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ABSTRACT With the rapid increase in vehicle use during the fourth Industrial Revolution, road resources
have reached their supply limit. Active studies have therefore been conducted on intelligent transportation
systems (ITSs) to realize traffic management systems utilizing fewer resources. As part of an ITS, real-
time traffic services are provided to improve user convenience. Such services are applied to prevent traffic
congestion and disperse existing traffic. Therefore, these services focus on immediacy at the expense of
accuracy. As these services typically rely on measured data, the accuracy of the models are contingent
on the data collection. Therefore, this study proposes a long short-term memory (LSTM)-based traffic
congestion prediction approach based on the correction of missing temporal and spatial values. Before
making predictions, the proposed prediction method applies pre-processing that consists of outlier removal
using the median absolute deviation of the traffic data and the correction of temporal and spatial values using
temporal and spatial trends and pattern data. In previous studies, data with time-series features have not been
appropriately learned. To address this problem, the proposed prediction method uses an LSTM model for
time-series data learning. To evaluate the performance of the proposedmethod, the mean absolute percentage
error (MAPE) was calculated for comparison with other models. The MAPE of the proposed method was
found to be the best of the compared models, at approximately 5%.

INDEX TERMS Long short-term memory, traffic, intelligent transportation system, deep learning, missing
data correction, big data-based AI.

I. INTRODUCTION
Based on the core technologies of the fourth industrial revolu-
tion, smart vehicles are being produced in diverse forms [1].
The role of the automobile has been extended from a simple
means of transportation to a living space and finally, to a
type of infotainment system that provides new forms of user
convenience [2], [3]. With the increase in the demand for
smart automobiles, it is extremely important to collect and
process traffic information to enable smooth traffic manage-
ment. Furthermore, it is necessary to take a qualitative rather
than a quantitative approach [4]. To this end, research has
been conducted on intelligent transportation systems (ITSs)
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developed in concert with conventional traffic management
systems and information technology [5]–[7]. To improve user
convenience, studies on the problems that have arisenwith the
increased demand for road resources have focused on traffic
welfare. Traffic welfare consists of factors including opera-
tion service costs, passage of time, accident costs, parking
costs, punctuality, and accessibility, with the most important
being traffic congestion. As a part of an ITS, traffic surfaces
can be put in place to collect traffic information on all roads in
real time in order to provide users with information including
which regions are congested, traffic volumes, and the loca-
tions of traffic accidents. In this way, an ITS can improve
the functionality of a road traffic network. An ITS can also
provide a real-time traffic-information service. By suggesting
an optimal path to each driver, road congestion decreases
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and traffic is dispersed. An ITS thus focuses on immediacy
but achieves relatively low accuracy. To solve this problem,
active research has been conducted on real-time traffic pattern
predictions based on deep learning models and multiple pre-
diction modes, with a particular focus on traffic predictions
based on time-series data.

Weilin et al. [8] proposed a multi-resolution support vec-
tor regression (SVR) traffic flow prediction model based on
wavelet decomposition and topological space reconstruction.
For their experiment, the researchers utilized data collected
from January to December 2011 by performance measure-
ment systems, which collect data in 5-min intervals. The
mean absolute percentage error (MAPE) rate for their model
was 12.8%.

Filmon et al. [9] proposed a nonparametric, data-centric
methodology to achieve short-term traffic predictions based
on the identification of similar traffic patterns through the
improved K-nearest neighbor (K-NN) algorithm. Recently,
the weighted Euclidean distance has also been used as a
similarity measurement for K-NN. For their experiment,
the researchers used 12 datasets from highways in the UK and
24 datasets from highways in the US. A MAPE rate of 22%
was achieved.

Zhang [10] proposed a short-term traffic prediction model
based on a convolutional neural network (CNN) deep learning
framework. In the proposed framework, the optimal input
data time delay and amount of spatial data are determined
based on the space-time feature selection algorithm. The
selected space-time traffic feature is then transformed into a
two-dimensional matrix after being extracted from the actual
data. The function is learned by the CNN, and a prediction
model is constructed. According to a performance analysis,
the MAPE rate was approximately 8.3% on average.

