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ABSTRACT The power grid frequency is the central observable in power system control, as it measures the
balance of electrical supply and demand. A reliable frequency forecast can facilitate rapid control actions and
may thus greatly improve power system stability. Here, we develop a weighted-nearest-neighbour (WNN)
predictor to investigate how predictable the frequency trajectories are. Our forecasts for up to one hour
are more precise than averaged daily profiles and could increase the efficiency of frequency control actions.
Furthermore, we gain an increased understanding of the specific properties of different synchronous areas by
interpreting the optimal prediction parameters (number of nearest neighbours, the prediction horizon, etc.)
in terms of the physical system. Finally, prediction errors indicate the occurrence of exceptional external
perturbations. Overall, we provide a diagnostics tool and an accurate predictor of the power grid frequency
time series, allowing better understanding of the underlying dynamics.

INDEX TERMS Power grid frequency, frequency control, power system stability, time series forecasting,
k-nearest-neighbours.

I. INTRODUCTION
The electrical power system relies on a constant balance of
supply and demand. Abundant energy will speed up gener-
ators and lead to an increase of the power grid’s (mains)
frequency. Similarly, a shortage of generation slows down the
same generators and reduces the systems frequency as kinetic
energy stored in the generator is transformed into electrical
energy. Control systems, ordered from primary to tertiary
control, help to ensure the balance of supply and demand by
closely monitoring the frequency trajectory and maintaining
it close to the desired reference value of f = 50 or 60 Hz [1].
Large deviations of the frequency away from the reference
require decisive control actions and cause high costs [2].

To optimize the usage of costly control actions, we require
a precise understanding of the power grid frequency. This
frequency is neither constant nor varying slowly but is instead
highly stochastic and subject to multiple external influences
[3], [4]. For example, the organization of the energy market
leads to deterministic imprints of dispatch activities in the
frequency in forms of sudden jumps or drops [5]. Simultane-
ously, an increasing share of renewable generators decreases

The associate editor coordinating the review of this manuscript and

approving it for publication was Jahangir Hossain .

the inertia available in the grid [6] and introduces addi-
tional fluctuations [7], [8]. Given this hybrid stochastic and
deterministic nature, the question arises to which extend the
frequency trajectory is predictable. A precise estimate of the
future frequency trajectory would be very beneficial as it
would allow an estimate of necessary control power early in
time, saving costs [2] and stabilizing the grid [1].

Beyond precise forecasts of the near future trajectories,
a fundamental understanding of the power grid frequency
dynamics is critical as this one-dimensional time series
encodes vast information on the stability and the current state
of the power system [9]. Only a solid understanding of how
the energy mix, demand patterns and energy market rules
impact the power system and its stability will allow us to
implement and control highly renewable power systems in the
future. As the starting point to develop such an understanding,
we study the power grid frequency since frequency data is
much more readily available [10] than precise demand or
generation values in a given synchronous area.

With the increasing popularity of machine learning tech-
niques [11], there are many tools available to forecast time
series, such as the power grid frequency. Recent studies
used artificial neural networks (ANN) [12] to predict hourly
frequency time series in India based on features such as
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FIGURE 1. The nature of the power grid frequency. (a): The frequency reflects the balance of power demand and
generation. Over-production causes a frequency increase and under-production a frequency decline. (b):
Example frequency time series from the CE synchronous area [21]. It displays the typical frequency jumps at 15 minute
intervals that are caused by the trading on electricity markets and subsequent changes of the power plant dispatch.

wind power generation and power demand. Other authors [9]
used a linear state space model and uncertain basis function
to predict US frequency time series for up to one second,
while a Bayesian network was used to predict the frequency
time series for up to 3 minutes [13]. Finally, auto-regressive
moving average (ARMA) models have been used in the
British grid to achieve prediction horizons of tens to hundreds
of seconds [14] and in the US to achieve forecasts of 5 to
30 minutes [15].

We will particularly focus on k-weighted-nearest-
neighbour (WNN) methods, which have gained popularity in
a variety of fields from biology [16] to financial systems [17],
but have also been applied in the energy sector, e.g. to forecast
electricity prices [18] or power demand [19]. In contrast
to earlier applications of the WNN predictor on the power
grid frequency [15], we improve the statistical evaluation
of the predictor and introduce a system-specific null model
to benchmark its performance. Furthermore, we employ the
forecast accuracy not only as a performance measure but
as a tool to analyze the dynamics of the power system in
general and the interplay of internal and external influences
in particular. WNN predictors are particularly well suited for
that purpose as they are among the best explainable machine
learning algorithms [20].

