
Received July 22, 2020, accepted July 29, 2020, date of current version August 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3013770

End-to-End Delay Minimization-Based Joint Rule
Caching and Flow Forwarding Algorithm for SDN
LEI LUO 1, RONG CHAI 1, (Senior Member, IEEE), QIONGFANG YUAN1,
JINYAN LI2, AND CHENGLI MEI2
1School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2Technology Innovation Center, China Telecom Corporation Ltd., Beijing 102209, China

Corresponding author: Rong Chai (chairong@cqupt.edu.cn)

This work was supported by the National Science and Technology Specific Project of China under Grant 2018ZX03001016.

ABSTRACT Software-defined networking (SDN) technology is expected to offer higher flexibility and
programmability and enhanced transmission performance by decoupling control plane from data plane and
enabling centralized networkmanagement. In SDN, switches may cache a certain number of flow forwarding
rules, so that user flows can be forwarded accordingly. In this article, stressing the limited caching space
of switches and the heterogeneous transmission performance of switches and links, we jointly design rule
caching and flow forwarding strategy for multiple user flows in SDN. To emphasize the importance of
the end-to-end delay caused by the transmission and processing of user flows in both the data plane and
control plane, we formulate the joint optimization problem as an end-to-end delay minimization problem.
As the original optimization problem is a non-deterministic polynomial hard (NP-hard) problem, which
cannot be solved directly, we propose a heuristic algorithm which successively solves three subproblems,
i.e., flow forwarding subproblem, rule caching and candidate path selection subproblem, and resource
sharing subproblem. By applying the K-shortest path algorithm, a priority-based rule caching algorithm,
and Lagrangian dual method, respectively, the three subproblems are solved and the joint rule caching and
flow forwarding strategy is obtained. Simulation experiments are conducted to examine the effectiveness of
the proposed algorithm, and the results indicate that our proposed algorithm is capable of improving system
performance by about 20% compared with the previous solutions.

INDEX TERMS Software-defined networking, end-to-end delay, rule caching, flow forwarding, resource
sharing.

I. INTRODUCTION
The vertically integrated network architecture of traditional
Internet and distributed packet forwarding schemes result
in complicated network control and (re)configuration, and
highly limited packet transmission performance [1]. To over-
come the limitations of traditional network architectures,
a brand-new networking paradigm named software-defined
networking (SDN) was proposed, which decouples control
plane from data plane and enables flexible configuration and
management of network resources [2], [3]. More specifi-
cally, the control layer of SDN containing one or multi-
ple controllers is responsible for monitoring network states
and determining network management strategies, such as the

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

forward strategies of user flows, and the data plane of SDN is
mainly composed of switches and routers, and is responsible
for performing user data forwarding according to the for-
warding strategies disseminated by controllers [4]. Benefited
from the simplified design of data forwarding devices and
the direct and intentional control over network behavior at
controllers, SDN is capable of facilitating flexible network
management, and offering users services with desired quality
of service (QoS) [5].

In SDN, controllers may determine user flow forwarding
strategies and cache certain flow forwarding rules at the
ternary content addressablememory (TCAM) of switches [6].
When user flows arrive at SDN switches, the switches
match their pre-captured forwarding rules with the received
user flows. If the corresponding forwarding rules can be
found, the switches will forward user flows accordingly.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 145227

https://orcid.org/0000-0002-2312-8715
https://orcid.org/0000-0002-0957-7792
https://orcid.org/0000-0003-1118-7109

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

While caching flow forwarding rules at TCAM excels in
packet processing, due to the diverse flow transmission
requirements and limited cache spaces of switches, it is highly
impossible to cache the rules of all user flows at switches.
In the case that no forwarding rules of one user flow can be
found in their TCAM, the switches having received the user
flow will send flow forwarding request messages, referred
to as packet-in messages, to its associated controller, which
calculates and determines flow forwarding strategies and
disseminates packet-out messages containing the obtained
strategy to the switches along the transmission path of the
user flow [7]. In order to achieve efficient utilization of
TCAM as well as enhanced transmission performance of user
flows, reasonable and effective rule caching schemes should
be designed for SDN.

In an attempt to simplify forwarding devices and facilitate
centralized network management, the centralized controllers
in SDN are in charge of designing flow forwarding strategies
for user flows. On account of the available global network
view information, the flow forwarding strategies designed by
centralized controllers are expected to be more efficient and
far-sighted compared to those made in distributed networks.
However, due to the heterogeneous characteristics of switches
and transmission links in SDN, and the diverse requirements
of user flows, designing flow forwarding schemes which
achieve the performance optimization of multiple user flows
is challenging [8].

Rule caching and flow forwarding schemes have been
studied for SDN in previous work independently [9]–[27],
however, the joint design of rule caching and flow forward-
ing schemes has not been studied extensively. In particular,
to design flow forwarding strategy, previous work mainly
ignores the issue of rule caching, assumes that no flow for-
warding rules have been cached and designs flow forwarding
strategy for user flows. On the other hand, to design rule
caching strategy, previous work either assumes that flow
forwarding strategy is given or selects the switches with
relatively high performance to cache rules and skipped flow
forwarding issues.

As a matter of fact, the two issues, i.e., rule caching
and flow forwarding are indeed closely coupled. For
instance, in the case that the forwarding rules of a spe-
cific user flow have been cached at one switch, selecting
the switch to forward the user flow would be preferred.
As the switch is capable of forwarding the flow directly
according to the cached rules, instead of querying SDN
controllers for forwarding strategy, the flow forwarding
performance can be enhanced especially in terms of pro-
cessing delay. Similarly, if one switch is selected as the
forwarding switch of one user flow, caching the flow for-
warding rules of the user flow at the switch would be
highly desired in order to improve the efficiency of rule
caching and the utilization of caching space. Therefore, tak-
ing into account the correlation between rule caching and
flow forwarding, and designing joint strategy is of particular
importance.

In this article, the problem of joint rule caching and flow
forwarding for multiple user flows in SDN is investigated.
To emphasize the importance of the end-to-end delay caused
by the transmission and processing delay of user flows at
switches and controllers, we formulate the joint optimization
problem as an end-to-end delayminimization problem.As the
original optimization problem is non-deterministic polyno-
mial hard (NP-hard), which cannot be solved directly, we
transform the formulated problem into three subproblems,
i.e., flow forwarding subproblem, rule caching and candidate
path selection subproblem, and resource sharing subproblem.
Applying the K-shortest path algorithm, priority-based rule
caching algorithm and the Lagrangian dual method to solve
the three subproblems respectively, we obtain the joint rule
caching and flow forwarding strategy.

The major contributions of this article are summarized as
follows.
1) In this article, we consider the data transmission problem

of a number of user flows in SDN. To achieve highly
utilized rule caching at the TCAM of switches and effi-
cient forwarding of user flows, we investigate the joint
problem of rule caching and flow forwarding.

2) While rule caching and flow forwarding schemes have
been studied for SDN in previous work indepen-
dently [9]–[27], it can be demonstrated that the two
issues are closely related and the joint design is highly
desired. Although the authors in [28]–[31] stressed both
the rule caching and flow forwarding issues, they mainly
assumed that flow forwarding strategy was given, and
designed the optimal rule caching strategy in order to
minimize caching space occupation [28], [29] or max-
imize the utilization of caching space [30], [31], and
failed to consider extensively the overall network per-
formance, especially the end-to-end delay of user flows.
Unlike previous work, to emphasize the importance of
the end-to-end delay caused by the transmission and pro-
cessing delay of user flows in both data plane and control
plane, we take into account flow forwarding require-
ments, rule caching and resource allocation constraints,
and formulate the joint rule caching and flow forwarding
problem as an end-to-end delay minimization problem.

3) As the original optimization problem is an NP-hard
problem, which cannot be solved directly, we trans-
form the problem into three subproblems, i.e., flow
forwarding subproblem, rule caching and candidate
path selection subproblem and resource sharing sub-
problem. By applying the K-shortest path algorithm,
priority-based rule caching algorithm and Lagrangian
dual method, respectively, the three subproblems are
solved and the joint rule caching and flow forwarding
strategy is obtained. Simulation experiments show that
our proposed algorithm is capable of improving system
performance by about 20% compared with the previous
solutions.

The structure of this article is as follows. In Section II,
we review the related work. In Section III, we present

145228 VOLUME 8, 2020

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

system model. Section IV formulates the optimization prob-
lem. In Section V, we discuss the solution to the optimization
problem. Complexity analysis of the proposed algorithm is
presented in Section VI. Section VII illustrates the simula-
tion results. In Section VIII, we discuss the innovations and
limitations of the proposed algorithm. Finally, we make a
conclusion in Section IX.

II. RELATED WORK
In this section, we present an overview of related work in
recent literature.

A. RULE CACHING ALGORITHMS FOR SDN
Most of the previously proposed rule caching algorithms
attempt to optimize network cost or cache hit rate [9]–[16].
To jointly consider the information processing delay of
control plane and the utilization of TCAM, the authors
in [9] formulated a cost optimization problem and obtained a
rule caching scheme by solving the problem. Reference [10]
addresses the TCAM cache replacement problem in SDN.
Jointly considering cache hit rate and the cost required
for caching rules, the authors proposed an effective cache
replacement algorithm, which tends to replace the rules with
fewer hits while taking up large space. In order to reduce
rule update cost, the authors in [11] proposed a traffic-aware
hybrid rule allocation scheme which dynamically executes
reactive caching and proactive caching according to network
traffic states.