The methods described above tend to achieve higher
prediction accuracies than those focusing on immediacy.
The prediction modes used in these studies are based on
one of three models: SVR [11], [12], CNNs [13], [14], and
KNN [15], [16]. Because these models fail to consider the
features of time-series data, they may be inappropriate. For
prediction, this study therefore utilizes the long short-term
memory (LSTM)model, which provides accurate predictions
and makes it possible to account for the time-series fea-
tures of traffic data. The LSTM model solves the problem
of the long-term dependence inherent in recurrent neural
network (RNN) models [17]–[19]. With the LSTM model,
the result of a hidden layer is passed to the same hidden
layer as an input. Owing to the recursive construction of
hidden layers, it is possible to consider sequential or temporal
aspects. For this reason, this model is conducive for learning
the time-series features of traffic data. Traffic data include
outliers or missing values due to unexpected traffic variables.
Outliers and missing values lower model performance and
therefore should be corrected when designing an accurate
prediction model. The correction can be achieved by remov-
ing outliers, correcting missing temporal and spatial values,
and applying pattern data. Then a system can be established to

provide the predicted traffic information to users. With more
accurate data, it is possible to increase the accuracy of pre-
dictions and to provide a smooth flow of traffic information
to users [20], [21].

This paper is organized into the following sections.
Section 2 describes the relevant studies on ITSs and
ITS-based traffic predictions. Section 3 details the data col-
lection process, data pre-processing, and model design for
traffic congestion prediction. In Section 4, an experiment
conducted to evaluate the model performance and its results
are described. In addition, a comparison of different methods
used to verify the performance and a description of the system
implementation are also provided. Finally, Section 5 presents
the concluding remarks regarding this study.

II. RELATED WORK
A. RESEARCH OF TRAFFIC CONGESTION PREDICTION
In traffic data, outliers and missing values negatively influ-
ence traffic control and traffic congestion prediction in intel-
ligent traffic systems. To address this problem, many missing
value correction methods have been proposed. Conventional
methods of missing value correction focus on the correction
of individualmissing values. Although thesemethods provide
a simple and fast estimate for the missing value, they often
produce biased results. To resolve this, historical imputation
methods (HIMs) that provide multiple estimation values for
one missing value have been proposed [22], [23]. In these
methods, a missing value is replaced by the mean value
of multiple data points collected at the same position and
date. Correction methods based on nearest neighbor imputa-
tion (NIM) use the mean value from the neighboring roads to
estimate a missing value [24], [25]. However, such methods
cannot be applied when there is no data from neighboring
roads. The missing value correction method proposed in
this study makes it possible to correct a missing value and
thereby to design complete data, using past data patterns
even when there is no information from neighboring roads.
In addition, machine learning and deep learning are applied
to model more complicated data for traffic prediction. The
deep learning model exhibits better performance since it has
more functions and more complicated architecture than the
conventional model.

Sun et al. [26] proposed a traffic prediction method using
GPS trajectory data based on an RNN. Their method used
the missing values from existing road speed data to estimate
the average speeds on stretches of road with GPS trajec-
tory data. However, because an RNN fails to memorize past
data features and deletes them with a lapse in time, it has
problems dealing with long-term dependency. Accordingly,
traffic prediction based on the LSTM model, which resolves
problems associated with RNNs, is actively being researched.
Mou et al. [27] proposed the temporary information improve-
ment (T-LSTM) model to predict the traffic flow on a sin-
gle stretch of road. In consideration of the similar features
exhibited each day by traffic flows at a given time and place,
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the model extracted the unique correlation between the traffic
flow and time information, thereby improving the prediction
accuracy. Yu et al. [28] proposed STGCN to solve the prob-
lem of previous studies that had ignored spatial and temporal
attributes in traffic prediction. They argued that the method
was able to obtain a faster training speed with a smaller num-
ber of parameters since it formalized the problem in graph and
established a model with a complete convolution structure,
rather than applying regular convolution and repetition units.
Many researchers have tried to increase the accuracy of traffic
predictions and reduce the calculation time through their
theories and experiments.

