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ABSTRACT Image interpolation is often implemented using one of two methods: optical flow or convolu-
tional neural networks. These methods are typically pixel-based; they do not work well on objects between
images far apart. Because they either rely on a simple frame average or pixel motion, they do not have the
required knowledge of the semantic structure of the data. In this paper, we propose a method for image
interpolation based on latent representations. We use a simple network structure based on a variational
autoencoder and an adjustable hyperparameter that imposes the latent space distribution to generate accurate
interpolation. To visualize the effects of the proposed approach, we evaluate a synthetic dataset. We demon-
strate that our method outperforms both pixel-based methods and a conventional variational autoencoder,

with particular improvements in nonsuccessive images.

INDEX TERMS Image interpolation, latent variables, representation learning, variational autoencoder.

I. INTRODUCTION
The process of generating in-between images from a
sequence of images is known as image interpolation. Image
interpolation reveals the dynamics of objects in a scene by
relating spatial features (i.e., distinct viewpoints) to temporal
changes (i.e., different timestamps) [1]. Image interpolation
methods are used in a wide variety of computer vision appli-
cations, including the movie and animation industry. It aims
to enhance the quality of images displayed in different sce-
narios. In the digital and movie industry, original videos often
have a high frame rate. Because of the limitations on network
bandwidth, the rate has to decrease before transmission. This
reduction is often made by skipping some frames [2]. Here,
image interpolation can help restore clarity to the image.
Some of the challenges in image interpolation occur when
the variations in pixel values are significant, i.e., objects in the
images vary considerably, overlapping objects, occlusions,
missing objects, and noise. Optical flow [3], [4] and convo-
Iutional neural networks (CNNs) [5]-[8] are two common
approaches for image interpolation based on pixel motion.
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The former considers the pixel motion of the objects and
performs a simple pixel average, and the latter learns optical
flow feature representations by convolving input images with
spatially adaptive kernels that account for pixel motion [9].
In both of these approaches, a pixel-based method algorithm
is used to generate image interpolation of arbitrary sequences.
However, when objects in input images are far apart, this may
cause problems, given that temporal dependence between
objects may be lost. The resulting generated images may
appear with holes, overlapping objects, and ghost artifacts.

In this paper, we propose a novel method for the problem
of image interpolation based on latent variables. Our model
learns to encode the spatial and temporal structure of the
image based on latent representations (inherent action) and
not image context (pixel motion). The model then generates
the in-between image based on the learned representations.
Because the model relies on stochastic latent representations
of the data, it is not very straightforward to assess whether
the generated structure is accurate. To address this limitation,
we introduce a loss function that constrains the latent space
information capacity.

We investigate image interpolation using a variational
autoencoder (VAE) because it offers stability during training,
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the ability to provide meaningful representations, and the
latent space allows semantic operations with vector space
arithmetic [10]. We found that by limiting the latent space,
i.e., putting pressure on Kullback-Leibler’s divergence term
by adding an adjustable hyperparameter alpha (o), the model
generates accurate semantics of the in-between image.

In summary, we make the following contributions.
We design a simple model that relies on latent variables for
image interpolation of nonconsecutive images. The model
generalizes well to unseen objects (i.e., objects with occlusion
or overlap). We reveal that constraining latent representations
can lead to interpretable data representation. Furthermore,
the beneficial effects of Kullback—Leibler’s divergence are
denoted.

The paper is organized as follows. In section II, we review
the several approaches for image interpolation related to ours
for image interpolation. In section III, we demonstrate our
proposed model, particularly how it outperforms the conven-
tional VAE. In section IV, we show the evaluation on different
settings. In section V, we discuss the related work. Finally,
section VI concludes the paper.

Il. RELATED WORK

A. IMAGE INTERPOLATION METHODS

Research on image interpolation(motion flow, disparity, dis-
placement) has a long history in computer vision. Two direc-
tions have been explored: optical flow and, more recently,
convolutional neural networks (CNNs).

1) OPTICAL FLOW

Initial attempts at image interpolation were based on optical
flow methods. Optical flow is used to describe the apparent
shifting of pixel values in time-varying images, caused by
illumination change, camera motion, or noise. Optical flow
techniques compute the motion estimation vector for each
pixel or group of a pixel in an image, and this involves
having an initial image and at least one of its neighbors.
A large part of the work on image interpolation is based on
differential algorithms proposed by Lucas and Kanade [11]
and Horn and Schunck [12]. These algorithms are based
on several assumptions, such as brightness constancy and
temporal consistency [13]. Lucas and Kanade assume that
pixels surrounding a pixel being observed behave almost
the same as the observed pixel (local variation), while Horn
and Schunck consider the global variation in an image. This
assumption means that the motion vectors of a pixel depend
on the value of its neighbors. Since these algorithms are
based on differential methods, to avoid aliasing caused by the
significant differential between pixels, temporal smoothing
between images is necessary.