In this article, we use frequency recordings from several
European synchronous areas to motivate the mean fre-
quency (daily profile) as an suitable null model (Section II)
and develop a WNN predictor to forecast the time series
(Section III). We demonstrate how our predictions outper-
form the null models in particularly on short prediction
horizons and provide in-depth analysis and interpretation of
when and how the power grid frequency can be predicted
(Section IV).

II. DATASET DESCRIPTION
A. DATA SOURCES AND PRE-PROCESSING
We train and test our frequency predictor on large
high-resolution datasets from three different European
synchronous areas. In particular, we use publicly available
frequency recordings of the years 2015-2018 from the

Continental Europe (CE) [21], the Great Britain (GB) [22]
and the Nordic synchronous areas [23], following the nam-
ing convention used in [24]. The data from CE and from
GB comes with a one-second resolution, while the Nordic
data exhibits a resolution of 0.1 s. Moreover, some of
the datasets have varying formats and multiple frequency
recordings are corrupted or missing. We therefore resam-
ple the data to a common one-second resolution and con-
duct a thorough pre-processing (Supplemental Material). The
pre-processed time series are available online [25], thus pro-
viding a ready-to-use database to develop new methods for
frequency analysis and prediction.

We want to point out that our pre-processing involves
the identification and exclusion of corrupted measurements.
However, the k-nearest-neighbour method can cope with
the resulting holes in the time series. Missing segments are
simply ignored during the nearest neighbour search. This is a
great advantage of the WNN predictor, as we can harness the
full length of the dataset without manipulating it too much.

B. CHARACTERISTICS OF THE FREQUENCY TIME SERIES
The frequency trajectory exhibits deterministic as well as
stochastic characteristics, which can be attributed to different
dynamics within the power system. Firstly, a frequency devi-
ation generally reflects a mismatch of power generation and
demand (Fig. 1(a)). Such a mismatch occurs when the power
generation does not match the expected demand curve. The
demand itself evolves continuously and shows typical daily,
weekly and seasonal patterns [2]. In contrast, the power gen-
eration exhibits discontinuous behaviour due to the trading
on electricity markets and the resulting changes of the power
plant dispatch [5]. In Europe, this trading is operated on
various different spot-markets such as the European Energy
Exchange Power Spot (EPEX SPOT), which covers coun-
tries in Western and Central Europe. The resulting dispatch
changes are commonly scheduled for discrete time intervals
of one hour, 30 and 15 minutes [26], [27]. The mismatch
between the step-like behaviour of the generation and the
continuous behaviour of the load leads to regular frequency
jumps at the beginning of these trading intervals [3], [5], [10].
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FIGURE 2. The daily profile is an important null model. (a): The autocorrelation functions show significant peaks that repeatedly occur with a period
of 24 h. The one-day period thus is the main recurrence period for frequency patterns. Note that the upper limit of the y-axis has been reduced from
1 to 0.5 in order to make even small peaks visible. (b) The daily profile is the average daily pattern that recurs with a one-day (24 h) period. It is most
pronounced in CE, where deterministic trading and dispatch actions play and important role. (c): The standard deviation measures the variability
among all frequency samples (in the training set) at a fixed time within the hour. The larger CE area displays the lowest variability, with a clear
maximum at the beginning of the hour.

Fig. 1(b) shows a frequency sample that displays these typical
deterministic jumps after every 15 minute interval.

Secondly, the frequency characteristics are determined by
the frequency control schemes. To assure a secure power
system operation, these control measures drive back the fre-
quency after a deviation from its reference value of 50 Hz [1].
They thus lead to a characteristic behaviour after a frequency
jump or sag, which can for example be observed in Fig. 1(b).
On time scales of seconds after a disturbance, the inertia of the
rotating generators and the energy supplied by primary con-
trol limits the frequency deviation caused by the disturbance.
Afterwards, on time scales of several minutes, secondary and
tertiary control set in and restore the system to a state of stable
operation at the reference frequency [1].