B. RESEARCH ON ITS-BASED TRAFFIC PREDICTION
University of Southern California Information Lab has estab-
lished spatial and temporal data using sensors for road mea-
surements and traffic information (e.g., CCTV and GPS) and
uses real-time data and past traffic data to predict on-road
traffic [29]. The extent to which a prediction model estab-
lished using past data depends on the state of real-time traffic
is important, and an important task is to evaluate the extent to
which models built using past predictions depend on current
status data. It is necessary to overcome the limitation of pre-
vious data becoming irrelevant in the model over time. To this
end, in the USC model, current traffic information is learned
in real time and is used as historical data. The framework
can predict traffic at an accuracy comparable to that of the
most effective prediction-trained model. Fig. 1 shows the
transportation prediction system architecture of USC media.
The artificial intelligence (AI)-based transportation predic-
tion system offered by Blue Signal in the Republic of Korea
provides road map information and predicts traffic flows and
accident risk through big data analysis [30]. An AI-based
transportation prediction engine was also developed based
on transportation theory. Whereas a conventional GPS ser-
vice provides information such as routes around traffic jams,
the shortest travel time, and the shortest path, the prediction
engine of Blue Signal predicts the safest and most convenient
route. This engine can achieve 98% accuracy for traffic acci-
dent prediction on domestic highways.

As shown in Fig. 1, data are received in real time by
the User Interface and Data Interface. Through the adaptive
segmentation of the Context Space, the effect of each base

FIGURE 1. Transportation prediction system architecture of USC media.

prediction device is efficiently estimated. In this way, it is
possible to predict traffic conditions in diverse situations.

III. PREDICTION OF TRAFFIC CONGESTION BASED ON
LSTM THROUGH CORRECTION OF MISSING TEMPORAL
AND SPATIAL DATA
The congestion prediction method developed to provide traf-
fic information to users consists of data collection, correc-
tion of missing data, and prediction modeling. In this study,
the collected data include node/link and traffic speed data pro-
vided by an ITS. The node/link data represent a road region
or road connection point. The traffic speed data from the
ITS are collected by traffic information collectors installed
on the roads or along the roadsides. The traffic data include
missing values and outliers. An outlier may be generated by
an information collection failure, when there are errors in the
collectors, or by shaded zones without automobiles travelling
in them. The traffic data also include time-series features. For
this reason, a missing value makes it difficult to extract the
feature values when a deep learning model is used for pre-
diction. Therefore, preprocessing of the outliers and missing
values is required [31], [32]. During the data pre-processing,
an outlier is processed, and filtering is then applied using
the median absolute deviation [33], [34]. Missing data are
corrected using spatial trends, temporal trends, and pattern
utilization. With the pre-processed data, an LSTM model is
used to predict traffic congestion. Fig. 2 shows the entire
process of LSTM-based traffic congestion prediction through
the correction of temporal and spatial data.

A. OUTLIERS, TYPES OF MISSING VALUES, AND
CORRECTION METHODS ACCORDING TO
TRAFFIC DATA FEATURES
Traffic speed data include outliers that distort the flow of the
average traffic speed and missing values. An outlier repre-
sents a value that is either too small or too large in the context
of the average traffic flow on each road. Such values are
removed to avoid influencing the feature values at the time of
prediction. There are two types of missing values. The first
type is missing temporal values that occur when not all of the
traffic data (which are collected every 5 min) are gathered.
The second type ismissing spatial values that occur when data
are not collected at each road in a given collection interval.
Fig. 3 shows the time in a link matrix with examples of an
outlier and each type of missing value.

To correct for outliers andmissing values in the traffic data,
the outlier removal process is first applied. There are a variety
of typical outlier removal methods that use, for example,
themedian absolute deviation, truncatedmean, orWinsorized
mean. Methods may be combined depending on the features
of the roads and traffic data. This study applies the median
absolute deviation to identify and remove outliers. That is,
the median value of the collected data is used to detect
whether a value is abnormally large or small. When a value is
identified as an outlier, it is removed. Algorithm 1 shows the
outlier removal algorithm. Fig. 4 shows the outlier removal
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FIGURE 2. Process of LSTM-based traffic congestion prediction through time-space correction.