In an attempt to improve the utilization rate of TCAM,
the authors in [12] proposed a timeout scheme which allo-
cates various timeout values for forwarding rules based on
data plane features and flow dynamics, and presented a
hybrid Q-learning algorithm to determine the rule caching
strategy. Reference [13] studies the problem of wildcard
rule caching and cache replacement in SDN. Initially, the
frequently matched wildcard rules with relatively less extra
cache cost were cached, then, once cache miss occurred,
the cached rules would be replaced by the newly missed rules
so as to improve cache hit rate. In [14], the authors predicted
replacement rules based on the arrival interval distribution
model of user flows, and proposed a TCAM management
scheme to reduce link transmission delay between switches
and controllers.

The problem of flow table space allocation was investi-
gated in [15]. Jointly considering the caching cost of flow
table and the fairness among user flows, the authors for-
mulated the flow table space allocation problem as a cache
cost minimization problem under the minimum-maximum
fairness constraint. A two-stage heuristic algorithm was pro-
posed to solve the optimization problem and obtain the flow
table space allocation strategy. To reduce the processing delay
at control plane of SDN and improve the utilization of TCAM
space in the meantime, [16] proposes a rule partition and
distribution algorithm which divides the set of flow rules into
predetermined number of disjoint subsets and distributes the
subsets uniformly to the switches.

In [17], it is assumed that due to the asynchronous nature
of SDN, packets may reach an intermediate switch before the
corresponding flow rules. In this case, the packet is dropped
by the switch. To address this problem, the authors computed
the delay required for installing flow rules and transmitting
packets along the path. In the case that the packet arrival
delay at one switch is less than the delay of corresponding
flow rule installation at the switch, the packet is delayed for
a minimum duration at the predecessor switch of the switch
so as to guarantee that the corresponding flow rule has been
installed before packet arrival.

B. FLOW FORWARDING ALGORITHMS OF SDN
In recent years, various flow forwarding strategies have
been designed for SDN [18]–[27]. Transmission delay
was addressed in designing flow forwarding strategies for
SDN [18]–[20]. Considering the strict delay requirement of
video flows, [18] proposes a delay-optimized flow forward-
ing algorithm that clearly distinguishes the forwarding strate-
gies of different user flows based on their delay sensitivity.
In [19], to deal with the forwarding path congestion prob-
lem of multiple user flows, the authors proposed a greedy
algorithm according to the resource dependency graph and
presented a time-extended network construction to reduce the
update delay in the network. Reference [20] stresses flow
forwarding and update problem in SDN. The flow forwarding
problemwas formulated as a delayminimization problem and
solved by using randomized rounding method. A number of
user flows with higher traffic volume were chosen for route
update under link capacity constraint.

Tackling the rapidly increasing energy consumption in
networks, energy consumption-aware flow forwarding algo-
rithms were proposed [21]–[23]. The authors in [21], [22]
proposed to save the energy consumption of networks
by switching off a number of data forwarding devices.
Reference [21] dynamically designs the flow forwarding
path according to traffic demands, and achieved the energy
saving in data center networks (DCNs) by closing inactive
network equipments. In [22], the problem of energy-aware
flow forwarding routing in SDN-based Ethernet networks
was addressed. Under the constraint of rule space capac-
ity of switches, the authors proposed network nodes and
links turning off strategies so as to reduce energy consump-
tion. In order to save the energy consumption of networks,
[23] formulated an energy consumption minimization prob-
lem and solved it through applying anN algorithm-based joint
routing and flow allocation scheme.

To achieve load balancing among switches, various flow
forwarding strategies have been designed [24]–[26]. The
authors in [24] proposed a vswitch deployment scheme
for SDN, and formulated the joint flow forwarding and
vswitch deployment problem as a load balancing prob-
lem, which was solved by a rounding-based scheme with
bounded approximation factors. Flow forwarding problem
in an SDN-based fat-tree DCN was studied in [25]. A low-
cost load balancing flow forwarding frameworkwas proposed

VOLUME 8, 2020 145229

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

which dynamically computes load-deviation parameter of
switches, and adjusts flow forwarding strategy accordingly to
achieve load balancing among switches. In [26], the authors
formulated the multi-path flow scheduling problem in
SDN as a multi-objective optimization problem. A heuris-
tic traffic balancing algorithm was proposed that periodi-
cally monitors network links and dynamically switches the
flows on heavy links to the switches with relatively light
loads.

In [27], the authors proposed a distributed flow architecture
for networked enterprises. In the architecture, the controller
distributes the rules across (a subset of) the switches, called
‘‘authority switches,’’ so as to scale the network to large
topologies with many rules. The controller runs a partition-
ing algorithm that divides the rules evenly and minimizes
fragmentation of the rules across multiple authority switches.
The switches handle all packets in the data plane and divert
packets through authority switches as needed to access the
appropriate rules.

C. JOINT RULE CACHING AND FLOW FORWARDING
ALGORITHMS OF SDN
In previous research work, the problems of rule caching and
flow forwarding have been studied independently [9]–[27].
However, these two issues are indeed closely coupled and it
can be demonstrated that by jointly designing the two issues,
the performance of rule caching and flow forwarding can be
enhanced significantly [28]–[31].

By allowing rule multiplexing in TCAM, a joint flow
forwarding and rule caching algorithm was proposed in [28].
The authors first assumed that a list of candidate paths is
given, and designed rule caching strategy so as to minimize
the space occupation of the TCAM. They then extended
the problem and formulated the joint flow routing and rule
placement problem. A heuristic algorithm using relaxation
and rounding techniques was presented, and feasible solu-
tions were obtained by invoking the proposed PathSearch,
PathRulePlacement, and SessionRulePlacement algorithms,
respectively. Under the constraint of the maximum transmis-
sion delay in the network, [29] jointly considers the problem
of flow forwarding and rule update, and introduces a garbage
collection technique to minimize the space occupation of the
switches.

The authors in [30] proposed an adaptive flow rule
caching strategy in SDN. The proposed scheme consists of
three phases, i.e., forwarding path selection, flow-rule place-
ment, and rule redistribution. In the first phase, the authors
formulated a max-flow-min-cost optimization problem to
determine optimal forwarding paths. In the second phase,
an integer linear programming problem was formulated to
decide forwarding rules for candidate paths, so that the
total number of matching rules was minimized. Finally,
a rule redistribution scheme was proposed to improve the
utilization of rule caching. The authors in [31] proposed an
SDN-based framework which supports multi-flow transport
protocols. A joint multi-flow forwarding and rule caching

problem was formulated and solved to satisfy delay and
throughput requirements of users.

While the authors in [28]–[31] considered rule caching
and flow forwarding issues, they mainly assumed that flow
forwarding strategy was given, and designed the optimal
rule caching strategy in order to minimize caching space
occupation [28], [29] or maximize the utilization of caching
space [30], [31]. In this article, we investigate the problem
of joint rule caching and flow forwarding for multiple user
flows in SDN, and formulate the joint optimization problem
as an end-to-end delay minimization problem. By solving the
formulated optimization problem, the joint rule caching and
flow forwarding strategy can be obtained.

III. SYSTEM MODEL
A. NETWORK SCENARIO
This work considers an SDN network composed of an SDN
controller and multiple SDN switches. Let N be the number
of switches, and Vi denote the ith SDN switch, 1 ≤ i ≤ N .
We model the SDN network as an undirected graph G =
{V ,E}, where V = {Vi} is the set of nodes, E = {Ei,j}
is the set of edges, Ei,j is the link connecting Vi and Vj,
1 ≤ i, j ≤ N , i 6= j.
Let Ci be the TCAM storage size of Vi, 1 ≤ i ≤ N .

Assuming that each link has a maximum transmission rate,
also referred to as link capacity, which is determined by the
port rate of Vi and Vj, we denote the capacity of Ei,j as
Bi,j, 1 ≤ i, j ≤ N , i 6= j. In order to characterize the
state of physical connection between switches, we introduce
xi,j ∈ {0, 1} to represent the connection identification variable
between Vi and Vj. If Vi is a neighboring node of Vj, then
xi,j = 1, otherwise, xi,j = 0, 1 ≤ i, j ≤ N , i 6= j. In this work,
the network topology is known, i.e., xi,j is a given constant.

B. CHARACTERISTICS OF USER FLOW TRANSMISSION
Suppose user flows with fixed traffic demand are required
to be transmitted from their predefined source switches to
destination switches through the network. Assuming that
there are L user flows in the SDN network, we denote fl as
the lth user flow, 1 ≤ l ≤ L. For convenience, the source
switch and the destination switch of fl are denoted by Sl
and Tl , respectively. We denote Ql as the traffic demand
of fl and Rl as the number of forwarding rules of fl , 1 ≤
l ≤ L. Considering the QoS requirement of user flows on
transmission data rate, we assume that user flows may have
various minimum rate requirement and denote Bmin

l as the
minimum rate requirement of fl , 1 ≤ l ≤ L.