Finally, the frequency characteristics are influenced by
other external factors that are of rather stochastic nature.
Fluctuations of the demand directly affect the power balance,
where demand forecasting errors [28] and large social events
[29] can lead to significant unexpected frequency deviations.
The variability of renewable energy sources causes additional
frequency fluctuations due to its intermittency [30] or due to
generation forecasting errors [31]. In summary, the frequency
characteristics are thus determined by a complex mix of
stochastic and deterministic processes.

C. ANALYSIS OF FREQUENCY PATTERNS
Despite its complex characteristics, the power grid
frequency still exhibits regular patterns with a specific

recurrence period. We identify this period by searching for
regular peaks in the auto-correlation function (ACF) with
time lags of up to one month (Fig. 2(a)). In all grid areas,
the ACF displays regular peaks with a period of one day.
Significant (but less pronounced) peaks with a period of 12 h
only show up in the CE data. In CE and GB, the ACF also
exhibits regular peaks with shorter periods of 15 min, 30 min
and 60 min, but these peaks are much smaller than the daily
peak [4]. Frequency patterns are thusmost strongly correlated
with patterns that occur one or multiple 24h-periods later.
We conclude that the one-day period is the main recurrence
time for frequency patterns within all three synchronous
areas.

The average pattern that belongs to this main recurrence
period is the mean daily frequency evolution, which we call
the daily profile. A formal definition of the daily profile is
given later in (10). The daily profiles of our three datasets
exhibit some common feature but also important differences
(Fig. 2(b)). All profiles show pronounced frequency jumps
at the beginning of the full hour, which reflect the impact
of the hourly trading interval. In particular, the CE profile
displays sharp peaks of different heights, while the peaks in
the GB profile are the least pronounced. The direction and
height of the peaks in the CE profile are time-dependent and
related to whether the demand curve is rising or falling [5].
These results are consistent with the ACFs in Fig. 2(a). There,
we also observe the strongest correlation for the CE data and
the lowest correlation for the GB data. The CE frequency is
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thus strongly determined by regular daily patterns, while the
GB frequency only exhibits weak patterns within this period.

The relevance of regular patterns for the frequency time
series is further characterized by the standard deviation (StD)
in Fig. 2(c). We calculate the StD for each time within the
hour, i.e. the StD at 0 min is computed as the StD of all fre-
quency recordings with time stamps XX : 00 : 00 averaging
over all hours XX and days. In general, CE exhibits the lowest
and GB the highest variability. The StD peaks after the full
hour trading event in the Nordic and especially in CE areas,
where the StD almost doubles after the full hour trading peak.
The exact value of the full hour frequency peak thus exhibits
a particularly high uncertainty.

We conclude that CE is a comparatively low-noise system
with defining deterministic events that drive the standard
deviation. Deterministic patterns are least pronounced in GB,
such that random fluctuations are of highest importance com-
pared to the other areas. TheNordic data ismostly in between.
The differences between the grid areas can be attributed to
different system properties as well as varying regulations for
frequency control andmarket operation. For example, the low
variance in the CE area is likely related to its large size [10],
which provides much inertia and enables spatial balancing
of nodal power mismatches. Moreover, the deadband, i.e. the
frequency range without active control, is the largest in GB
thus resulting in a high frequency variability [24]. Despite
these differences, there is one important common result: In all
three cases the main recurrence period of frequency patterns
is one day. The same result was found for frequency time
series from US grids [15]. This highlights the importance of
the daily time scale and the corresponding daily profile for
the prediction of future frequency patterns.

III. FORECASTING METHODS
A. WEIGHTED NEAREST NEIGHBOURS
The WNN method predicts future values of a time series
by looking for similar patterns in the past. To predict the
frequency f (t) for t ≥ t0, we cut the historical time series into
non-overlapping patterns Fn with γ data points and a time
delay τ :

Fn =


f (t0 − (n+ 1)γ τ )

f (t0 − (n+ 1)γ τ + τ )
f (t0 − (n+ 1)γ τ + 2τ )

. . .

f (t0 − nγ τ − τ )

 . (1)

The vectors Fn form an embedding of the time series in a
space of dimension γ , which is also referred to as delay
embedding in the context of time series analysis [32, Chap. 2].
To include the information of all data points, we choose a
delay equal to the original time resolution of τ = 1 s.