FIGURE 3. Outliers and types of missing values from traffic data.

process using the median absolute deviation. The missing
value correction is an algorithm-based filtering process for
correcting data that was removed after being identified as
outliers. The missing-value correction methods include the
application spatial trends from data from regions with a sim-
ilar traffic pattern, the use of temporal trends to correct the
value in question using past data, and the use of pattern data.
Each method corrects missing data values from a temporal or
spatial perspective.

Algorithm 1 Outlier Removal Algorithm
Input: [x1, x2, . . . , xn]

def Detection of Outlier
MED← Median([x1, x2, . . . , xn])
for xi in [x1, x2, . . . , xn]

do x ′i = |xi -median|
MAD← Mean[x′1, x

′

2, . . . , x
′
n]

for x ′i in [x
′

1, x
′

2, . . . , x
′
n]

if 0.6457(xi−median)
MAD > threshold

then outlier_set← [outlier_set, xi]

Output:[x1, x2, . . . , xn] - outlier set

FIGURE 4. Outlier removal process using median absolute deviation.

The spatial trends are used to correct missing values in
regions with similar traffic patterns under the assumption
that the traffic flow of the upper regions influences that of
the lower regions. Algorithm 2 is a missing value correction
method based on the use of spatial trends. For instance,
if detector xb has a problem and its data are missing, the mean
of the adjoining link data from xa and xc is used for the
correction. The use of the spatial trend-based missing value
correction process is shown in Fig. 5.

If missing data occur at three continuous points, the spatial
trend correction is not possible because there are no adjoining
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Algorithm 2 Spatial Data Correction Algorithm
Input: Xa (Adjoining Northbound Link) Xb (Target Link)

Xc (Adjoining Southbound Link)
def Spatial Data Correction
if Xa = Exist && Xb = None && Xc = Exist

then Xb = (Xa + Xc)/2
else if Xa = None && Xb = None && Xc = Exist

then Xb = Xc
else if Xa = Exist && Xb = None && Xc = None

then Xb = Xa

Output: Xb(Target Link)

FIGURE 5. Spatial-trend based correction procedure.

links. In this case, the temporal trend is applied. The temporal
method calculates the mean of the n previous observations at
missing observations location. Equation 1 shows the correc-
tion equation using the temporal trend. In the equation, Ft is
the missing value at the current time t and is to be estimated,
At−k is the detected data at time t − k , and n is the number
of past detected observations. In Fig. 6, the use of the tem-
poral trend-based correction procedure is illustrated. Using
the temporal trend, the missing values in the traffic data can
be fully corrected. Nevertheless, if there are many sequential
missing values, when applying the method, the estimated
temporal values are constant, and the data pattern disappears,
as shown in Fig. 7.

Ft =
At−1 + At−2 + . . .+ At−n

n
(1)

FIGURE 6. Time- trend based correction procedure.

FIGURE 7. Data pattern collapse due to continuous temporal data.

Therefore, if the temporal trend is not useful, the pattern
data are applied. This final method estimates the missing
values by applying data collected in the connected parts, such
as the data entrance and the entrance access parts. For the
pattern data generation procedure, the data from previous
days are checked to find the passage features of each day, and
the data are saved as one of six types: a special day, Sunday,
Saturday, Monday, weekday (Tuesday through Thursday),
or Friday. The pattern data of each type are generated every
5 min and are updated by applying a weight to the current
collection speed.

