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ABSTRACT In this paper, we study the multi-task cooperation problem for unmanned aerial vehicle (UAV)
swarms, where the UAV energy consumption is taken into consideration during location scheduling and
task implementation. One task may need the cooperation of several UAVs with specific capabilities.
To avoid unreasonable task allocation, we quantify the mission properties of UAVs and task areas. We
comprehensively consider the overlapping and complementary relationship of the UAV’s task types, so that
UAVs can form corresponding collective execution tasks according to the task attributes. Based on the
coalition game theory, we model the distributed task assignment problem of UAVs as a coalition formation
game (CFG).We propose a task allocation algorithm, and then prove that it can achieve the joint optimization
of energy and task completion by decision-making of UAVs in finite iterations. With the equilibrium
properties of coalition formation in UAV networks, we further optimize the position of UAVs to minimize
the network energy consumption. Simulation results verify that the proposed method can reduce the flight
loss with high task completion degree.

INDEX TERMS UAV swarm, task assignment, energy optimization, coalition formation game (CFG).

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Nowadays, unmanned aerial vehicles (UAVs) have been
employed to perform various tasks in many scenarios due
to their flexible features, such as border patrol, reconnais-
sance, attack and enhanced communication [1]–[3]. Multiple
UAVs can form UAV swarms to perform remote, large-scale
and complex tasks [4]–[6]. Therefore, the task assignment
of UAVs has attracted widespread attention in recent years
[7]–[13].

In the existing work, UAVs were mainly used to perform
specific tasks [7]–[10], where each task was assumed can
be completed by one UAV, so that one-to-one task assign-
ment strategies were developed for optimizing task execution
efficiency. For example, the authors in [7] studied the task
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assignment problem to maximize the mission throughput
with constraints on the travel distances of UAVs. In [8],
under the premise of maintaining connectivity among UAVs,
the authors optimized the data transfer task sequence to min-
imize the task execution time. In [9], UAVs were assigned
to perform data relay tasks for maintaining the connectivity
of dynamic heterogeneous networks. In [10], the authors
assigned multiple UAVs into one mission area to investigate
forest fires fighting, where an auction-based algorithm was
proposed to address the task assignment issue.

With the development of UAV technology, one UAV
can be equipped with diverse devices that support multi-
ple capabilities, such as data collection, ground reconnais-
sance, and audio monitoring at the same time. Therefore,
the problem of multi-task assigned by multi-UAV was raised
[11]–[13]. In [11], multiple UAVs with different capaci-
ties were assigned to performing tasks with heterogeneous
requirements. In [12], the UAV can perform multiple tasks
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such as forward data as a relay and coverage of the task
area. The authors assigned multiple UAVs to multiple tasks
to improve task performance while ensuring communica-
tion. In [13], multiple UAVs were used to perform attack,
reconnaissance and induced tasks. The authors proposed an
adaptive-limitation penalty term based on the potential func-
tion. It can be seen that multiple UAVs with heterogeneous
capabilities are able to accomplish the tasks more efficiently.

However, the task performing behavior of different UAVs
was assumed independent in the above work [7]–[13], while
the cooperative relationship between heterogeneous UAVs
was not considered. In fact, one mission area may contain
multiple types of tasks, and UAVs can perform multiple
missions. Tomaximize the efficiency of task execution, on the
one hand, different types of UAVs need to complement each
other in the task execution process. On the other hand,
the cooperation of the same type of UAVs is also needed to
increase the speed of mission execution. Therefore, it is nec-
essary to characterize and distinguish different types of task
attributes, and then refine the task allocation planning accord-
ing to the task execution capabilities of UAVs to improve the
overall efficiency of task execution.

In addition, due to the flexible deployment characteristics,
UAVs mainly improve task execution efficiency by adjusting
their deployment locations [7]–[13], which is different
from task assignment issues in traditional ground networks.
However, the energy consumption caused by the flight
propulsion in the process of optimizing task efficiency was
always ignored in the existing work. Considering the impor-
tance of energy efficiency to the endurance of UAV swarms,
we jointly improve the energy efficiency of task assignment
planning by optimizing UAV flight and hovering time in this
paper.

B. CONTRIBUTIONS
Therefore, we propose an energy-efficient task cooperation
scheme for heterogeneous multi-UAV in view of cooperative
task assignment and energy optimization of heterogeneous
UAVs. Firstly, a task relationship model is proposed to quan-
tify the task attribute of ground task areas, the capabilities of
UAVs in terms of task types they can run, in order to define a
general satisfaction function to quantify the task completion
degree. Then, the energy consumption model is proposed to
account for the energy loss during flight and hovering stages.

To achieve automatic and self-organizing task cooperation
with energy constraints, we establish a distributed task assign-
ment model for UAVs based on the coalition formation game
(CFG) [14]–[17]. Aiming at characteristics of cooperation
and complementary relationships among UAVs brought by
location and mission attributes, we develop the coalition for-
mation game with the peer effects among UAVs [18]–[20].
We propose the coalition formation algorithm based on coop-
eration rule, where coalition merge rules and coalition split
rules are designed. Moreover, we prove the convergence of
the algorithm based on the potential game theory [21]–[23].
The contributions of this paper are summarized as follows:

• We study the problem of UAV assignment in multi-UAV
and multi-task scenario. The UAVs’ task types, energy
loss and the time of performing tasks are considered
to improve the task completion degree in the task area
while reducing the energy loss of UAVs.

• We define a quantitative amount for each type of task.
The definition of task completion degree includes the
task performing time and the implementation of all types
of tasks in the task areas.