The WNN predictor searches for patterns Fn that are simi-
lar to the initial pattern F0, which ends at the prediction start
t0. However, we already know that frequency patterns mainly
recur with a period of one day (Section II). Therefore, we only
look for similar patterns at the same time of the day, i.e. only

within the set

F = {Fn|∃i ∈ N : nγ τ = i · 24h}. (2)

From this set, we choose those patterns that are closest to the
initial pattern in terms of the distance

d(Fn) = ‖Fn − F0‖,

with ‖ · ‖ denoting the Euclidean distance. Given this metric,
we sort the patterns as d(Fn1 ) ≤ d(Fn2 ) ≤ . . . ≤ d(FnM ),
M = |F | being the total number of patterns. We then select
k patterns with the smallest distance to the initial pattern and
obtain the ordered set of nearest neighbours

Sk = {n1, n2, . . . , nk |Fnj ∈ F}. (3)

In practice, we use the scikit-learn package to search and sort
the nearest neighbours [33].

Finally, we assume that trajectories, which were similar
in the past, will likely be similar in the future (Fig. 3).
Technically, the prediction fp(t0 + 1t) is therefore given
by a weighted average of the trajectories succeeding the
k-nearest-neighbours:

fp(t0 +1t) =
1∑k
j=1 αj

k∑
j=1

αjf (t0 − njγ τ +1t). (4)

The weights αn are chosen to decrease with the dis-
tance d(Fnj ) which introduces an additional smoothing [32,
Chap. 3]. Following [18], we use a linear weighting that has
the following form:

αj =
d(Fnk )− d(Fnj )

d(Fnk )− d(Fn1 )
. (5)

In practice, we apply the WNN method to predict the time
steps 1t ∈ {1s, 2s, . . . ,T } with a maximum prediction
length of T = 3600s. A prediction with maximum length
T runs for up to 13 s (on an Intel Core i5-8250U machine
with 1.60 GHz processing speed and 23 Gb of RAM). Longer
predictions are not relevant, since the superiority of theWNN
method over the null models ismostly revealedwithin the first
30 minutes of the prediction (see Section IV).

B. PERFORMANCE ESTIMATION
During the optimization and evaluation of the WNN
predictor, we use the Mean Square Error (MSE) as the
central performance measure. In particular, we evaluate the
time-dependent MSE of a general predictor f̂ (t0 + 1t) for
each prediction step 1t by averaging over different starting
times t i0:

MSE1t (f̂ ) =
1
N

N∑
i=1

(
f̂ (t i0 +1t)− f (t

i
0 +1t)

)2
. (6)

To select different starting times, we randomly choose
N = 5000 different start hours hi0. The starting time is then
given by t i0 = hi0 + 1t0 where h

i
0 counts the hours after the

start of 2015 and 1t0 represents a fixed starting time within
the hour. In this way, we account for the frequency dynamics
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FIGURE 3. The WNN predictor searches for similar patterns in the past. To predict the future of the present (initial) pattern F0, the WNN method looks for
similar patterns Fnj in the past. The patterns that are most similar to the initial pattern form the set of nearest neighbours. Here, we have chosen a set S2
of two nearest neighbours. The average of their subsequent trajectories generates the WNN prediction.

that crucially depend on the time within the hour as discussed
in Section II.

To estimate the out-of-sample performance of our
predictor, we split our data into different subsets (equally
for all synchronous areas). In general, the years 2015 and
2016 serve as training set, which is searched for near-
est neighbours during the WNN prediction. To optimize
the hyperparameters of the WNN predictor, we evaluate
its MSE on a validation set that comprises the year 2017
(Section III-C). Finally, we define the year 2018 as our test
set. On the test set, we compare the performance of ourWNN
predictor to system-specific null models (Section III-D).

C. HYPERPARAMETER OPTIMIZATION
Our WNN method exhibits two hyperparameters which are
the number of nearest neighbours k and the window size
(or pattern length) γ τ . We use a window size of γ τ = 60 min
unless stated otherwise, which provides a good prediction
at low computational effort. The window size is thus not
explicitly optimized, but we investigate its impact on the
prediction accuracy in Section IV-E.