C. AN EXAMPLE OF FLOW TRANSMISSION
Figure 1 shows the system model. As an example, in the
figure, we assume that user flow f2 with specific traffic
demand needs to be transmitted from S2 to T2 and amulti-hop
path from S2 to T2 via V2 and V3 has been selected for f2.
Upon receiving f2, V2 checks its TCAM. In the case that
the flow forwarding rules of f2 have been pre-cached at the

145230 VOLUME 8, 2020

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

FIGURE 1. System model.

TCAM of V2, indicating that f2 should be forwarded to V3,
V2 will forward f2 directly to V3. On the contrary, if no flow
forwarding rule of f2 has been pre-cached at the TCAM of V2,
V2 should send a packet-in message to the controller, which
determines the flow forwarding strategy by conducting the
proposed algorithm. Then the controller will disseminate the
obtained strategy to the switches along the forwarding path
of f2, i.e., V2 and V3. Based on the received strategy, V2 and
V3 perform flow forwarding for f2 accordingly.

In this article, we assume that various flow forwarding
rules can be stored at the TCAM of switches, and jointly
design rule caching and flow forwarding strategy for user
flows. To facilitate efficient transmission of user flows,
we assume that network resources, including the capacity
resource of links and storage resource of switches are allowed
to be shared among multiple user flows.

IV. END-TO-END DELAY OPTIMIZATION PROBLEM
FORMULATION
In this article, aiming to optimize the total end-to-end delay
of user flows, we model the joint rule caching and flow
forwarding problem as a delay minimization problem subject
to a number of optimization constraints. The detailed opti-
mization problem formulation is shown below.

A. END-TO-END DELAY FORMULATION
Considering the overall network performance, we let
D denote the overall delay of all user flows in the network,
and express D as

D =
L∑
l=1

Dl (1)

where Dl represents the total end-to-end delay required
to transmit fl from Sl to Tl . Dl consists of data plane
delay and control plane delay resulted from transmitting and
processing fl , i.e.,

Dl = Ds
l + D

c
l (2)

where Ds
l is the data plane delay of fl which is resulted

from transmitting fl through the network and processing fl at
switches, Dc

l represents the control plane delay caused by the
information interaction between the controller and switches
for inquiring and disseminating the forwarding rules of fl .
Ds
l in (2) can be calculated as the transmission and process-

ing delay of the multi-hop links along the transmission path
of fl , which is given by

Ds
l =

N∑
i=1

N∑
j=1,i6=j

Ml∑
m=1

ymi,j,l
(
Dst
i,j,l + D

sq
i,l

)
(3)

where ymi,j,l ∈ {0, 1} represents the binary flow forwarding
variable of fl . We set ymi,j,l = 1, if Ei,j is assigned for fl as the
mth hop transmission link, otherwise, ymi,j,l = 0. Ml denotes
the total hops of the transmission path of fl from Sl to Tl ,
Dst
i,j,l denotes the transmission delay of fl along Ei,j and can

be computed as

Dst
i,j,l =

Ql
αi,j,lBi,j

(4)

where αi,j,l ∈ (0, 1] is the link resource allocation variable
which represents the portion of the link capacity resource of
Ei,j being allocated to fl .
Dsq
i,l in (3) represents the queueing delay of fl at Vi. This

article assumes that user flow processing at switches obeys
M/M/1 queuing model, where the arrival of user requests
at switches can be modeled as a Poisson stochastic process
and the time required for flow processing at switches follows
exponential distribution [32]. Let λi denote the average arrival
rate of user packets at Vi, and µi denote the average serving
rate at Vi. Since both the arrival of user flow requests and
packet processing at switches change randomly, the corre-
sponding queuing delay is very dynamic, and it is difficult
to compute the instantaneous delay. For simplicity, in this
article, we use average queuing delay to characterize the
average waiting time of user requests in queues. Let λi denote
the packet request rate at Vi andµi denote the average serving
rate of Vi, the average queuing delay of fl at Vi can be
calculated as

Dsq
i,l =

1
βi,l(µi − λi)

(5)

where βi,l ∈ (0, 1] is the processing resource allocation
variable which is defined as the portion of the processing
capability of Vi allocated to fl . It should be mentioned that
although the parameters λi and µi are considered as con-
stants in this article for simplicity, in practice, to obtain
these parameters, we may use statistics theory or predict-
ing methods [33]. More specifically, based on the historic
information of packet requests and the processing ability of
switches, we may estimate the average characteristics of ran-
dom arrival of user flows and flow processing characteristics
of switches. In addition, considering the dynamical features
of user flow arrival and flow processing, we may also predict
future characteristics of user flows and switches by applying

VOLUME 8, 2020 145231

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

predicting methods, such as long short termmemory (LSTM)
networks [34].

While transmitting fl from Sl to Tl , control plane delay
may occur in the case that the forwarding rules of fl have not
been cached at the switches along the transmission path. The
control plane delay mainly consists of the transmission and
processing delay of the packet-inmessages and the packet-out
messages. Hence, Dc

l in (2) can be computed as

Dc
l = Dcs

l +

(
1−

Ml∏
m=1

δl,m

)
(Dcq
+ Dcp) (6)

where Dcs
l represents the transmission delay of the packet-in

messages and packet-out messages. In the case that one
switch has received one user flow of which the forwarding
rules have not been cached locally, the switch will send the
packet-in messages to the controller, which designs flow for-
warding strategy and disseminates the packet-out messages to
the inquiring switch and its subsequent peers along the flow
forwarding path, therefore, Dcs

l can be expressed as

Dcs
l =

Ml∑
m=1

N∑
i=1

N∑
j=1, j6=i

(
1−δl,m

) (Ml∑
mo=m

ymoi,j,l + y
m
i,j,l

)
Sp
Tc,i

(7)

where δl,m ∈ {0, 1} denotes the binary rule caching variable
of fl , if the forwarding rules of fl have been cached at the
mth hop switch of the flow forwarding path, δl,m = 1,
otherwise, δl,m = 0, Sp denotes the average size of packet-in
messages and packet-out messages, Tc,i denotes the link
transmission rate between the controller and Vi.
Dcq in (6) represents the average queuing delay of the

packet-in messages at the controller. Following a similar
manner as computing Dsq

i,l , we obtain

Dcq
=

1
µc − λc

(8)

where µc and λc denote the service rate and arrival rate of
controller, respectively. Dcp in (6) represents the processing
delay at the controller which is defined as the time required
by the controller to calculate the forwarding strategy of one
user flow, which is given by

Dcp
=

Sc
Fc

(9)

where Sc denotes the amount of computation resource
required to determine the flow forwarding strategy and
Fc is the computation capability of the controller. Notice that
as long as there exists one switch along the flow forwarding
path of a user flow which has not cached the forwarding rules
of the flow, the packet-in messages should be transmitted and
processed, therefore,Dcq andDcq in (6) are both weighted by

coefficient

(
1−

Ml∏
m=1

δl,m

)
.

B. OPTIMIZATION CONSTRAINTS
Certain optimization constraints should be satisfied when
designing joint rule caching and flow forwarding strategy,
as discussed in detail in this subsection.

1) FLOW CONSERVATION CONSTRAINTS
While transmitting user flows with fixed traffic demand
from their predefined source switches to destination switches
through the network, flow conservation should be guaranteed
at source switches, destination switches and intermediate
switches. More specifically, if Vi is the source switch of fl ,
Vi should forward fl to one of its neighboring switches, i.e.,

C1 :
N∑

j=1, j6=i

y1i,j,l = 1, if Vi = Sl . (10)

Let Vj be the destination switch of fl , it should receive fl from
one of its neighboring switches, i.e.,

C2 :
N∑

i=1, i6=j

yMl
i,j,l = 1, if Vj = Tl . (11)

If Vj is neither the source switch nor the destination switch
of fl , it will not create new user flows or destroy any user
flows, i.e.,

C3 :
N∑

i=1,i6=j

ymi,j,l =
N∑

k=1,k 6=j

ym+1j,k,l , if Vj 6= {Sl,Tl}. (12)

Note that (12) holds in two cases, i.e., Case 1: Vj is not
selected to forward flow fl , then it will not receive fl from
its neighboring switches, or send fl to other switches. Hence,
both sides of the equation equal to 0; Case 2: Vj is a relay
switch which is selected to forward fl , then it will receive fl
from one of its neighboring switches, and then send fl to one
of its neighboring switches. In this case, both sides of the
equation equal to 1.