To overcome the limitations of traditional methods
two main directions have been explored, including
motion-compensated frame interpolation (MCFI) tech-
niques [3], [14]-[16] and phased-based methods [17], [18].
The former estimates the motion based on the previous image
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and current image and then generates the in-between by
averaging the pixels in the images pointed by half of the
obtained motion vectors. MCFI is based on assumptions that
motion in images is smooth and continuous, which might
work well on sequences with relatively small motions [14]; on
large displacement, residual information of skipped frames
is unavailable, and the generated image might include over-
lapped objects, holes, and blocking artifacts. In the second
direction, phased-based methods assume that small motion
can be encoded in the phase shift on an individual pixel’s
color. Meyer et al. [18] suggested extending flow-based
methods to the path-based method; by using a path-based
method, the motion accuracy was expanded, improving the
range of the motion trajectory. Alternatively, Zhang et al. [19]
extended the motion range by computing a disparity map,
while Elgharib et al. [20] proposed combining a phased-based
method with optical flow. These methods have largely
improved the performance over differential algorithms but
still cannot handle large displacement.

2) CONVOLUTIONAL NEURAL NETWORKS

Neural networks have achieved state-of-the-art performance
in various applications. Recently, researchers have shown
interest in applying CNNs for the task of image interpola-
tion [21]-[26]. CNNs are well-known algorithms for extract-
ing semantic knowledge from data. They learn the optical
flow feature representations by convolving input images with
spatially adaptive kernels that account for pixel motion.
Dosovitskiy et al. [5] proposed two CNNs (FlowNetS and
FlowNetC), which estimated the optical flow based on the
U-Net denoising autoencoder [27]. The Dosovitskiy et al.
model takes an input pair of images and outputs the flow field.
The image interpolation results have significant errors in the
backgrounds. Alternatively, Ilg ef al. [6] suggested combin-
ing deep learning with domain knowledge; their model has
a small network concentrating on small motion and others
on large motion. Jiang et al. [8] extended a single image
generation to multi-images. Shu et al. [28] trained their age
progression model with paired images of the same person
with different ages. Although the training dataset is similar to
our approach, their goal is to train the age progression dictio-
nary, while our interest is to have better latent representation.
Interpolation tasks using neural networks have been extended
to text [29] and video [8], [9], [26], [30].

Despite the excellent performance, pixel-based methods
rely on pixel motion. They are limited to highly similar
images. They do not perform well on objects in images that
are far apart (large displacement between objects in input
images). Because the input images that are far apart may lose
temporal dependence between objects, they do not have the
required knowledge of the semantic structure of the input
images. Thus, the generated in-between image may appear
with some errors, such as occlusion, overlapping, and ghost
artifacts. CNN models alleviate the problems of pixel-based
models to some extent. In this work, we propose a novel
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method for the problem of image interpolation based on latent
variables.

B. VARIATIONAL AUTOENCODERS (VAE)

VAE [31], [32] has shown promising results in various tasks,
including image classification [33], image segmentation [34],
text generation [29], and artistic applications [35]. The model
is composed of the encoder network and decoder network.
The role of the encoder network is to map the input data into
alatent space distribution, whereas the decoder network maps
the latent space representation back to the input.

The VAE models modify the autoencoder architecture by
replacing the deterministic function with a probabilistic func-
tion. The latent variable z is sampled from the mean u and
standard deviation o from a continuous latent space to make
VAEs more useful for generative modeling. The u vector
controls where the encoding of the input should be centered,
while o controls the area, i.e., how much the encoding can
vary. The decoder learns the data distribution rather than a
single point, and this exposes a wide range of encoding for the
same input during training. VAE models enable random sam-
pling and arithmetic operations on its latent space. Following
the general formulation introduced in [31], [32], the VAE
loss function (1) minimizes the lower bound on the marginal
loglikelihood.

L0, ¢) = Ezngy(zpn[logpe(x12)]1—Dkr(qe(zlx)lIp(z)) - (1)

The first term represents the reconstruction error; it measures
how well the latent variable describes the image, and a pixel-
wise quadratic error if often chosen between the actual image
and the reconstructed image. The second term represents
Kullback-Leibler’s divergence (Dgy,) between the prior p(z)
and the approximate posterior distribution gg(z|x); it assesses
the regularization of the latent space, and (6, ¢) parameterizes
the distributions of the encoder and decoder. VAE aims to
generate new samples that are not present in the training
set.