In contrast, we strictly optimize the number of nearest
neighbours k by using two different approaches. In the
fixed-k approach, we estimate an optimal number of nearest
neighbours by minimizing the time-averaged prediction error
MSE(fp) of the WNN predictor fp:

MSE(fp) =
1
T

T∑
1t=1s

MSE1t (fp). (7)

In practice, we perform a grid search on the set G =

{1, 3, 5, . . . , 451} to determine a fixed optimal value kopt ∈
G for all prediction times 1t ∈ [1s,T ]. This is how the
WNNmethod is commonly used [18], [19]. We denote this as
fixed-k WNN prediction.
In the adaptive-k approach, we minimize the

time-dependent error MSE1t (fp) (6) for each prediction step

1t individually. In this way, we account for the very different
prediction horizons we investigate in our paper. These range
from several seconds to one hour, thus making it highly
probable to obtain different optimal k-values for different
prediction horizons. In practice, we therefore calculate a
time-dependent estimator kopt (1t) for each prediction step
1t by performing a grid search on the set G. To make the
estimator more robust against noise, we smooth kopt (1t)
using a sliding window with a length of one minute. Finally,
the adaptive-k WNN prediction is calculated by simply
inserting a time-dependent k into (4).

D. NULL MODELS
On our test set, we compare different predictors based on their
Root Mean Square Errors (RMSE), which reflects the actual
frequency error in Hz:

RMSE(f̂ ) =
√
MSE1t (f̂ ). (8)

We use two easily interpretable null models to benchmark
the performance of the WNN predictor. Our first trivial null
model is the reference value of 50Hz, which is also the
frequency mean:

fm(t0 +1t) = 50Hz. (9)

Our second null model is the daily profile. In Section II,
we have shown that the daily profile is the most important
system-specific pattern that recurs with a period of one day.
It should therefore be a benchmark model for every newly
proposed frequency predictor. In practice, we calculate the
daily profile predictor by averaging over all the patterns in
the set F (from (2)):

fd (t0 +1t) =
1
|F |

∑
n∈F

f (t0 − nγ τ +1t). (10)

To make its prediction comparable to the WNN predictor,
we have restricted the set F to patterns from the training set.
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FIGURE 4. The best predictions are a smoothed version of the observed frequency trajectory. Here, we present the best (a) and worst (b) adaptive-k
predictions from the test set. The selection is based on the relative error RMSE(fp)/RMSE(50Hz). With that we account for the difference in variance
among the samples, which would automatically result in higher or lower error values. The prediction error σ1t (11) equals one standard deviation
within the largest set of nearest neighbours used during the prediction. It is thus an upper bound for the standard deviation of the adaptive-k WNN
prediction.

Note that the WNN predictor (4) converges to the daily
profile predictor in the limit k →∞ when applying uniform
weights.

IV. RESULTS
A. FORECAST EXAMPLES
The best and worst prediction examples give us a first
impression about the performance of the WNN predictor
(Fig. 4). We complement these examples with an estimate of
the prediction uncertainty σ1t that is based on the StD of the
nearest neighbours:
σ 2
1t = 〈f (t0−nγ τ +1t)

2
〉 − 〈f (t0−nγ τ +1t)〉2. (11)

Here, 〈·〉 denotes the average over all n ∈ Sk . For the
adaptive-k WNN, we use k = max1t kopt (1t), which turns
(11) into an upper bound for the uncertainty.

The examples indicate that the best predictions are essen-
tially a smoothed curve of the observed frequency trajectory.
The prediction is often very similar to the daily profile, but
performs better especially in the first 15 minutes. Even more,
the prediction uncertainty provides a good estimate for the
short-term variability of the frequency trajectory.

The worst predictions in GB and CE make mistakes at
the boundaries but still capture the remaining trajectory
(e.g. 30-45min inGB). In both examples, the daily profile and
the WNN forecast predict the same direction for the hourly
frequency jump but the observed frequency deviates in the
opposite direction. The deviation indicates unforeseen events
affecting the grid frequency trajectory, which are also not
captured at all by the daily profile. This relation points to a
potential application of time series prediction in the posteriori
analysis of power system operation. A large forecasting error
can serve as a tool to identify external (unforeseen) events.

Meanwhile, the worst prediction in the Nordic area
stays nearly constant and the observed frequency randomly
oscillates around a shifted value. This exemplifies the weak
performance of the WNN predictor for unspecific patterns
with strong noise.