2) LINK CAPACITY RESOURCE CONSTRAINT
While it is likely that a number of user flows might be
transmitted through a common link, the total amount of the
link capacity utilized by all the sharing flows should meet the
link capacity constraint. For link Ei,j, we obtain the following
constraint:

C4 :
L∑
l=1

Ml∑
m=1

ymi,j,lB
min
l ≤ Bi,j. (13)

3) DATA RATE CONSTRAINT
To transmit user flows through the network, we should ensure
that the minimum data rate requirement of the user flows is
satisfied. Suppose fl is transmitted through Ei,j, i.e., ymi,j,l = 1,
the following constraint should be met:

C5 : αi,j,lBi,j ≥ Bmin
l , if ymi,j,l = 1. (14)

145232 VOLUME 8, 2020

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

4) CACHE CAPACITY CONSTRAINT
While the TCAM of one switch may cache the forwarding
rules of multiple flows, the cache capacity of the TCAM
should be met. For switch Vi, the cache capacity constraint
is given by

C6 :
L∑
l=1

Ml∑
m=1

N∑
j=1,j6=i

δl,mymi,j,lRl ≤ Ci. (15)

5) RESOURCE ALLOCATION CONSTRAINTS
Resource sharing among user flows should satisfy limited
resources constraints. The resources considered in this work
are mainly the capacity resource of links and the processing
resource of switches. Thus, the following two constraints can
be obtained:

C7 : 0 ≤
L∑
l=1

αi,j,l ≤ 1, (16)

C8 : 0 ≤
L∑
l=1

βi,l ≤ 1. (17)

6) FLOW FORWARDING CONSTRAINT
Since user flows can only be transmitted over existing phys-
ical links in the network, we obtain the following flow for-
warding constraint:

C9 : ymi,j,l = 0, if xi,j = 0. (18)

C. OPTIMIZATION PROBLEM FORMULATION
The end-to-end delay minimization-based optimization prob-
lem for designing joint rule caching and flow forwarding
strategy can be formulated as follows

min
δl,m,ymi,j,l ,αi,j,l ,βi,l

D

s.t. C1− C9. (19)

V. SOLUTION TO THE OPTIMIZATION PROBLEM
The optimization problem formulated in (19) involves
the joint optimization of rule caching and flow forward-
ing strategy. Under the assumption that the rule caching
strategy is given, the problem of flow forwarding in an
SDN scenario can be regarded as the classical traveling
salesman problem (TSP) which has been proved to be
an NP-hard problem [35]. Hence, the optimization prob-
lem in (19) is also NP-hard, which cannot be solved
directly.
In this section, to solve the formulated optimization prob-

lem, we transform the problem into three subproblems,
i.e., flow forwarding subproblem, rule caching and candi-
date path selection subproblem, and resource sharing sub-
problem. By solving the three subproblems successively,
the joint rule caching and flow forwarding strategy is
obtained.

A. FLOW FORWARDING SUBPROBLEM FOR INDIVIDUAL
USER FLOWS
It is apparent that for individual user flows, caching flow for-
warding rules at the switches along their transmission paths
is highly desired, in this subsection, we first consider an ideal
case, i.e., the forwarding rules of all user flows have been
cached at the TCAM of switches along the flow forwarding
paths. Under this assumption, we are able to remove the
constraints of rule caching, and therefore, the formulated joint
rule caching and flow forwarding problem is reduced to a
flow forwarding subproblem.

1) SUBPROBLEM FORMULATION
Under the given rule caching assumption, i.e., δl,m = 1,
∀ l,m, the control plane delay is negligible in counting the
end-to-end delay and the overall delay of all user flows in the

network consists of data plane delay only, i.e., D =
L∑
l=1

Ds
l ,

therefore, the optimization problem formulated in (19) is
reduced to the following flow forwarding subproblem:

min
ymi,j,l ,αi,j,l ,βi,l

L∑
l=1

Ds
l

s.t. C1− C5, C7− C9 in (19). (20)

The above optimization problem is still difficult to solve
mainly due to the coupling and resource sharing among mul-
tiple user flows. To tackle this problem, we first consider the
optimal flow forwarding strategy of individual user flows and
then deal with resource sharing issues of user flows.
Aiming to design the optimal flow forwarding strategy for

an individual user flow, say fl , we assume that no resource
sharing exists among various user flows. More specifically,
if Ei,j is selected to transmit fl , all the link resource of Ei,j and
the processing resource of Vi will be allocated to fl , hence,
we obtain αi,j,l = 1, βi,l = 1. Let D(1)

l be the data plane
delay of fl which is computed as the sum of the transmission
and queuing delay, we may express D(1)

l as

D(1)
l =

Ml∑
m=1

N∑
i=1

N∑
j=1,i6=j

ymi,j,l

(
Ql
Bi,j
+

1
µi − λi

)
. (21)

The flow forwarding subproblem of fl which minimizes D(1)
l

can be formulated as

min
ymi,j,l

D(1)
l

s.t. C1− C4, C9 in (19). (22)

2) K-SHORTEST PATH ALGORITHM-BASED FLOW
FORWARDING STRATEGY
Through solving the problem formulated in (22), we will be
able to obtain the optimal flow forwarding strategy of fl . How-
ever, it should be noticed that the obtained flow forwarding
strategy only achieves data plane delay minimization, i.e., the

VOLUME 8, 2020 145233

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

minimum D(1)
l . On account of the correlation between flow

forwarding, rule caching and resource sharing, the obtained
flow forwarding strategy may not result in the optimization
of the total end-to-end delay which is composed of both data
plane delay and control plane delay.

In this article, stressing the trade-off between trans-
mission performance and computational complexity, we
propose a flow forwarding strategy which selects mul-
tiple optimal candidate flow forwarding paths instead
of one path. Then, jointly considering the network
performance affected by rule caching and resource sharing
strategy, the candidate path offering the minimum total end-
to-end delay is selected. To solve the optimization problem
formulated in (22) and obtain multiple candidate paths,
we apply K-shortest path algorithm which is capable of
choosing K shortest paths between two nodes in a weighted
graph [36].

Introducing link weight set W to the SDN network graph
G = (V ,E), we obtain a weighted graph G = (V ,E,W),
whereW = {Wi,j, 1 ≤ i, j ≤ N , i 6= j} denotes the set of link
weight, andWi,j is the weight of Ei,j, which is given by

Wi,j =
Ql
Bi,j
+

1
µi− λi

. (23)

Given the network weighted topology graph G = (V ,E,W),
we will be able to find out K candidate flow forwarding
paths with the minimum D(1)

l by utilizing the K-shortest path
algorithm.

As an extension of the Dijkstra algorithm, the K-shortest
path algorithm employs the idea of deviating path on the
path selection strategy obtained based on the Dijkstra algo-
rithm [37]. The algorithm for determining the K shortest
paths for fl can be described briefly as follows. Applying
the Dijkstra algorithm, we determine the shortest forwarding
path between Sl and Tl . Let p

(1)
l denote the first shortest path

for forwarding fl . Then, removing the individual links along
the shortest path p(1)l sequentially, we reselect the shortest
forwarding path between Sl and Tl . Repeat the above process
until the K shortest forwarding paths are obtained.

The steps of the K-shortest path algorithm-based flow
forwarding procedure are summarized as follows:

1) For user flow fl , set k = 1.
2) Characterize the considered network model by a

weighted topology graph G = (V ,E,W), where
W = {Wi,j}, Wi,j =

Ql
Bi,j
+

1
µi− λi

.
3) Obtain the shortest path from Sl to Tl by applying the

Dijkstra algorithm, denoted by p(k)l .
4) Remove the individual links on p(k)l sequentially,

update the weighted graph G, and set k = k + 1.
5) Reselect the shortest path from Sl to Tl by applying the

Dijkstra algorithm, denoted by p(k)l .
6) Repeat Step 4 and Step 5, until k = K .

Let Pl =
{
p(1)l , p

(2)
l , . . . , p

(K)
l

}
denote the obtained K short-

est path set of fl . We further denote y(m,k)i,j,l as the mth hop
forwarding strategy of the kth candidate path of fl , and

D(1,k)
l as the data plane delay of the kth candidate path of fl ,

1 ≤ m ≤ Ml , 1 ≤ k ≤ K , 1 ≤ l ≤ L.

B. RULE CACHING AND CANDIDATE PATH SELECTION
SUBPROBLEM
According to the solution of the flow forwarding subproblem
in (22), we obtain the K candidate forwarding paths for
each user flow. It should be mentioned that the K candidate
forwarding paths are determined for individual user flows
under the ideal rule caching assumption, however, given the
rule caching constraint C6 formulated in (15), the assumption
may not hold for all the switches, in which case, the fea-
sible rule caching strategy meeting the constraint should be
designed.

Apparently, if the performance of the K-shortest paths can
be further examined easily by considering the rule caching
strategy, we should select the best one among K paths based
on the constraints mentioned in Section IV, however, due
to the caching resource competition among user flows, it is
impossible to compute the performance of individual paths
independently. In particular, given various rule caching strate-
gies, the performance of the K-shortest paths may change.
Although wemay extensively search all possible rule caching
strategies and compute the performance of the K paths,
the computational complexity can be prohibited. In this arti-
cle, given the flow forwarding strategy obtained for all user
flows, we formulate rule caching and candidate path selec-
tion subproblem and obtain the joint strategy by solving the
subproblem.