C. IMAGE INTERPOLATION BASED ON VARIATIONAL
AUTOENCODERS

To connect our work with existing approaches for learning
latent representations, we provide practical analysis of con-
ventional VAE [31], [32] and B-VAE [36]. We attempted to
generate image interpolation based on latent representations.
We found that the results were not very encouraging, and it
did not perform well. The generated image did not resemble
the structure of the in-between image. We empirically assume
that the latent space does not have any constraint under its
learning representations, and the generated latent variables
have certain degrees of freedom. Another possible explana-
tion is that the latent space does not have the necessary struc-
ture that enables interpolation. We then designed a network
structure to enforce the latent space to have the appropriate
structure. Later in this paper, we compare our model with
these baseline models.
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D. LATENT REPRESENTATIONS

The data that are often in high-dimensional space can be
represented in a lower dimension, often referred to as latent
representations. These latent representations hold relevant
information of the initial data, which are highly dependent
on downstream tasks [37]. However, these representations
are often unstructured and hard to control or interpret [4];
without the pressure to regularize the latent space, they do not
exhibit the desired structure [38]. To address this limitation,
Higgins et al. B-VAE [36] proposed to constraining the latent
space capacity, forcing the model to learn salient features of
the data, which results in a more interpretable representation
of the data. In this work, we demonstrate the benefits of
using learned latent representations for the task of image
interpolation.

Ill. PROPOSED MODEL
A. METHOD OVERVIEW
The success of image interpolation is restricted to pixel-based
approaches. The pixel-based approach works well on con-
secutive homogeneous images. Because these images are
highly similar, they often do not require good knowledge
of the semantic structure of the objects. However, when the
motion is complex, such as the case of large displacements
between objects, pixel-based approaches do not perform well;
to restore the in-between image, semantic information is
necessary [39]. Based on this insight, we propose a new
approach based on latent variables to the objects’ problems
in images that are far apart from each other. The proposed
model benefits from the ability to constrain the freedom of
the latent representation

In this section, we begin the discussion by explaining and
describing the motivation of our proposed network structure.
To improve the performance of the proposed model, we intro-
duce an additional loss function that restricts the latent space
to probable structures. We also provide detail of the related
hyperparameter.

B. PROPOSED NETWORK STRUCTURE

1) DETAILS OF THE NETWORK STRUCTURE

Our network structure Fig.1 follows the conventional VAE
structure [31], [32]. The key components are the Z’, which
averages the latent space of input images (first image and sec-
ond image), and the o component, which weigh the impor-
tance given to the average inputs and actual in-between
latent representation. The o term penalizes the network if
the generated image has deviated from the actual in-between.
If 72’ is ignored @ = 0 (which corresponds to conventional
VAE), the model is not strongly penalized in case the gen-
erated in-between does not reflect the actual in-between—
giving the model the freedom to sample any possible latent
point. This scenario is not ideal; we have to control the latent
space if we aim to learn an interpretable representation of the
data manifold for the task of inbetweening. The effects of «
are further explained in this work.
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FIGURE 1. Network structure of our approach.

2) NETWORK IMPLEMENTATION

The network structure is based on three variational autoen-
coders, as illustrated in Fig.1. The network receives a pair
of images (Xo, X2) and actual in-between (Xi). Each net-
work has an encoder X and decoder (X’) network, and (z)
corresponds to the latent space. To generate the in-between
image, we average the latent representations of the adjacent
networks(zg, z2) and the actual in-between (z;). To reduce
the model complexity, all the networks share the same
weights. The weight-sharing technique is a method for build-
ing translation-invariant networks [40] and also used for
multi-modal knowledge transfer [41], [42]. The encoders
have 6 hierarchical layers, consisting of five convolutional
layers and a fully connected layer. At each hierarchy, a pool-
ing layer with stride two and 4 x 4 kernels, except the first
layer, which has kernel size 3 x 3 and stride one. The decoders
have 6 hierarchical layers, consisting of five deconvolutional
layers and a fully connected layer. Having each stride one
and kernel size 4 x 4, except for the last layer, which has
kernel size five. We used AdamMax optimization with a
learning rate of 0.0001, and the batch size was 100. Later,
when we compared our results with FlowNet2.0 and SloMo,
we increased the number of layers to 10 since we worked with
images of 256 x 256 instead of 32 x 32. The learning rate
was 0.005, and the batch was 30. The network was trained to
capture salient features from the input data and to minimize
the difference between (z’) and (z1).