B. LSTM-BASED TRAFFIC CONGESTION PREDICTION
For traffic speed prediction, we use time series-based
deep learning (LSTM or long-term memory) for modeling
[35], [36]. The data used for prediction are pre-processed
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FIGURE 8. LSTM-based traffic prediction process.

using the method described in the previous section. The input
data used for modeling are the mean speeds from 10 min and
5 min earlier, the current speed, and the speed of adjoining
upper region. The output data is the predicted speed 5 min
after the current time. Fig. 8 shows the LSTM-based traffic
prediction process proposed in this study. An LSTM cell
consists of a memory cell and gates. Input information is
saved in the memory cell, and a gate controls the saved
information. The parameters of the proposed LSTM model
are shown in Table 1. The learning rate is a Hyper param-
eter in an optimization algorithm that determines the step
size at each iteration while moving toward a minimum of a
loss function. [37]. Dropout is used to prevent overfitting,
which can occur during the learning process [38]. In other
words, dropout is used when a model lacks flexibility due to
overfitting (which means that the error is small when testing
with the learning data and large when testing with the test
data) and can therefore not be generalized. The batch size
represents the data input to the model concurrently with the
training data. The optimization function is an algorithm for
updating the weights. The number of hidden neurons and
layers, the number of epochs, and the loss function, all of
which affect performance, are frequently changed to induce
improved performance [39], [40].

TABLE 1. Hyper parameter values.

IV. EXPERIMENT AND RESULTS
The LSTM-based traffic congestion prediction method pro-
posed in this study was implemented using the following
hardware and operating system: Windows 10 Pro, an AMD
Ryzen 5 1600 6-Core processor, an NVIDIA GeForce GTX
1070, and 16 GB of RAM. In terms of software, a Tensor-
Flow back-end engine and the deep learning library Keras
were used in the design. The traffic speed data used in
this study was collected in Gangnam-gu, Seoul during one
month in November, 2018. There are a total of 1,630 links in
Gangnam-gu, and data was collected at each link [41], [42].
There were a total of 8,640 observations collected at each link
according to the collection cycle (5 min ∗ 30 days) and the
collection period. Some data were missing; data may have
failed to be collected due to a sensor or software error in
the process of data collection. The average missing rate of
Gangnam-gu traffic speed data is approximately 33%.

A. IMPLEMENTATION OF TRAFFIC CONGESTION
PREDICTION SYSTEM
In this study, a system for pre-processing traffic data and a
traffic congestion prediction model were established. Fig. 9
shows the pre-processing system for the traffic data. The
table in Fig. 9 shows an example of the speed data for
all regions in Gangnam-gu. By entering a LINK_ID in the
Setting field at the bottom right, selecting a pre-processing
method (outlier removal, correction of missing spatial or tem-
poral values, or the use of pattern data), and clicking the Start
button, data pre-processing is applied. The pre-processed
region data appear in the bottom left of Fig. 9. It is pos-
sible to save the pre-processed data by clicking the Save
button. region is selected in the region selection window in
the top-left of the prediction system. In the LINK overview
window, the description of the selected region (LINK_ID,
LINK_NAME, Velocity) is displayed. In the data collection

VOLUME 8, 2020 150789



D.-H. Shin et al.: Prediction of Traffic Congestion Based on LSTM Through Correction of Missing Temporal and Spatial Data

FIGURE 9. Pre-processing system for LSTM-based traffic congestion prediction.

FIGURE 10. LSTM-based traffic congestion prediction system.

window, the speed data collected in the selected region are
shown for the date provided. When ‘15 min later’ is selected,
and the Predict button is clicked in the Status window,

the overall congestion results for the Gangnam-gu region
of Seoul are displayed. The traffic congestion criteria differ
depending on the road type. For general roads, ‘smooth’
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FIGURE 11. Results of performance evaluation according to missing value
correction method.

refers to speeds of 30 km/h or higher, ‘congested’ to 15 km/h
∼ 30 km/h, and ‘very congested’ to less than 15 km/h. For
highways, ‘smooth’ refers to speeds of 70 km/h or higher,
‘congested’ to 40 km/h ∼ 70 km/h, and ‘very congested’ to
less than 40 km/h. These criteria are suggested by the Min-
istry of Land, Infrastructure and Transport [41]. Numerical
information for the expected congestion region is provided
in the table below the simulation map. Fig. 10 shows the
LSTM-based traffic congestion prediction system [43], [44].