1) SUBPROBLEM FORMULATION
Let D(2,k)

l denote the control plane delay of fl when choosing
the kth candidate path, we may express D(2,k)

l as

D(2,k)
l =

(
1−

Ml∏
m=1

δ
(k)
l,m

)(
1

µc − λc
+
Sc
Fc

)

+

Ml∑
m=1

N∑
i=1

N∑
j=1, j6=i

(
1− δ(k)l,m

)(Ml∑
mo=m

y(mo,k)i,j,l + y
(m,k)
i,j,l

)
Sp
Tc,i

(24)

where δ(k)l,m denotes the rule caching strategy of the mth hop
switch on the kth candidate path of fl . Since different user
flows may choose various candidate flow forwarding paths,
to characterize the path selection strategy of user flows,
we introduce a binary candidate path selection variable γ (k)

l .
We set γ (k)

l = 1, if fl selects the kth candidate path p(k)l ;
otherwise, γ (k)

l = 0.
Let D̄ denote the total end-to-end delay of user flows given

K candidate path strategy, we express D̄ as

D̄ =
L∑
l=1

K∑
k=1

γ
(k)
l

(
D(1,k)
l + D(2,k)

l

)
. (25)

145234 VOLUME 8, 2020

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

The rule caching and candidate path selection subproblem of
user flows can be formulated as

min
δ
(k)
l,m, γ

(k)
l

D̄

s.t.
L∑
l=1

Ml∑
m=1

N∑
j=1,j6=i

δ
(k)
l,my

(m,k)
i,j,l Rl ≤ Ci

K∑
k=1

γ
(k)
l = 1. (26)

where the constraint
K∑
k=1

γ
(k)
l = 1 indicates that each user

flow can only select one candidate path.
It is obvious that given K candidate paths of L user flows,

we may obtain a large number of possibilities which assign
different user flows to various candidate paths. However,
among theK candidate paths of individual user flows, wemay
tend to assign the first candidate path to user flows since the
first candidate path offers the shortest data plane delay. As a
result, to jointly design rule caching and candidate path selec-
tion strategy, it is reasonable and straightforward to start from
examining the rule cache space constraint of the switches
along the first candidate path of user flows, and designing
the corresponding rule caching and candidate path selection
strategy. In the case that the rule caching and resource sharing
constraints of the first candidate paths of user flows cannot be
met, we should assign other candidate paths to user flows and
design rule caching strategy accordingly.

According to the rule cache space status of the switches
along the first candidate path of all user flows, we may obtain
the following two cases, i.e., Case 1: sufficient rule caching
space, and Case 2: insufficient rule caching space.

2) RULE CACHING STRATEGY FOR CASE 1: SUFFICIENT
RULE CACHING SPACE
We first consider the situation where the cache space
resources of the switches along the first candidate path of
user flows are sufficient to cache the flow forwarding rules.
In this case, we assign the first candidate paths to all user
flows and cache flow forwarding rules at the switches accord-
ingly. More specifically, let γ (k,∗)

l denote the optimal candi-
date path selection strategy of fl and δ

(k,∗)
l,m denote the optimal

rule caching strategy of the mth hop switch on the kth candi-
date path of fl , we set γ

(1,∗)
l = 1 and δ(1,∗)l,m = 1. For k 6= 1,

we set γ (k,∗)
l = 0 and δ(k,∗)l,m = 0, 1 ≤ l ≤ L.

3) RULE CACHING STRATEGY FOR CASE 2: INSUFFICIENT
RULE CACHING SPACE
While caching flow forwarding rules at the switches along the
first candidate path of user flows is highly desired, the limited
TCAM storage capacity of switches may result in the failure
to cache the flow forwarding rules of user flows. In this case,
cache conflict occurs at the switches. To tackle this prob-
lem and design the feasible rule caching and candidate path

selection strategy, we propose a priority-based rule caching
algorithm.More specifically, for the common switches shared
by a certain number of user flows, we examine the hops of
the shared switches, and assign the highest priority to the
user flow of which the shared switch has the smallest hop.
The rationality of this idea is that caching flow forwarding
rules at the switches with small hops leads to smaller control
plane delay and least waste of the caching space of subsequent
switches [6], [9].

We denote Z as the number of user flows of which the
first candidate path share common switches. Let F0 ={
fl1 , · · · , flz , · · · , flZ

}
, 1 ≤ z ≤ Z , denote the set

of user flows where the shared switches exist, V0 ={
Vl1 , · · · ,Vla , · · · ,VlA

}
, 1 ≤ a ≤ A, denote the set of shared

switches. Further denote ha,z as the number of hops of Vla in
the first candidate path of flz . In the case that Vla is not the
shared switch of flz , we set ha,z = ∞. The priority of the
shared user flows is determined according to the value of ha,z.
Specifically, if switch Vla∗ on user flow flz∗ is of the minimum
value of ha,z, i.e.,{

a∗, z∗
}
= argmin

{
ha,z

}
, (27)

flow f ∗lz is assigned the highest priority. Removing f ∗lz from the
shared flows and repeat the above process until the priority
of all the shared user flows is determined. In addition, in the
case that the forwarding hops of the switches on multiple
flows is equal, the priority of the flows can be further deter-
mined based on the number of shared switches. Specifically,
the flows with a smaller number of shared switches will be
assigned a higher priority. Table 1 shows an example of the
forwarding hops of switches of multiple user flows.

TABLE 1. The forwarding hops of shared flows and shared switches.

Without loss of generality, we denote Slz as the priority
of flz , where Sl1 ≥ Sl2 ≥ . . . ≥ SlZ . Given the prior-
ity of conflicting user flows, the rule caching strategy can
be designed succesively and candidate path selection strat-
egy can be determined accordingly. Under the assumption
that user flow flz is of the highest priority, the proposed
priority-based rule caching algorithm is described as follows.

1) For user flow flz , check whether Vla is shared by flz and
other user flows, 1 ≤ z ≤ Z , 1 ≤ a ≤ A.

2) If yes, check whether the caching space of Vla is suffi-
cient for storing the forwarding rule of flz .

3) If the cache space of Vla is sufficient, caching the
forwarding rule at Vla , i.e, δ

(1,∗)
lz,ha,z = 1.

4) If the cache space ofVla is insufficient, it is infeasible to
cache the forwarding rule of flz at Vla and its succeeding

VOLUME 8, 2020 145235

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

switches along the first candidate path. Thus, we set
δ
(1,∗)
lz,m = 0, m = ha,z, ha,z + 1, . . . ,Mlz , where Mlz
denotes the maximum hop of the first candidate path
of flz .

5) Substituting δ(1,∗)lz,m to D(1,1)
lz + D(2,1)

lz , and following a
similar manner, design rule caching strategy for the
remaining candidate paths of flz , and obtain D(1,k)

lz +

D(2,k)
lz , 2 ≤ k ≤ K .

6) The optimal forwarding path p(k,∗)lz is selected for flz ,

where p(k,∗)lz = argmin
{
D(1,k)
lz + D(2,k)

lz

}
, 1 ≤ k ≤

K , and the corresponding rule caching strategy is the
optimal strategy.

7) Update the caching space of Vla and delete flz
from the set of user flows which share common
switches.

8) Repeat the above steps for all user flows sharing com-
mon switches based on the priority of user flows.

C. RESOURCE SHARING SUBPROBLEM
Since a number of user flowsmight be transmitted through the
network simultaneously, it is likely that multiple user flows
may arrive at the same switches or might be transmitted along
the same links. In this case, resource sharing strategy has to
be designed. For convenience, we assume that multiple user
flows will be transmitted through Vi and Ei,j simultaneously,

i.e.,
L∑
l=1

Ml∑
m=1

N∑
j=1, j6=i

y(m,∗)i,j,l > 1 and
L∑
l=1

Ml∑
m=1

y(m,∗)i,j,l > 1.

The data plane delay of the user flows sharing Vi and Ei,j
can be calculated as

Di,j =
L∑
l=1

y(m,∗)i,j,l
Ql

αi,j,lBi,j
+

N∑
j=1,j6=i

y(m,∗)i,j,l
1

βi,l (µi − λi)

.
(28)

The resource sharing subproblem is expressed as follows

min
αi,j,l , βi,l

Di,j

s.t. αi,j,lBi,j ≥ Bmin
l

0 <
L∑
l=1

αi,j,l ≤ 1

0 <
L∑
l=1

βi,l ≤ 1

0 < αi,j,l ≤ 1

0 < βi,l ≤ 1. (29)

It can be demonstrated that the above resource sharing sub-
problem is a convex problem with linear constraints, hence,
can be solved by optimization tools, such as the Lagrange
dual method. The corresponding Lagrange function of the
problem formulated in (29) is given by

L
(
ηi,j,l, ϕi,l, ωi,j, πi, αi,j,l, βi,l

)

= Di,j+
L∑

l=1,ym,∗i,j,l=1

ηi,j,l
(
αi,j,l − 1

)
+

L∑
l=1,ym,∗i,j,l=1

ϕi,l
(
βi,l−1

)