C. PROPOSED LOSS FUNCTION
Initially, we attempted to generate image interpolation based
on latent variables using conventional VAE. The generated
structure of the in-between image did not resemble the actual
in-between image. Because the latent representations are
unstructured and lack easy understanding and controllability,
the model is under no constraint to generate the structure,
reflecting the actual in-between image. In addition, conven-
tional VAE achieves limited application in tasks, such as
discovering new factors of variation in the data.

In this work, we propose a loss function (2) that is a
modification of the conventional VAE loss function. We also
demonstrate the beneficial effects of the KL divergence term
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and its role in the generative process. Kim and Mnih [43]
and Higgins et al. [36] demonstrated the beneficial effects of
limiting the capacity of latent representations, this approach
forces the model to learn salient features from the data.
We limit the information capacity of latent space to generate
the actual structure of the in-between image. We demonstrate
that with the proposed loss function, the model generates the
actual structure of the in-between image.

L(Xop, X1, X2) = Lyae(Xo) + Lvap(X1) + Lyap(X3)

qXo) + 9(x.
+a(Dgr (gl %

) @
1) A LOSS FOR ENFORCING FLAT MANIFOLD

Often probabilistic models depend on the way we constraint
the learning representations. In Fig.2, we show the task of
interpolating between two points (P1 and P2; P3 and P4).
The conventional VAE approach often generates a curved
manifold, as shown in Fig.2 (top). The task becomes complex
because the manifold is curved, and the generated point lies
off of the data manifold (P1,2 and P3,4). Linear interpolation
traverses the shortest path in terms of Euclidean distance
between the two points. The generated in-between is more
likely to be unrealistic. On the other hand, our loss function
forces the manifold to be locally flat, as shown in the Fig.2
(bottom). Interpolation between two points on flat manifold
lies on the manifold, and the generated samples from inter-
polated representation (such as P1,2 and P3,4) will be more
plausible. Bengio et al. [44], Verma et al. [45], have explored
the relationship between interpolation and flat data manifold
in the context of representation learning.

(b) ours

FIGURE 2. Conventional VAE is likely to interpolate in a curved manifold.
Our model forces the manifold to be flat, resulting in smooth
interpolation.

2) ADJUSTABLE HYPERPARAMETER ALPHA ()

Conventional VAE («¢ = 0) [31] latent information did not
learn the structure of the in-between image due to a lack of
constraint on the latent information bottleneck. There was no
signal to the model to generate the structure of the in-between
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image. To learn the latent space that represents the structure
of the in-between image, we hypothesize that it is relevant
to tune (¢ > 0). Alpha balances the relative importance
given to the difference between ground truth loss and average
loss. Alpha (¢ > 0) places a stronger constraint on the
latent bottleneck, unlike the conventional VAE. This (« > 0)
limits the capacity of latent space z, which, combined with
the pressure to maximize the loglikelihood of the training
data, and encourages the model to learn the most salient
representations of the data [36]. Because the data are gen-
erated using some conditional independent ground truth and
Kullback-Leibler’s divergence term of the loss function, this
encourages conditional independence, and higher values of «
should promote learning.

While tuning o, two factors must be considered: the latent
dimension and the complexity of the dataset.

IV. EXPERIMENTS

In this section, we present the datasets, the scenarios tested
with individual results and evaluations. We also expose the
effects of the hyperparameter and the gains of our proposed
method.

A. DATASET AND DEGREES OF FREEDOM

For clear visualization of the intended image interpolation
result, we relied on a collection of synthetic images, namely
dots, face, teapot, and 2D shapes. These datasets allowed us to
create and replicate various possible scenarios. Training sam-
ples were obtained, by randomly sampling 10000 triplets of
nonconsecutive images (large displacement between objects
in input images), with 10 to 40 degrees from one image
to another, and testing random 5000 triplets with 30 to
60 degrees from one image to another. The range prevents
the use of consecutive images that are visually very similar.
Additionally, by randomly sampling a triplet, we hypothesize
that the model does not memorize the training sequence.
We do not control the angles between the first and second
images. The initial samples consisted of 32 x 32 image size,
except when comparing our approach to Super SloMo and
FlowNet2.0. Here, we normalize to 256 x 256 image resolu-
tion. Primarily, we tested ““one degree of freedom’ where the
object is rotated 360 degrees on the x — axis and then on ““two
degrees of freedom’ where the object rotates 360 degrees on
the x— and y — axis.