B. COMPARATIVE EVALUATION OF PERFORMANCE
ACCORDING TO THE MISSING VALUE CORRECTION
METHOD
If a model learns on data that includes missing values,
the predication ability can be diminished. For this reason, it is
necessary to correct missing values, and the model accuracy
may change according to the correction method.

We therefore evaluated the performance of our correction
methods through repeated experiments varying the missing
rate. In the experiments, historical imputationmethods (HIM)
and nearest neighbor imputation (NIM) are used as conven-
tional missing value correction methods for comparison with

the missing value correction method proposed in this study.
The performance comparison was conducted through the data
missing rate basedMAPE. The data missing rate ranged from
10% to 90% in increments of 10%. Fig. 11 shows the results
of the performance evaluation for each of the missing value
correction methods.

As shown in Fig. 11, the proposed method performed
better in terms of MAPE than the conventional missing value
correction methods. HIM corrects temporal missing values
but fails to correct spatial missing values. In addition, its
performance deteriorates when a large proportion of the data
is missing. Unlike the HIM, the NIM cannot correct the tem-
poral missing value, but it is possible to correct the data when
the data in the neighboring space is not recorded. In contrast,
the data correction method proposed in this study is able to
correct both spatial and temporal data and exhibits excellent
performance in terms of MAPE.

C. PERFORMANCE EVALUATION OF PREDICTION MODEL
For the performance evaluation and loss function of themodel
used in this study, the MAPE was used [45], [46]. The MAPE
can be applied to overcome the effect of size-dependent error
and represents the mean of the absolute error between the
actual and predicted values. It was used for the loss function
because it is sensitive to small values in low-speed regions
such as congested areas. It was also used for the perfor-
mance evaluation of the proposed method. The MAPE can
be calculated by Equation (2), where Ai is an actual value
and Fi is the predicted value. The MAPE is expressed as a
percentage by subtracting the actual value from the predicted
value and dividing the result by the actual value; this quantity
is summed for all of the observations, and the sum is dividing
by n. The lower a MAPE value is, the higher the model
accuracy is.

MAPE =
100
n

n∑
i=1

∣∣∣∣Ai − FiAi

∣∣∣∣ (2)

FIGURE 12. MAPE results of suburban and urban areas.
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FIGURE 13. Analysis of prediction results for urban areas.

In addition, the data used in the experiment is the traffic
data of a day. The data includes data on an urban area with
high congestion and a suburban area with relatively low con-
gestion. The performance of the LSTMmodel for congestion
prediction was evaluated using uninterrupted and interrupted
flow regions. An uninterrupted flow region has no external
influences that control the traffic flow. An interrupted flow
region refers to a region with interrupted traffic flow that
has crossroads and trunk lines that cause interruptions due
to traffic signals or traffic control facilities. An example of
an uninterrupted flow region is a suburban area with high-
ways, while an example of an interrupted flow region is an
urban area with traffic signals and traffic control facilities.
Fig. 12 shows a graph of the MAPE results for suburban

and urban areas. For the suburban areas, three regions were
extracted, and the northbound and southbound speeds were
predicted. As shown in the graphs of the prediction results, the
average MAPE was approximately 4.297%. As for the subur-
ban areas, three regions were extracted from the urban areas,
and the northbound and southbound speeds were predicted.
The average MAPE for the urban areas was approximately
6.087%. The urban areas showed a somewhat lower accu-
racy than the suburban areas, and the reasons for this were
analyzed. The suburban areas included fewer surrounding
buildings and no traffic signals, and the speed limit within
these regions was higher than in the urban areas. By contrast,
the urban areas included numerous buildings, the large influ-
ence of a floating population other than drivers, traffic signals
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FIGURE 14. Analysis of prediction results for suburban areas.

at crossroads, and numerous variables interrupting the traffic
flow. For these reasons, it is more difficult to predict the traffic
flow in urban areas. In addition, Fig. 13 shows the results
of a comparative analysis of the actual and predicted values
in terms of the MAPE for three sections of the city center,
while Fig. 14 shows the same comparison for three sections
on the outskirts of the city. However, the MAPE reduces
the denominator as the actual measurement approaches 0.
This results in a significant increase in Absolute Percentage
Error (APE) even if the absolute error value is small, resulting
in a biased value when the average is taken. Therefore, RMSE
(Root Mean Squared Error) andMAE (Mean Absolute Error)
is used for measuring performance in order to prevent the

distortion of overall prediction performance. MAE calculates
results through identical standards in different circumstances.
Also, RMSE reduces distortion through route about errors
dependent on size, which is the problem of MSE (Mean
Squared Error), and displays the average of errors themselves
intuitively.