+ωi,j(
L∑

l=1,ym,∗i,j,l=1

αi,j,l − 1)+ πi(
L∑

l=1,ym,∗i,j,l=1

βi,l − 1) (30)

where ηi,j,l, ϕi,l, ωi,j, πi are Lagrangian multipliers. The
Lagrange dual problem of the optimization problem in (29)
can be formulated as

max
ηi,j,l ,ϕi,l ,ωi,j,πi

min
αi,j,l ,βi,l

L(ηi,j,l, ϕi,l, ωi,j, πi, αi,j,l, βi,l)

s.t. ηi,j,l, ϕi,l, ωi,j, πi ≥ 0. (31)

For a given set of Lagrangianmultipliers ηi,j,l, ϕi,l, ωi,j, πi,
the optimal resource allocation ratios of the shared switch and
link can be respectively obtained as

α∗i,j,l =

[√
Ql

Bi,j
(
ηi,j,l + ωi,j

)]+, (32)

β∗i,l =

[√
1

(µi − λi)
(
ϕi,l + πi

)]+. (33)

By applying the gradient method, the Lagrangian multipli-
ers can be updated as

ηi,j,l (t + 1) =
[
ηi,j,l (t)+ θ1

(
αi,j,l − 1

)]+
, (34)

ϕi,l (t + 1) =
[
ϕi,l (t)+ θ2

(
βi,l − 1

)]+
, (35)

ωi,j (t + 1) =

ωi,j (t)+ θ3
 L∑
l=1,ym,∗i,j,l=1

αi,j,l − 1



+

,

(36)

πi (t + 1) =

πi (t)+ θ4
 L∑
l=1,ym,∗i,j,l=1

βi,l − 1



+

. (37)

where θk , k = 1, 2, 3, 4 is the positive step size.
The pseudo-code of the proposed algorithm for multiple

user flows is described in Algorithm 1.

VI. COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity
of our proposed algorithm. Since the three subproblems,
i.e., flow forwarding subproblem, rule caching and candidate
path selection subproblem and resource sharing subproblem
are successively solved, we examine the complexity of solv-
ing the three subprolbems, respectively.

A. FLOW FORWARDING SUBPROBLEM
To solve the formulated flow forwarding subproblem,
we determine K shortest forwarding paths for all user flows.
It can be proved that the required computational complexity
for finding one shortest path is O(N (Y + N logN)), where
Y denotes the number of links in the network. As we should
determine K candidate forwarding paths for L user flows,
the computational complexity is O(KNL(Y + N logN)).

145236 VOLUME 8, 2020

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

Algorithm 1 Proposed Joint Rule Caching and Flow
Forwarding Algorithm
1: A network weighted topology graph G = (V ,E,W) is

created
2: for l = 1 : L do
3: On graph G, run the K-shortest path algorithm
4: Obtain K candidate paths Pl =

{
P1l ,P

2
l , . . . ,P

K
l

}
for fl , let y

m,k
i,j,l denote the flow forwarding strategy

corresponding to the kth candidate path of fl .
5: end for
6: if The TCAM flow table in the switches has sufficient

rule cache space then
7: Set the optimal rule caching strategy δ∗l,m = 1,∀m
8: else
9: if existing shared switches and links then

10: Define the priority of user flows at the shared
switches

11: if shared switches have insufficient rule cache space
then

12: Apply the proposed priority-based heuristic rule
caching and flow forwarding algorithm

13: Obtain the flow forwarding strategy Pk
∗

lz =

argmin
{
D2,k
lz

}
, 1 ≤ k ≤ K , and the correspond-

ing rule caching strategy.
14: end if

15: if
L∑
l=1

ymi,j,l > 1 then

16: Di,j =
L∑

l=1,ym,∗i,j,l=1

Ql
αi,j,lBi,j

,

Obtain α∗i,j,l = argminDi,j by applying Lagrange
dual method

17: end if
18: Similarly, β∗i,l can be obtained by applying Lagrange

dual method
19: else
20: α∗i,j,l = 1, β∗i,l = 1
21: end if
22: end if

B. RULE CACHING AND CANDIDATE PATH SELECTION
SUBPROBLEM
To solve the formulated rule caching and candidate path
selection subproblem, we consider two cases, i.e., Case 1:
sufficient rule caching space, and Case 2: insufficient
rule caching space, and design the rule caching strategies
accordingly.

For Case 1, under the assumption that the cache space
of switches along the first candidate path of all user flows
is sufficient, we assign the first candidate path to all user
flows and cache the flow forwarding rules at the switches
along the paths. Let Ml,1 denote the number of hops of the
first candidate hop of fl , the computational complexity can
be calculated as Lmax{Ml,1}.

For Case 2, we propose a priority-based rule caching algo-
rithm for determining the rule caching and candidate path
selection strategy. Let Z denote the number of conflicting
user flows, and A denote the average number of shared
switches of conflicting flows, to determine the priority of
conflicting user flows, the required computational complexity
is O(AZ). Since rule caching strategy should be determined
for all the shared switches of the conflicting flows, and the
performance of K candidate paths should be examined and
compared, the required computational complexity isO(AZK).
As a result, to solve the rule caching and candidate path
selection subproblem, the overall complexity is O(AZK).

C. RESOURCE SHARING SUBPROBLEM
To examine the computational complexity of the formulated
resource sharing subproblem, we denote Z1 and Z2 as the
number of shared switches and links, respectively, X1 and
X2 as the number of user flows sharing switches and links,
respectively. As Lagrange multipliers should be updated for
each shared switch and link, the computational complexity
for executing the resource sharing algorithm is O(K0(Z1X1+
Z2X2)), where K0 denotes the number of iterations required
for the algorithm to achieve convergence.

VII. SIMULATION RESULTS
In this section, we evaluate the performance of the pro-
posed joint scheme and that of previously proposed solutions
through exhaustive numerical simulations. The simulation
tool used in this article is Matlab software. In the simulation,
we set up an SDN network where switches are randomly
located within an square region of 400m×400m and links
between any two switches are generated randomly. In addi-
tion, we consider network scenarios with different numbers
of user flows and forwarding rules.

To characterize various requirements of user flows in the
simulation, simulation parameters such as traffic demand,
the minimum transmission rate requirement, link capacity,
TCAM size and the transmission rate between switches
are randomly selected from a certain set. Unless otherwise
stated, the parameters employed in the simulations are shown
in Table 2. Simulation results are counted based on 500 exper-
imental outcomes resulted from randomly chosen simulation
parameters.

Figure 2 compares the total delay resulted by our proposed
algorithm and the schemes proposed in [20] and [28] under
the scenarios where the traffic demand of user flows ranges
from 10 to 50. As shown in (4), higher traffic demand of user
flows requires longer transmission delay, resulting in longer
total delay, which is demonstrated in the figure. On the other
hand, we can see that as the number of user flows increases,
the total end-to-end delay also increases. This is because we
compute the delay of all user flows as the summation of
the delay of individual user flows, as defined in (1). The
curves in Figure 2 show that the proposed solution provides
lower delay than the schemes proposed in [20] and [28].
This is mainly because the algorithm proposed in this article

VOLUME 8, 2020 145237

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

TABLE 2. Simulation parameters.

FIGURE 2. Total end-to-end delay versus traffic demand (different
number of user flows).

jointly considers rule caching and flow forwarding issues and
focuses on minimizing the total data plane and control plane
delay of user flows, while the scheme proposed in [20] only
investigates flow forwarding strategy and fails to consider
rule caching strategy, thus may lead to undesired control
plane latency, and the algorithm proposed in [28] aims to
reduce the space occupation of flow forwarding rules, which
might lead to excessively long delay.

The impacts of traffic demands of user flows on total end-
to-end delay are shown in Figure 3. The results are obtained
based on our proposed algorithm and the algorithms proposed
in [20] and [28]. Observing the curves in the figure, we can
see that higher traffic demands of user flows result in longer
end-to-end delay. This is mainly because transmitting larger
amount of user flows requires longer transmission delay,
as clearly shown in (4). In the figure, we also examine
the effect of the number of forwarding rules on network
performance. The total end-to-end delay of user flows is
plotted when the number of forwarding rules is chosen as
R = 50 and R = 100, respectively. We can observe from
the figure that a larger number of forwarding rules results
in longer total end-to-end delay. This is because according
to constraint C6 in (15), the rule caching capacity should be
met at switches. Given fixed caching capacity at switches,

FIGURE 3. Total end-to-end delay versus traffic demand (different
number of rules).

if user flows require a larger number of forwarding rules,
the number of user flows whose forwarding rules can be
cached will decrease. As a result, the controller needs to
determine flow forwarding strategy for a larger number of
user flows, causing longer control plane delay and total end-
to-end delay as well. Furthermore, the figure also shows
that our proposed algorithm outperforms the two comparative
schemes, i.e., the schemes proposed in [20] and [28], and the
advantage becomes obvious with the number of forwarding
rules increased.

The total delay of user flows obtained from different net-
work scales is plotted in Figure 4, where network scale is
characterized by different number of switches, varying from
40 to 100. The figure shows a larger network scale results
in enhanced performance in end-to-end delay. The reason
is that a larger network scale provides an increased number
of available switches and links in the network, thus offering
higher flexibility in selecting flow forwarding paths and rule
caching switches, and resulting in improved end-to-end delay
performance in turn. We can also see that as the number

FIGURE 4. Total end-to-end delay versus the number of switches
(different number of user flows).