B. IN-BETWEEN IMAGE GENERATION
Our model was evaluated far apart images (large displace-
ment between objects in input images). We initially tested
image interpolation based on the latent space of conventional
VAE (a¢ = 0). There was no constraint applied to the model
learning representation. The results show that without lim-
itation (¢ = 0), the generated image interpolation did not
preserve an accurate structure of the actual in-between image.
We then applied a constraint to the latent space repre-
sentation by tuning an adjustable hyperparameter. If tuned
(¢ > 0), the model could generate an image that preserves
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the in-between image’s structure. The results demonstrate
that our proposed method outperformed conventional VAE
on image interpolation. This is explained by the fact that
constraining the latent space encourages the model to learn
the more salient structure of the in-between image. Next,
we show the interpolation results for different scenarios.

1) ONE DEGREE OF FREEDOM

We demonstrated two examples using one degree of freedom.
This example represented a simple scenario, with a total
of 360 possible angles. The goal was to test the structure of
the in-between image (location, angle). As shown on the right
side of Fig.3 and Fig.4, our proposed model preserved the
structure of the in-between image in every scene illustrated
in the images. This was opposed to conventional VAE, which
failed to preserve the structure of the in-between image.

soow
D000
L0
ae0e
soow
D000
L0020
000

(a) @ = 0 ,epochs=500 (b

=

a = 10 ,epochs=500

FIGURE 3. Face-testing: 15t row:first frame, 2" row: ground truth, 34
row: in-between image, 4th row: second frame. a) The conventional VAE
model failed to preserve the structure of the in-between image. b) Our
model generated an accurate structure of the in-between image.

(a) @ = 0 ,epochs=500

(b) o = 10 ,epochs=500

FIGURE 4. Teapot-testing: 15t row:first image, 2" row: ground truth, 39
row: in-between image, 4t row: second frame. a) The conventional VAE
model failed to preserve the structure of in-between image. b) Our model
generated an accurate structure of the in-between image.

2) TWO DEGREES OF FREEDOM

In the next phase of the experiment, we randomly rotated the
object under the influence of two variables: “two degrees of
freedom.” In the previous experiment (one degree of free-
dom), there were only 360 possible scenes, regardless of the
number of samples. Working with two degrees squares the
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number of possible scenes. We randomly sampled the input
images to ensure that the model did not see a scene twice. The
results highlighted in Fig.5 demonstrate that our approach
(¢ = 10) preserved the structure of the in-between image,
even in a complex scenario.

(a) o = 0 ,epochs=500

(b) @ = 10 ,epochs=500

FIGURE 5. Teapot-testing: 15 rowfirst image, 2" row: ground truth,
37 row: in-between image, 4th row: second frame. a) Conventional VAE
model failed to preserve the structure of the in-between image. b) Our
model generated an accurate structure of the in-between

image.

3) MOVING 2D SHAPES - MULTIPLE OBJECTS
INTERPOLATION

To assess whether our model could generate interpolation
in case of the presence of multiple objects in the image.
We created new training data. Moving 2D shapes is a dataset
containing three objects (moving randomly): a white square,
a red triangle, and a blue circle. These data are similar
to what we can expect in the real world, where different
people and objects are moving in random directions. The
model must capture the location, shape, and color of the
objects. This example represented a more complex scenario
since the model has to match similar shapes and colors
during the interpolation. One particularity of these data is
that small variation (motion) between the objects in the
input image cannot be easily noticeable by human eyes.
Fig.6 shows the results on both conventional VAE («¢ = 0)
and our proposed model (¢« = 100). Conventional VAE
failed to generate in-between objects. Additionally, when
the objects were displayed, it did not preserve the structure
of the in-between image. Despite the data complexity, our
model preserves the accurate structure of the in-between
image. Even when objects overlap, the model matches the
shape, color, and location. We highlight the advantages
of our model compared to conventional VAE, illustrated
in Fig.7. Restricting the latent space information encourages
the model to preserve the semantic structure of the in-between
image.

C. EVALUATION
We have so far focused on demonstrating interpolation abili-
ties; in this section, we evaluated our results.
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(a) @ = 0 ,epochs=2000 (b) @ = 100 ,epochs=2000

FIGURE 6. 15t row:first image, 2" row: ground truth, 3/ row:
in-between image, 4th row: second frame. a) Conventional VAE failed to

preserve the spatial location of the objects. b) Our model preserved the
structure of the in-between image.

