wikipedia users and Email-Enron is the
email communication network from Enron.

B. QUERY PARAMETERS
There are two query parameters k and r , k is chosen from
{3,5,10,15,20,50}, and r is chosen from {5,10,15,25,50,100}
where r is the number of top communities to be retrieved, and
k is cohesiveness measure of the community.

C. EXPERIMENTAL RESULTS
In the evaluation, the proposed algorithms are evaluated
against BASIC algorithm by varying k while using default
r with value 10 and varying r while k with a default value
10. The processing time of the algorithms by varying r
and k=10 is shown in FIGURE 7 while the processing
time of the algorithms by varying k and r=10 is shown
in FIGURE 8.

FIGURE 8. r=10 vary k.

Generally FIGURE 7 and FIGURE 8 show that the WSLSA
runs significantly faster than BACKWARD and BASIC algo-
rithms and that’s because WSLSA visits a small portion of
the graph whereas the BACKWARD and BASIC algorithms
decompose the entire graph as an initial step. In addition,
BACKWARD ALGORITHM performance is still much better
than the BASIC algorithm as it discovers communities incre-
mentally. It is also noted that, WSLSA takes much smaller
processing time for small values of k and r regardless of the
graph size. This is related to how WSLSA finds communities
through adding edges with the highest weight incrementally.
With small values of k and r , it is guaranteed that the
required communities are discovered quickly even for very
large graphs.

As illustrated in FIGURE 7 by increasing r WSLSA takes
more time as it processes larger subgraph to find more com-
munities however it still runs significantly faster than the
other two algorithms. On the other hand, BACKWARD and
BASIC algorithms take almost constant time to discover
different number of communities. The reason behind that,
in theBACKWARD algorithm all edges that don’t belong to any
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community with required k are removed while decomposing
the entire graph first. Once the first community is discovered,
all subsequent communities are usually contained in each
other. Thus, discovering communities requires almost con-
stant time as most of them are retrieved from bitmaps rather
than finding a connected component for each community.

From FIGURE 8, it’s noted that WSLSA takes longer pro-
cessing time for k when it approaches max k of the graph
and large r but still outperforms BACKWARD and BASIC
algorithms. This is related to the large number of candidates
generated during discovering communities from graphs with
large r and almost max k where each candidate is required
to be verified. Both generation and verification of a large
number of candidates increase the processing time.

It is also clear that the difference between BACKWARD and
WSLS algorithms in terms of processing time is significant.
However, the processing time for discovering top-r commu-
nities in BACKWARD ALGORITHM without decomposition
time is faster thanWSLSA. The reason behind this observation
is that the BACKWARD ALGORITHM has to prune all edges
with trussness less than k as a first step while WSLSA has
to process those edges before discovering each community.
Generally, BACKWARD ALGORITHM is the best solution and
leads to faster results if decomposition step cost is low or
the decomposed version of the graph is already available and
stored.

Concerning the Wiki-Talk, LiveJournal, Skitter, and Orkut
dataset, only WSLSA was run on each graph and process-
ing time was obtained which included reading time for the
graph edges from the disk. On the other hand, BACKWARD
and BASIC algorithms were not run on those datasets given
the large size of the graphs and the inability to decom-
pose such large graphs in the main memory. The reported
results for such large graphs prove the efficiency of the
WSLSA. For instance, WSLSA required 32 seconds to get
top-300 weighted 5-truss communities from Orkut dataset
while Basic algorithm required 10000 seconds to get the
top-40 weighted 5-truss communities as reported in [11].
In addition, the results show the advantage for WSLSA over
BACKWARD and BASIC algorithms as it was able to discover
communities from such large graphs without the need for
extreme computational power. Furthermore, the incremental
processing behavior of WSLSA can be utilized to process
much larger disk-based graphs rather than memory-based
ones.

VI. CONCLUSION AND FUTURE WORK
In this paper, weight-based k-truss community search prob-
lemwas investigated.WSLSA andBACKWARD ALGORITHM
were proposed to discover top-r weighted k-truss communi-
ties from graphs. Both algorithms utilize the concepts of local
search and bitmaps to discover communities. The algorithms
were evaluated using different graphs with different sizes
against the state-of-the-art Basic algorithm. Experimental
results showed that WSLSA outperforms both the algorithms
BACKWARD and Basic significantly. As future work, it’s

possible to extend the algorithms to include the vertices
attributes as an extra dimension to discover homogeneous
top-weighted communities. Also, expanding the algorithms
to discover top-weighted communities where each edge is
weighted with multiple weights is another interesting direc-
tion to follow. Another future direction is to optimize the
proposed algorithms to reduce the processing time especially
when the required trussness approaches the graph maximum
trussness.
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