145238 VOLUME 8, 2020

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

of user flows increases, the total end-to-end delay increases
accordingly. Obviously, we see that the proposed solution
incurs less delay compared to the algorithm proposed in [28].
In particular, comparing the total end-to-end delay obtained
from our proposed algorithm and the algorithm proposed
in [28], we can observe that our proposed scheme is capable
of reducing end-to-end delay approximately by 20%.

In Figure 5, we vary the TCAM capacity of switches from
100 to 500 and plot the corresponding end-to-end delay.
We can see that as TCAM capacity increases, the total end-
to-end delay becomes lower. Analyzing the reason behind,
we can understand that constrained by C6 in (15), switches
with higher TCAM capacity are capable of caching larger
number of forwarding rules. That is, the forwarding strategy
of a larger number of user flows can be cached at switches,
hence, less control plane interaction is required, leading to
lower control plane delay and end-to-end delay as well.

FIGURE 5. Total end-to-end delay versus capacity of TCAM (different
number of rules).

To plot the above figures, the computing time or the simula-
tion time is mainly determined by the factors such as network
scale, the number of user flows and required flow forwarding
rules, etc. In the case that the number of user flows is 10,
the number of switches is 45 and the number of required flows
forwarding rules of each user flow is 100, the average com-
putation time for our proposed algorithm for all user flows
is about 3.5 seconds for one random parameter setting. Since
the algorithm proposed in [20] used randomized rounding for
route selection, and derived an integer solution for each user
flow to appoint a feasible path rather than to determine the
K candidate paths, the average computation time is slightly
lower than our algorithm, which is less than 3 seconds every
time. In [28], the algorithm was proposed to solve the rule
placement problem without considering the given candidate
paths, the average computation time is also slightly shorter
than our proposed algorithm.

We now examine the traffic overhead of our proposed
approach and the existing ones. It should be noted that
our proposed algorithm is a centralized scheme, which is

designed by the controller based on its collected information,
including the service characteristics of user flows and the
transmission performance of switches. To send the service
characteristics of user flow fl to the controller, the source
switch Sl or one of the intermediate switches of fl should send
a packet-in message to controller, which contains the traffic
demand of fl denoted by Ql and the number of forwarding
rules of fl denoted byRl , and the required traffic load is 1

2LMl .
In addition, switch Vi should also send its status information
to the controllers, including its average flow arrival rate λi,
average serving rateµi, TCAM storage sizeCi and the capac-
ity of Ei,j, denoted by Bi,j, and the required traffic load is LN

2

2 .
Jointly considering the traffic load required for the controller
to collect the service characteristics of user flows and the
status information of switches, we obtain the overall traffic
load can be computed as 1

2L(Ml + N 2).
In [20], to determine the routes of all flows, the header

packet of each new-arrival flow will be reported to the con-
troller and the controller will collect the size of each flow
from switches. Let L denote the number of user flows and
N denote the number of switches, the required traffic load
is LN 2. In order to update route scheduling with delay con-
straint for all flows, the algorithm should be repeated until the
update delay is running out, and the controller will collect the
information of each flow during each iteration. Let K0 denote
the number of iterations, the required traffic load is LK0.
Therefore, the overall traffic load in [20] can be computed
as L(N 2

+ K0). In [28], in order to minimize the rule space
occupation, the flow caching rules are decomposed into mul-
tiple subsets, and can be placed along the routing paths in an
arbitrary order. Let K1 denote the number of unicast sessions,
and N denote the number of network devices, the required
traffic load is NK1.

VIII. DISCUSSION AND LIMITATION
In this article, we jointly design rule caching and flow for-
warding strategy for user flows in SDN. Considering the
importance of end-to-end delay of user flows, we formulate
the joint optimization problem as an end-to-end delay mini-
mization problem and present a heuristic algorithm to solve it
and obtain the joint rule caching and flow forwarding strategy.

Unlike previous research work, the problems of rule
caching and flow forwarding are jointly considered and the
total end-to-end delay is optimized in this article. Due to
the close correlation between the two issues, it is difficult
to solve the formulated joint rule caching and flow forward-
ing problem. We transform the original formulated problem
into three subproblems, i.e., flow forwarding subproblem,
rule caching and candidate path selection subproblem and
resource sharing subproblem. Considering the impacts of
rule caching and resource sharing on network performance,
to solve the flow forwarding subproblem, instead of select-
ing one optimal forwarding path for individual user flows,
we apply the K-shortest path algorithm and find K candidate
paths for each user flow. Among K candidate paths, rule

VOLUME 8, 2020 145239

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

caching strategy can be determined and the optimal candidate
path is selected accordingly.

In the case that rule cache capacity of switches can not
be satisfied and cache conflict occurs at switches, designing
corresponding rule caching strategy is challenging. To tackle
the problem, we propose a priority-based rule caching algo-
rithm and design rule caching strategy for conflicting user
flows accordingly to their priority. By assigning the highest
priority to the user flow of which the shared switch has the
smallest hop, control plane delay reduction is achieved and
efficient utilization of the caching space of switches can be
obtained. Through simulation experiments, we demonstrate
that our proposed algorithm outperforms previously proposed
algorithms.

It should be mentioned that although our proposed algo-
rithm is of certain novelty and contributions, it also has some
limitations and can be extended in future work. For example,
similar as most of research work stressing flow forwarding,
we consider a quasi-static scenario where the characteristics
and requirements of user flows are pre-defined and the net-
work scenario is fixed during the process of flow forwarding.
In our future work, we may extend the network model and
flow forwarding requirements to a dynamic scenario where
user flows may arrive and depart randomly. Since random
variables and random processes should be handled in this
case, we may apply random graph theory or random opti-
mization model to solve the dynamic rule caching and flow
forwarding strategy.

Furthermore, in this work, we stress algorithm design
and make relatively simple assumptions on system model,
especially the control plane model. In particular, we assume
that the control layer of SDN only contains one SDN con-
troller which is responsible for monitoring network states and
determining network management strategies. In our future
work, we may extend current network model into a hier-
archical controller architecture, which consists of one main
controller and a number of lower-layer controllers. In this
case, signaling interaction among controllers and the associ-
ation between controllers and switches should be considered
when designing flow forwarding strategy. We may also refer
to [27] and extend the assumption of our system model by
allowing certain authority switches to be able to design flow
forwarding strategy, in which case the reasonable selection
strategy of authority switches should be designed.

In Section VI, we have examined the computational com-
plexity of our proposed algorithm. It can be seen from the
result that the computational complexity highly depends on
network scale and the number of user flows. In the case
of small network scale, say, small N , Y , and small num-
ber of conflicting user flows and switches, i.e., small A, Z ,
the computational complexity of our proposed algorithm
is relatively small. However, in a network scenario con-
sisting a large number of switches, or a large number
of user flows, the resulted computational complexity can
be relatively high. While selecting a suitable number of
candidate paths for flow forwarding is of importance in

achieving the trade-off between computational complexity
and performance enhancement, we may also explore alter-
native schemes which offer acceptable network performance
with relatively low computational complexity.

IX. CONCLUSION
In this work, the problem of joint rule caching and flow
forwarding for multiple user flows in SDN was investigated.
To emphasize the importance of the end-to-end delay caused
by the transmission and processing delay of data plane and
control plane, we formulated the joint optimization problem
as an end-to-end delay minimization problem. As the original
optimization problem is an NP-hard problem, which cannot
be solved directly, we proposed a heuristic algorithm which
transforms the optimization problem into flow forwarding
subproblem, rule caching and candidate path selection sub-
problem, and resource sharing subproblem. Applying the
K-shortest path algorithm, a priority-based rule caching algo-
rithm and the Lagrangian dual method to solve the three
subproblems, we obtained the joint rule caching and flow
forwarding strategy. The simulation experiments were con-
ducted which show that our algorithm significantly outper-
forms the previous solutions.

REFERENCES
[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,

S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A compre-
hensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[2] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, ‘‘A survey on
software-defined networking,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 27–51, 1st Quart., 2015.

[3] J. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, ‘‘A survey of controller
placement problem in software-defined networking,’’ IEEE Access, vol. 7,
pp. 24290–24307, 2019.

[4] Z. N. Abdullah, I. Ahmad, and I. Hussain, ‘‘Segment routing in software
defined networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 1,
pp. 464–486, 1st Quart., 2019.

[5] T. Das, V. Sridharan, andM. Gurusamy, ‘‘A survey on controller placement
in SDN,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 472–503,
1st Quart., 2020.

[6] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, ‘‘Toward adaptive
and scalable OpenFlow-SDNflow control: A survey,’’ IEEE Access, vol. 7,
pp. 107346–107379, 2019.

[7] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and A. Vasilakos, ‘‘Survey
on routing in data centers: Insights and future directions,’’ IEEE Netw.,
vol. 25, no. 4, pp. 6–10, Jul. 2011.