7
Average
@Minimize

FIGURE 7. The effects o on the in-between image: For « = 0: The
generated in-between image lacked the structure (location of the moving
object) of the in-between image. For « > 0: The contextual structure of
the in-between image was preserved.

1) QUALITATIVE EVALUATION OF LEARNED
REPRESENTATION

We evaluated the embedded structure of learned represen-
tations using two conventional approaches, principal com-
ponent analysis (PCA) and T-SNE [46]. PCA is used to
reduce the data dimensionality while preserving the vari-
ations [47]. T-SNE preserves the metric properties of the
original high-dimensional data. It preserves the information
indicating which points neighbor each other [48].

When projecting the latent representations z learned by
the model using TSNE, we found that our model effectively
showed a consistent loop, while latent representation pro-
duced by conventional VAE preserved the distance in the data
but did not preserve the structure of the input images (Fig.8).
While using PCA, we found that our model preserved the
structure of the input data. Conventional VAE did not preserve
the structure of the input dataset. From its definition, PCA
preserves the variation in the data. Two neighboring points
in the high dimension should be closer in the low dimen-
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FIGURE 8. Projection of the latent representation z after training using
T-SNE. Each dot represents an angle with a corresponding value from the
face dataset. First row: VAE (¢ = 0), which shows a loop but does not
have a consistent loop structure. Second row: Our model (¢ = 10) shows
a consistent loop since the dataset used for testing has angles ranging
from 0 and 360 degrees.

sion. Conventional VAE ignores the variance in the data,
while our model keeps the fundamental structure of the input
data (Fig.9).

B-VAE. We trained 8-VAE [36] with different values of
B; we found it to have the same behavior as conventional
VAE. B-VAE does not have the necessary structure to gen-
erate the latent space that resembles the in-between image.
We demonstrated the latent representation in Fig.10, and the
results on TSNE suggest that conventional VAE and 8-VAE
might generate the structure of the in-between image if some
form of penalty was imposed in the latent space or input signal
is given to the model.

2) COMPARISON WITH STATE-OF-THE-ART METHODS -
LARGE DISPLACEMENT
a: QUANTITATIVE EVALUATION
This work lies between image interpolation and latent rep-
resentations. Since existing works on latent representations
focus on disentangled representations, we cannot compare
them. The objective of this work is to generate an in-between
image based on latent variables. In disentangled representa-
tion work, there is an assumption about the number of hidden
variables presented in the data, and the data are often arranged
to prove this assumption. We did not arrange the training data
to disentangle the factors of variations present in the data.
We compared our approach with state-of-the-art approaches
on image interpolation based on optical flow and neural
networks, including Super SloMo [8], FlowNet [6] and a
conventional VAE. To evaluate the error between the actual
in-between and predicted image interpolation, we follow
some baseline metrics presented in [49], including the peak
signal-to-noise ratio (PSRN), structural similarity index

149462

0.008

” sl @
0.0075 L4 o L
ooos{ g e
00050 ¢ 0 0 guan & @ ¢
L4 0.004. @ &
00025 - o -
50 0.002 0 -
& @ e “
oo P Ld o] g0 ®7 >
00025 o ¢ o e, ¢
h o0 ¥ 0002 grogeo .
@ ggno @0 g @ “‘.)“n - o I
-0.0050 e @0 o008 e oo
& K
00075 - o 0006 o ~ o
h - L
~00100 ~o008
~0.0100-0.0073-0.0050-0.0925 000 00625 00030 00B75 00100 oo06 —obos ooez 00w 02 004 0dos 0dos
ocz0
000501 L g €0 @ @0 o O g0 @0 gL,
&0 o0
oot 000251 gso o0
" o
o 0@ P
o010 P &0 00000{ g0 w
& L& ) &
o o0 o00zs{ G @
000 & - - &
@ g | 00050 O g g g g @ @0 & & &0
0.000 @
o
o0 -0.0075
o e
~0.005{ @20 * 00100
$50 g0
.o
L LT &4
~0.010 0 g g g @ -0.0125
oot obes oo o5 oo ooos oot —oboz o0m0 0%z 0904 0006
Epochs=50 Epochs=300

FIGURE 9. Projection of the latent representation z after training using
PCA. Each dot represents an angle with a corresponding value from the
face dataset. First row: VAE (« = 0) ignores the variance in the angle.
Second row: Our model (@ = 10) shows a consistent loop since the
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FIGURE 10. B-VAE shows the same behavior as conventional VAE. The
latent representation lacks the structure to generate the in-between
image.