B. PERFORMANCE OF FORECASTING METHODS
We evaluate the performance of our forecasting methods by
calculating their RMSE on our test set (Fig. 5). The results
show that our WNN predictor outperforms both null models
in all grid areas. Its RMSE is smallest for CE and largest
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FIGURE 5. The WNN predictors outperform alternatives. The WNN predictor outperforms the null models in all three synchronous areas by returning
the smallest RMSE, especially in the first 15-30 minutes. The scale of the y-axis differs between the subplots, since the GB area exhibits much larger
errors than the CE area. The RMSE of the WNN predictor is further strongly time-dependent and converges to the daily profile towards the end of the
prediction. Note that adaptive-k and fixed-k WNN show a very similar performance and only differ on very small time scales (Fig. 6).

for GB. This relates to Section II where we identified GB
as the most stochastic and CE as the most deterministic and
thus most predictable grid. The improvement of the WNN
predictor relative to the daily profile is largest in Nordic
(up to 30%) and smallest in CE (up to 20%). This is due to
the fact that the daily profile itself is already a good predictor
in CE. Meanwhile, the daily profile performs much worse in
the Nordic area, where its RMSE nearly follows the 50Hz
prediction error.

Comparing performance over time, we observe that the
WNN outperforms the null models especially during the
first 15min. As the prediction length increases, the WNN
prediction converges to the daily profile. On the other hand,
the performance is also clearly affected by the trading events
(especially in CE). This time-dependence will be investigated
in more detail in Section IV-D and IV-E.

Finally, we note that there is no significant difference
between the adaptive-k and the fixed-k WNN predictor for
long predictions of up to 60 minutes (Fig. 5). However,
we observe a significant difference for very short prediction
horizons, which we will discuss in the next section.

C. OPTIMAL NUMBER OF NEAREST NEIGHBOURS
Determining the optimal number of nearest neighbours
kopt (1t) can help to better understand the functioning of
the WNN predictor. Moreover, it yields valuable information
about the grid frequency dynamics in general. We present the
optimization results in Fig. 6, which shows the normalized
MSE landscape as a function of k and 1t as well as the
optimal values kopt (1t). The adaptive number of nearest
neighbours tends to increase the more the prediction is in
the future. However, the minimum is very flat at most

time steps and both the adaptive-k and the fixed-k predic-
tor lead to very similar errors (in agreement with results
from Section IV-B). We only observe a significant difference
within the first minute, where the adaptive-k WNN yields up
to 5% better results than the fixed-k approach. We conclude
that the adaptive approach is slightly better, especially in the
first 1 min. We will therefore only apply the adaptive-k WNN
method throughout the rest of the paper.

As an application, we can interpret kopt (1t) in terms of the
predictability of frequency patterns. A low number of near-
est neighbours corresponds to well-defined trajectories that
match to some past trajectories accurately. Contrary, a higher
number of nearest neighbours kopt (1t) indicates that trajecto-
ries are rather unspecific with respect to the history. A large
number of trajectories has to be averaged such that the pre-
diction is similar to the daily profile. In particular in the
first 15 minutes, the adaptive-k yields very low k values.
The frequency trajectory is thus very specific in this time
regime. As the prediction time increases, the optimal number
kopt (1t) rises. The trajectory thus becomes more unspecific
with respect to past patterns and thus less predictable for the
WNN predictor. Consistently, theWNN predictor approaches
the daily profile at the end of the hour, which we obtain for
k →∞.

D. IMPACT OF THE PREDICTION START
Up to now we have focused on predictions starting at full
hours, such that the prediction interval coincides exactly
with the main time scale of energy trading and power
plant dispatch. We now widen our scope and assess the
time-dependence of the WNN performance by initializing
the prediction at different starting times 1t0 (Fig. 7). To still
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FIGURE 6. The Optimal number of nearest neighbours increases over time. To compare the error landscape for different time steps 1t , we normalize the
MSE in this figure. The normalization rescales the MSE to values between zero and one for each time step 1t . The time-dependent minimum of this
landscape is the adaptive number of nearest neighbours kopt (1t). The fixed kopt minimizes the aggregated MSE leading to very similar
prediction errors in all but the the first minutes.