[8] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, ‘‘Unicast QoS
routing algorithms for SDN: A comprehensive survey and performance
evaluation,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 388–415,
1st Quart., 2018.

[9] H. Huang, S. Guo, P. Li, W. Liang, and A. Y. Zomaya, ‘‘Cost minimization
for rule caching in software defined networking,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 4, pp. 1007–1016, Apr. 2016.

[10] Z. Ding, X. Fan, J. Yu, and J. Bi, ‘‘Update cost-aware cache replacement
for wildcard rules in software-defined networking,’’ in Proc. IEEE Symp.
Comput. Commun. (ISCC), Jun. 2018, pp. 457–463.

[11] D. Wang, Q. Li, Y. Jiang, M. Xu, and G. Hu, ‘‘Balancer: A traffic-aware
hybrid rule allocation scheme in software defined networks,’’ in Proc. 26th
Int. Conf. Comput. Commun. Netw. (ICCCN), Jul. 2017, pp. 1–9.

[12] Q. Li, N. Huang, D. Wang, X. Li, Y. Jiang, and Z. Song, ‘‘HQTimer:
A hybrid Q-learning-based timeout mechanism in software-defined net-
works,’’ IEEE Trans. Netw. Service Manage., vol. 16, no. 1, pp. 153–166,
Mar. 2019.

[13] J.-P. Sheu and Y.-C. Chuo, ‘‘Wildcard rules caching and cache replacement
algorithms in software-defined networking,’’ IEEE Trans. Netw. Service
Manage., vol. 13, no. 1, pp. 19–29, Mar. 2016.

145240 VOLUME 8, 2020

L. Luo et al.: End-to-End Delay Minimization-Based Joint Rule Caching and Flow Forwarding Algorithm for SDN

[14] T. Cheng, K. Wang, L.-C. Wang, and C.-W. Lee, ‘‘An in-switch rule
caching and replacement algorithm in software defined networks,’’ inProc.
IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[15] S. H. Rastegar, A. Abbasfar, and V. Shah-Mansouri, ‘‘On fair rule caching
in software defined radio access networks,’’ IEEEWireless Commun. Lett.,
vol. 7, no. 3, pp. 460–463, Jun. 2018.

[16] J.-F. Huang, G.-Y. Chang, C.-F. Wang, and C.-H. Lin, ‘‘Heterogeneous
flow table distribution in software-defined networks,’’ IEEE Trans. Emerg.
Topics Comput., vol. 4, no. 2, pp. 252–261, Apr. 2016.

[17] I. I. Awan, N. Shah, M. Imran, M. Shoaib, and N. Saeed, ‘‘An improved
mechanism for flow rule installation in in-band SDN,’’ J. Syst. Archit.,
vol. 96, pp. 1–19, Mar. 2019.

[18] Y. Liu, D. Niu, and B. Li, ‘‘Delay-optimized video traffic routing in
software-defined interdatacenter networks,’’ IEEE Trans. Multimedia,
vol. 18, no. 5, pp. 865–878, May 2016.

[19] J. Zheng, B. Li, C. Tian, K.-T. Foerster, S. Schmid, G. Chen, J. Wu,
and R. Li, ‘‘Congestion-free rerouting of multiple flows in timed
SDNs,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 968–981,
May 2019.

[20] H. Xu, Z. Yu, X.-Y. Li, L. Huang, C. Qian, and T. Jung, ‘‘Joint route selec-
tion and update scheduling for low-latency update in SDNs,’’ IEEE/ACM
Trans. Netw., vol. 25, no. 5, pp. 3073–3087, Oct. 2017.

[21] M. Paliwal and D. Shrimankar, ‘‘Effective resource management in SDN
enabled data center network based on traffic demand,’’ IEEE Access, vol. 7,
pp. 69698–69706, 2019.

[22] R.Maaloul, R. Taktak, L. Chaari, and B. Cousin, ‘‘Energy-aware routing in
carrier-grade Ethernet using SDN approach,’’ IEEETrans. GreenCommun.
Netw., vol. 2, no. 3, pp. 844–858, Sep. 2018.

[23] R. Chai, H. Li, F. Meng, and Q. Chen, ‘‘Energy consumption optimization-
based joint route selection and flow allocation algorithm for software-
defined networking,’’ Sci. China Inf. Sci., vol. 60, no. 4, pp. 1–14,
Mar. 2017.

[24] X. Yang, H. Xu, L. Huang, G. Zhao, P. Xi, and C. Qiao, ‘‘Joint
virtual switch deployment and routing for load balancing in
SDNs,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 3, pp. 397–410,
Mar. 2018.

[25] Y.-C. Wang and S.-Y. You, ‘‘An efficient route management framework
for load balance and overhead reduction in SDN-based data center net-
works,’’ IEEETrans. Netw. ServiceManage., vol. 15, no. 4, pp. 1422–1434,
Dec. 2018.

[26] X. Xiaolong, C. Yun, H. Liuyun, and K. Anup, ‘‘MTSS: Multi-path traffic
scheduling mechanism based on SDN,’’ J. Syst. Eng. Electron., vol. 30,
no. 5, pp. 974–984, Oct. 2019.

[27] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, ‘‘Scalable flow-based
networking with DIFANE,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 351–362, Aug. 2010.

[28] H. Huang, S. Guo, P. Li, B. Ye, and I. Stojmenovic, ‘‘Joint optimization
of rule placement and traffic engineering for QoS provisioning in software
defined network,’’ IEEE Trans. Comput., vol. 64, no. 12, pp. 3488–3499,
Dec. 2015.

[29] M. T. I. Ul Huque, G. Jourjon, C. Russell, and V. Gramoli, ‘‘Soft-
ware defined networks garbage collection with clean-up packets,’’
IEEE Trans. Netw. Service Manage., vol. 16, no. 4, pp. 1595–1608,
Dec. 2019.

[30] S. Bera, S. Misra, and A. Jamalipour, ‘‘FlowStat: Adaptive flow-rule
placement for per-flow statistics in SDN,’’ IEEE J. Sel. Areas Commun.,
vol. 37, no. 3, pp. 530–539, Mar. 2019.

[31] P. Rezende, S. Kianpisheh, R. Glitho, and E. Madeira, ‘‘An SDN-
based framework for routing multi-streams transport traffic over multi-
path networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019,
pp. 1–6.

[32] L. Kleinrock, Queueing Systems I: Theory. New York, NY, USA: Wiley,
1975.

[33] D. E. Chua, E. D. Kolaczyk, and M. CroveIla, ‘‘Efficient monitoring of
end-to-end network properties,’’ in Proc. IEEE 24th Annu. Joint Conf.
IEEE Comput. Commun. Soc., May 2005, pp. 1701–1711.

[34] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, ‘‘LSTM network:
A deep learning approach for short-term traffic forecast,’’ IET Intell.
Transp. Syst., vol. 11, no. 2, pp. 68–75, Mar. 2017.

[35] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, ‘‘The trav-
eling salesman problem: A guided tour of combinatorial optimization,’’
J. Oper. Res. Soc., vol. 37, no. 5, pp. 535–536, 1986.

[36] G. Scano, M.-J. Huguet, and S. U. Ngueveu, ‘‘Adaptations of K-shortest
path algorithms for transportation networks,’’ in Proc. Int. Conf. Ind. Eng.
Syst. Manage. (IESM), Oct. 2015, pp. 663–669.

[37] P. Bogdan, ‘‘Dijkstra algorithm in parallel-case study,’’ in Proc. 16th Int.
Carpathian Control Conf. (ICCC), Jun. 2015, pp. 50–53.

LEI LUO received the B.E. degree from Panzhi-
hua University, Sichuan, China, in 2018. He is
currently pursuing the M.S. degree with the
Chongqing University of Posts and Telecommuni-
cations, Chongqing, China. His research interests
include resource virtualization, and resource man-
agement of wireless and mobile networks.

RONG CHAI (Senior Member, IEEE) received
the B.E. and M.S. degrees from the University
of Electronic Science and Technology of China,
Chengdu, China, in 1995 and 1998, respectively,
and the Ph.D. degree in electrical engineering
from McMaster University, ON, Canada, in 2008.
In 2008, she joined the School of Communication
and Information Engineering, Chongqing Univer-
sity of Posts and Technology, where she is cur-
rently a Professor. She has authored or coauthored

95 research articles. Her research interests include wireless communication
and network theory.

QIONGFANG YUAN received the B.E. degree
from Shaoyang University, Hunan, China, in 2017.
She is currently pursuing the M.S. degree
with the Chongqing University of Posts and
Telecommunications, Chongqing, China. Her
research interest includes resource management
for software-defined networking.

JINYAN LI received the master’s degree from the
Beijing University of Posts and Telecommunica-
tions. She is currently a Senior Engineer with
the China Telecom Technology Innovation Center.
Her research interests include standardization and
technique evolution of mobile networks.

CHENGLI MEI received the Ph.D. degree from
Shanghai Jiaotong University. He is currently the
Director and a Professorate Senior Engineer of
the China Telecom Technology Innovation Center.
His research interest includes techniques of mobile
communication networks.

VOLUME 8, 2020 145241