(SSIM), L2, and L1 scores. In Tables 1,2 and 3, we demon-
strate the performance of FlowNet and its versions, SloMo,
conventional VAE and our approach. In Table2 and Table3,
we used the face and dots datasets respectively. Our model
achieves the best performance on all metrics. Despite good
accuracy on all metrics, in Tablel, for PSRN and L2, our
model presents values slightly lower than FlowNet2.0 and
FlowNet2S. The performances of our model indicate a plau-
sible generalization capability for distinct datasets.

b: VISUAL EVALUATION

We compare our approach with two state-of-the-art works
on image interpolation based on CNN and optical [8] and
latent representation learning [31]. Our model achieved the
best performance, particularly where the object is facing and
produces fewer artifacts (Fig. 11). We highlight in a yellow
box the errors presented by other models. Optical flow-based
methods seem to have more problems with large displace-
ment. It generates the in-between; however, the image resem-
bles one of the input images, not the actual in-between,
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FIGURE 11. Illlustration on teapot and face dataset. Our model produces plausible in-between and less

artifacts around the object shown in yellow box.

TABLE 1. The results on “Teapot” dataset.

PSRN SSIM L1 L2
FlowNet2CSS  64.10  0.0047 0.126  0.025
FlowNet2CS 62.37 0.0018  0.166  0.038
FlowNet2SD 54.09  0.0003 0414 0.254
FlowNet2S 60.01 0.0010  0.180  0.001
FlowNet2C 60.39  0.0862 0.113  0.060
FlowNet2.0 7713 03873  0.023  0.001
Super SloMo 69.97 0.9077  0.020  0.007
VAE 69.15 0.8442  0.023  0.008
Ours 73.19 09078 0.015 0.003

TABLE 2. The results on “Face” dataset.

PSRN SSIM L1 L2
FlowNet2CSS  57.80 0.0015  0.292  0.108
FlowNet2CS 57.80 0.0005 0.374 0.175
FlowNet2SD 54.19 0.0004 0.406  0.248
FlowNet2S 60.44 0.0029  0.198  0.059
FlowNet2C 59.17 0.0005 0.196  0.079
FlowNet2.0 64.00 0.1538  0.068  0.026
Super SloMo 70.91 0.7653  0.032  0.005
VAE 74.04 0.8087  0.018  0.003
Ours 75.46 0.8276  0.016  0.002

as illustrated in the figure. Conventional VAE does not cap-
ture the direction of the object and presents some artifacts in
the generated image. One explanation is that learning from a
pixel-based approach does not allow predicting large motion
since it does not learn the embedding representations of the
data.

¢: IMPACT OF DEGREES OF FREEDOM - ADDITIONAL
EVALUATION USING MSE

To learn more general data representations, we argue that
it is essential to introduce diversity in the training samples.
The model is assessed on different degrees of freedom using
the mean squared error (MSE). The primary objective is to
evaluate the complexity of the datasets, both on the degree
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TABLE 3. The results on “Dots” dataset.

PSRN SSIM L1 L2
FlowNet2CSS  59.87 0.0003  0.219  0.067
FlowNet2CS 57.08 0.0002  0.127  0.127
FlowNet2SD 56.61 0.0007 0.241  0.142
FlowNet2S 60.64 0.0032  0.148  0.056
FlowNet2C 58.87 0.0030 0.224  0.084
FlowNet2.0 70.71 0.3338  0.033  0.006
Super SloMo 50.58 0.9396  0.130  0.570
VAE 64.853  0.863 0.024  0.021
Ours 72.221  0.9437  0.010  0.004

of freedom and generalization. The same object is evalu-
ated in two scenarios, one and two degree(s) of freedom:
the same epochs, coefficient (), and latent dimension (z).
Fig.12 indicates that two degrees of freedom represent a more
complex scenario. To generate a plausible in-between image
in one degree of freedom, « = 5 and epoch = 1,500 are
required, whereas o = 100 and epoch = 2, 000 are required
for generating a suitable in-between image in two degrees
of freedom. These results are due to the differences in the
number of possible scenarios between one degree (360) and
two degrees (360 x 360).