In this study, the performances are compared between
urban area and suburban area to evaluate the performances of
prediction. Figure 13 and 14 show the results of performance
evaluation through RMSE and MAE of urban and suburban
areas. In the results of performance evaluation through RMSE
in Figure 13, Southbound of Seocho-daero shows the best
performance, which is 1.543. The Northbound of National
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FIGURE 15. RMSE results of suburban and urban areas.

FIGURE 16. MAE results of suburban and urban areas.

Route 47 shows relatively low performance, which is 5.524.
The results of 12 routes of MAE show 3.27 in average. MAE
in Figure 14 shows the best performance in the Southbound of
Seocho-daero like RMSE, and the Northbound of Teheran-ro
shows the lowest performance, which is 3.83. The results
of 12 routes of MAE show 2.24 in average. The results
through MAPE show that the congestion in urban areas has
poor prediction performance. But, the results of RMSE and
MAE show that the performance of some suburban areas is
poorer than the prediction of urban areas’ congestion. This is
because MAE and RMSE do not depend on the speed values
or situation changes in urban areas with high congestion
level and suburban areas where congestion level is not high,
but are the results of calculation through identical standards.
Therefore, when the three performance evaluation indexes
are comprehensively analyzed, the prediction performance of
urban areas except the Northbound of Teheran-ro is mostly
better than that of suburban areas.

D. EVALUATION OF MODEL GOODNESS-OF-FIT IN
COMPARISON WITH DIFFERENT MODELS
To demonstrate the reliability of the model proposed in this
study, the goodness-of-fit of the model was evaluated. The
proposed model was compared with other models presented
in relevant studies. The data used for the comparison was
preprocessed by the method proposed in this study. The
performance index used for the comparison was the MAPE.
The models used for comparison are RNN, LSTM, and
STGCN models. Table 2 presents the prediction results for
the different data and models in the comparison. As shown
in Table 2, in terms of the MAPE, the proposed method
had better goodness-of-fit than the other methods. The RNN
performed worse than the LSTM models. This is because
the RNN has the problem of long-term dependency. Accord-
ing to the comparison, there is performance improvement
of 0.97 for the proposed model over that of Mou et al. [27].
The LSTM model used in this study is therefore good for
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TABLE 2. Evaluation of model goodness-of-fit in comparison with
different models.

traffic congestion prediction, since it accounts for temporal
features.

V. CONCLUSION
In this study, an LSTM-based traffic congestion prediction
method using a correction for missing temporal and spatial
data was proposed. Based on experimental results, outliers
andmissing values in the traffic data influenced the prediction
results. To improve the model performance, the outliers were
removed, and the data were pre-processed using spatial and
temporal trends and pattern data. As a predictive model,
LSTM was applied. It is derived from the RNN model and
solves the problem of long-term dependency. In the LSTM
model, the result of a hidden layer is passed into the same hid-
den layer as an input. Because the model considers sequential
or temporal aspects, it can be applied to learn the time-series
features of traffic data. In an experiment to evaluate the model
performance, suburban areas were used as an example of
uninterrupted flow regions and urban areas as an example
of interrupted flow regions. The suburban areas were less
influenced by the traffic flows with external interference than
the urban areas, and therefore had fewer variables at the time
of prediction. The model thus demonstrated higher prediction
accuracy for suburban areas. In comparison with relevant
models, the proposed method was found to achieve better
performance with a difference in theMAPE of 3%–17%. As a
future study, we plan to increase the accuracy of the traffic
congestion prediction in low-speed regions and urban areas
and to establish a model with better user performance.
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