relate theWNN performance to our null models, we addition-
ally assess its relative error RMSE(fp)/RMSE(fd ) (‘‘relative
RMSE’’), which is normalized by the daily profile error
RMSE(fd ).
Irrespective of the trading events, we observe two different

time regimes depending on the prediction length. During
the first 15 minutes, the relative RMSE and the optimal
number kopt (1t) are increasing while still being much lower
than future values. Here, the frequency dynamics exhibit
specific patterns that resemble particular patterns in the past
(as described in Section IV-C). This specific memory is lost
over time, as the relative RMSE increases continuously dur-
ing the first 15-30 minutes. In particularly in the CE and
Nordic areas, one can identify two clearly distinct time scales
of memory loss: Firstly, there is an initial rapid increase
of the RMSE and the relative RMSE within approximately
one minute. It is followed by a slower, not necessarily
monotonous increase of the relative RMSE on timescales up
to tens of minutes. This clear separation of time scales is
especially visible when energy trading is important, i.e. at full
hours being strongest in the CE area. It could be attributed to
the grid inertia or to control measures that provide additional
memory for a short period of time.

Finally after 15-30 minutes, the relative RMSE reaches a
relatively constant level in CE and GB with values close to
one. Here, the WNN prediction does not differ much from
the daily profile anymore. Meanwhile, the relative RMSE
and the optimal number kopt (1t) continue to rise for up to
60 minutes in the Nordic area. Here, the memory of spe-
cific historic patterns thus reduces much slower compared
to the other areas. We will come back to this effect in
Section IV-E.
In addition to the prediction length, the trading events play

a crucial role for the prediction. In all grid areas, the RMSE

increases strongly around the one-hour trading event.
For CE and Nordic, we observe this also at 15 and 45 min-
utes. Around these events, the dispatch is changed abruptly,
causing large frequency deviations, which are hard to forecast
accurately (Fig. 2(c)). The optimal number of nearest neigh-
bours kopt (1t) and the relative RMSE also peak at the trading
event. This indicates a lack of specific information about the
trading peak and a high uncertainty connected to it. CE is
a special case, as its one-hour trading jump is particularly
hard to forecast. Interestingly, kopt (1t) decreases again after
the peak. The trajectory thus becomes more specific and pre-
dictable again, probably due to the control measures reacting
to the disturbance in a pre-defined way.

The trading peaks have another important impact on the
prediction error. After a trading event, the RMSE loses its
dependence on the starting time 1t0 and joins the error
curve of earlier prediction starts. This happens in all grid
areas, at latest during the one-hour trading event. In practice,
it means that our prediction starting at 55 min performs
approximately as well at 60 min as the one that started at
0 min. The information contained in the initial pattern thus
looses its significance with the occurrence of a trading event.
In other words, the trading events cause a memory loss in the
frequency trajectory.

We conclude that the best WNN prediction is always
obtained right after the prediction starts. On a time horizon
of up to 30 min, the prediction is significantly better than
the daily profile. However, this time horizon is considerably
shortened if there are trading events, such as the full hour
dispatches.

E. IMPACT OF THE WINDOW SIZE
We finalize the discussion of the WNN predictor by shortly
investigating the impact of different window sizes. In addition
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FIGURE 7. Trading events shorten the prediction horizon. Here, we show the optimal number of nearest neighbours kopt (1t) (a), the RMSE (b) and the
relative RMSE (c), which is normalized by the daily profile error. Irrespective of the starting time within an hour 1t0, the predictions perform best
within a time horizon of 15min. However, trading events introduce additional uncertainty thus increasing the prediction error and shortening the
prediction horizon.

to the window size γ τ = 60 min (which we have used
throughout this article), we show the prediction errors for
γ τ = 15 min and 30 min in Fig. 8.

On time scales of several minutes to one hour, there is
no significant difference between the predictors in CE and
GB. The large window is slightly better than the shorter ones.
In contrast, the smallest window performs best in the Nordic
area especially in the first 15 minutes. Shorter windows con-
tain more specific information about the near past than longer
windows. In the Nordic grid, the significance of very specific
historic patterns thus prevail much longer than in the other
grids. This is consistent with Section IV-D, where we have
seen that the memory of specific historic patterns reduces
relatively slow in the Nordic area.

On time scales below one minute the smallest window
performs best for all grid areas (inset). Shortly after the

prediction starts, the memory of the last few seconds deter-
mines the trajectory. Irrespective of the area, the shorter
window thus performs best on this time scale, as it contains
more specific information about about the near past of the
trajectory.