d: IMPACT OF LATENT DIMENSION ON DIFFERENT
DEGREES OF FREEDOM

Latent variables are compressed representations (salient fea-
tures of the data) of high-dimensional data. In VAE, the latent
variables can be found in the bottleneck layer. Depending
on the number of variables passed, the output quality might
change. To date, the results have been assessed on a single
latent dimension (d;) = 10, except for “moving 2D shapes.
As shown previously, the decoder can reconstruct the output,
with only 10 variables passed to the bottleneck. We investi-
gated the impact of the latent dimension on different degrees
of freedom using “moving 2D shapes”. The model was
trained for 5,000 epochs with different latent dimensions (1 to
100). The model stabilized on latent dimension z = 20,
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degrees of freedom. For one degree, the minimum loss for coefficient
(«) =5 and epochs = 1, 500. For two degrees, the minimum loss for
coefficient («) = 100 and epoch = 2, 000. This indicates a higher
complexity of two degrees of freedom.

as illustrated in Fig.13. For good generalization, passing
20 variables to the bottleneck could be sufficient. The decoder
may be able to reconstruct the output.

D. LINEAR LATENT SPACE INTERPOLATION

Autoencoders can generate a semantically meaningful
combination of features from two distinct data points.
David et al. [50] have explored autoencoders in the context of
regularization to improve linear interpolation. Ideally, latent
variables of the data are close to each other but different. This
characteristic enables smooth interpolation and stimulates
creative design [51], [52]. Sampling latent variables through
arithmetic operations can generate diverse outputs [44] sug-
gests that models that preserve smooth interpolation between
points might be relevant for disentangling explanatory factors
of variation in data. Another critical application of contin-
uous linear latent interpolation is to test if the model has
not merely memorized the training data. By decoding the
latent space of two data points, it is possible to visualize
a smooth change from one image to the next, as illustrated
in Fig.14.
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FIGURE 13. Effects of latent dimensions using MSE. There are two
degrees, four degrees, and six degrees. The model begins stabilizing on
the latent dimension z = 20. For this specific dataset, with 20 dimensions,
the decoder could reconstruct the output.

V. DISCUSSION

There are two main lines of research relevant to our work. The
first is similar to [5], [6], [8], and seeks to generate image
interpolation based on a pixel-based approach. The second
line is similar to [36], which revolves around seeking to
learn controllable and interpretable latent representations of
data. Of particular relevance to our work are approaches that
explore latent space in the context of learning representations.
Several works on (unsupervised) learning representations are
based on VAE. Prior works [36], [38], [43], [53], enhance the
quality of learned representation by modifying the conven-
tional VAE objective function. These works often considered
controlling the level of regularization of the latent space
through KL divergence at the cost of reconstruction.

KL divergence allows the model to normalize and
smoothly interpolate the latent space [54]. However, if not
well-tuned, KL divergence can also induce the network model
to a suboptimal [55]. The model does not exploit all the latent
variables for generation, the so-called over-pruning/variable
collapse discussed in [56]. Placing importance in the KL
divergence term leads to a more controllable latent space,
which may lead to a better quality of generated samples.
A state-of-the-art study on unsupervised disentanglement
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FIGURE 14. Continuous linear latent space interpolation.

representations S-VAE [36], gave relative importance to the
KL divergence term by introducing a hyperparameter 8 to the
VAE loss function. The authors argued that this modification
encourages the model to learn interpretable representations of
the data. In the same line of research, [57] enhanced S-VAE
by modifying the training process. The authors claimed that
increasing the information capacity of the latent codes during
training enables the model to see more factors of variations
continuously, thus resulting in better disentanglement. Our
objective function is similar to B-VAE, but we do not aim
to disentangle factors of variation in the data.

A different path to learning latent representations was
taken by Chen et al. [58]. The authors proposed InfoGAN,
a model based on a generative adversarial network (GAN).
The model encourages disentanglement by penalizing the
total correlation [59], i.e., the mutual information between the
data and latent representation. Disentangled representation
models have been shown to discover factors of variations
in the data; the application is still restricted to a synthetic
dataset. Locatello et al. [60] argued that disentangling a
specific factor is nearly impossible without any forms of
inductive bias on both the model and the data. Furthermore,
the authors were not clear about the relevance of disentangle-
ment for downstream tasks.

VI. CONCLUSION

This paper presented a simple approach to improving image
interpolation. Our model produces good performance on all
datasets. In addition, the model outperforms some baseline
approaches on large displacements between images. The key
to the success of this approach is dedicated to latent variables.
Learning latent representations of the data and limiting the
freedom of latent space has been demonstrated to have an
impact on the generated in-between image structure. Previ-
ous works are pixel-based except conventional VAE; how-
ever, VAE does not have control over generated in-between.
We propose a model that has the ability to control the latent
space.
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