We conclude that small window sizes are best for
prediction horizons below one minute. For several minutes
to one hour, large window sizes are slightly better in CE and
GB. If computational resources are scarce, smaller window
sizes can also be used here, as they are less computationally
expensive but only slightly less accurate. In the Nordic area,
small window sizes are the best even for several minutes.
However, the performance differences are small in all grid
areas, which also justifies that we did not systematically
determine the optimal value for γ , thus saving computational
time during training.
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FIGURE 8. Shorter windows predict more accurately at the beginning. The optimal window size (or pattern length) γ τ is different depending on the
prediction length. During the first minute, the shortest window performs best in all grid areas, as it contains more specific information about the near
past. For several minutes to one hour, the results differ between the areas.

V. DISCUSSION
Summarizing, we have demonstrated how a k-weighted-
nearest-neighbour (WNN) approach provides an accurate
forecast of the power grid frequency. The predictor performs
particularly well when using an adaptive number of nearest
neighbours.

Compared to previously existing forecasts of the power
grid frequency [9], [12], [14], [15], we make three key con-
tributions: First, we introduce the daily profile as a relevant
and system-specific null model. Secondly, we improve the
statistical evaluation of the WNN predictor by increasing
the amount of training and test data from one month [15]
to multiple years. Thirdly, we interpret the time-dependent
predictability and optimization results based on the economic
and physical dynamics in the different synchronous areas.
In that way, we establish machine learning techniques as
valuable tools for an a posteriori assessment of power system
operation and stability.

Our results can be used to improve power system stability.
Since our estimates are more precise than the daily pro-
file, they could be used to estimate necessary control power
capacities. This is particularly interesting since we have a
solid prediction horizon of about 60 minutes, making slower,
typically cheaper forms of control available, instead of purely
relying on expensive primary control [1], [2]. Especially
during the first 15-30 minutes, our predictor is significantly
more accurate than the daily profile and could replace it for
planning purposes. Notably, this application is not restricted
by computational speed as the WNN predictor only needs a
few seconds to generate a forecast. Moreover, our analysis
is not limited to any specific grid but can be applied to any
power system, given sufficient data to train the algorithm.

We even gained valuable lessons when the predictor per-
formed worst: The largest prediction errors are associated
with unforeseen events that are also missed by the daily pro-
file. Therefore, the introduced WNN predictor could also be

used as a diagnostics tool to identify external perturbations,
where for example renewable generation [34] or singular
demand patterns caused by large sports events [29] impact
the frequency dynamics. Furthermore, even our worst pre-
dictions correctly returned the expected average and standard
deviation of the frequency time series for the next hour.
Hence, the predictor could be used as a worst-case estimator
to determine how much control power will be maximally
necessary during the next hour to guarantee stable operation.

Finally, we went beyond pure forecasting of the next sixty
minutes of the power grid frequency dynamics but instead
achieved a better understanding of the different synchronous
areas: Monitoring the number of nearest neighbours allowed
us to distinguish deterministic and stochastic behavior of dif-
ferent synchronous areas but also of different time intervals.
Our analysis reveals that before the electricity market acts
every 15 minutes, the time series becomes less predictable
but becomes more predictable after the power has been dis-
patched. This insight could be used to modify dispatch strate-
gies in order to minimize the unpredictable impact on the
frequency, reducing the required control power and thereby
saving money.

Our results on the forecast of the power grid frequency
can be extended in multiple directions in the future. Firstly,
we were restricted by data availability. A similar forecast and
interpretation could be developed and applied to power grid
frequency time series from other regions in the world, e.g.
data from the Eastern Interconnection in the US or from the
Irish grid, with its highwind penetration. Secondly, additional
features such as wind power generation can be included
to better understand the impact of unforeseen pertubations,
which are not captured in our univariate forecast. Thirdly,
many alternative forecasting methods are available, from
artificial neural networks (ANN) [11] and recurrent neural
networks (RNN) [35] to classical methods of time series
prediction [32]. However, a fully comprehensive review of

149444 VOLUME 8, 2020



J. Kruse et al.: Predictability of Power Grid Frequency

all available methods was beyond the scope of this study
and will be left for the future. Finally, we are convinced that
our approach to forecasting and machine learning as a tool
to understand a system’s dynamics should also be applied
to other time series, such as renewable generation [36], air
pollution [37], [38] or the stock market [39].
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