• The coalition formation game is applied to the task
assignment scenario of UAVs, and a coalition formation
algorithm based on cooperative rule is proposed. The
overlapping and complementary relationships of UAVs’
tasks are considered, which can reduce the energy loss
of the UAVs and improve the task completion degree in
the task area.

• With the equilibrium properties of coalition formation
in UAV networks, we further optimize the position of
UAVs within the task coverage to minimize the network
energy consumption.

C. RELATED WORK
1) COALITION FORMATION GAME THEORY
This paper focuses on the problem of task cooperation and
mutual influence among multiple UAVs. Because the game
theory is an effective tool to solve the problem of resource
optimization in distributed systems [24], [25], an appropriate
coalition formation game was used in this paper to model the
task assignment problem of UAVs.

Coalition formation game can accurately and completely
describe the cooperative relationships among users in shar-
ing networks. In [16], the authors proposed a context-aware
group buying mechanism to reduce users’ data costs based
on the coalition formation game. In [26], coalition forma-
tion game theory is used to obtain a solution to a resource
allocation problem for a team of UAVs prosecuting a target.
In [27], the authors proposed a reputation-based mechanism
for coalition formation aiming to complete the designated
tasks with minimal resource utilization. In [28], the authors
studied the data clustering scheme based on the coalition
formation game to improve the data collection efficiency in
UAV-enabled wireless sensor networks.

Based on the existing work, an appropriate coalition
formation game with peer effects is developed in this paper
to model the task assignment problem of UAVs.

2) ENERGY CONSUMPTION MODEL
The endurance and performance of UAV systems are funda-
mentally limited by the on-board energy, which is practically
finite due to the aircraft’s size and weight constraints [29].
Thus, energy consumption should be an important concern
for UAV task cooperation [30].

In [31], The authors investigated an uplink power con-
trol problem for UAV-assisted wireless communications. The
flying altitude, antenna bandwidth and location of UAVs,
as well as allocated bandwidth of ground terminals were
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TABLE 1. List of notations.

jointly optimized to achieve good performance in uplink sum
power saving. In [32], the authors considered the jointly opti-
mizing user association, power control, computation capacity
allocation, and location planning in a mobile edge computing
network with multiple UAVs to minimize the total power
effectively. In [33], the authors formulated the energy min-
imization problem by jointly optimizing the UAV trajectory
and communication time allocation among ground nodes.
In [34], the author considered the problem of high-efficiency
coverage deployment of UAVs and controlled the launch
power of UAVs to achieve the purpose of energy conserva-
tion. In [35], an efficient algorithm was proposed for maxi-
mizing the UAV’s energy efficiency with general constraints
on the trajectory.

In this paper, we take the energy consumption of UAVs as
part of the optimization in the process of the task assignment,
which is important for the energy efficiency of task execution.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION
A. SYSTEM MODEL
The relevant system parameters and physical meanings in this
paper are summarized in Table 1.

1) NETWORK STRUCTURE
We consider UAV communication swarms consisting of M
UAVs, which are randomly scattered in space. The set of
UAVs is denoted by M = {1, . . . ,m, . . . ,M}. Fig. 1 shows
a simple example of the UAV task performing relation-
ships. There is a control UAV used for the information
sharing between UAVs. Each five-pointed star in the net-
work represents a task area. The set of task area is U =
{1, . . . , u, . . . ,U}. Each yellow box represents a type of
task that needs to be performed. The set of task types is
X = {1, . . . , x, . . . ,X}. Different numbers represent dif-
ferent tasks. The same tasks have different task amounts in
different areas. The number in the white box represents the
amounts of data for each type of task. l1, . . . , lx , . . . , lX
are the task amount for each type of task. For example, task

FIGURE 1. The task assignment model of multiple UAVs with various
tasks.

FIGURE 2. The example of cooperation relationship among UAVs.

types include information collection, audio collection, picture
video capture and other tasks, while the task requirements
can be audio data, information data and other task data. Here,
we represent the task types and task amounts in numbers.

A single UAV can perform multiple types of tasks at the
same time, such as collecting information while conducting
reconnaissance. As shown in Fig. 1, each blue box represents
a type of task that the UAV can perform. The set of executable
task types of UAV m is denoted by Xm,Xm ⊆ X , which is
dependent on the equipped equipages types. Different UAVs
work together in the mission area, the set of UAVs heading to
mission area u isMu,Mu ⊆M. Each task area has different
task requirements, the type of tasks need to be performed in
the task area u is Xu,Xu ⊆ X . Each UAV chooses one task
area to perform the tasks, the decision of UAV m is δm ∈
U ∪ {0}, where 0 means the UAV does not participate in the
tasks. u is the task area that the UAV m travels to perform the
task.

2) TASK RELATIONSHIP
There are overlapping and complementary relationships
between UAVs’ task types. As the example shown in Fig. 2,
there are six types of tasks Xu = {x1, x2, x3, x4, x5, x6},
x1, x2, x3, x4, x5, x6 ∈ X that need to be performed in the
task area u, the types of tasks that UAV m1,m2 can perform
are Xm1 = {x1, x2, x3}, Xm2 = {x2, x4, x6}, respectively.
If UAV1 and UAV2 cooperate to perform the tasks in the task
area u, they will spend less time performing the overlapping
task x2.
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UAVs need to select task areas that are compatible with
their task execution capabilities to preferably perform tasks.
When multiple UAVs perform tasks, UAVs in the task area
wait for other UAVs in the mission area until they complete
the mission and fly back together. We assume that the air-
to-ground transmission are dominated by line-of-sight (LoS)
links [36]. Thus, the channel power from UAV to task area
follows the free-space path loss model as:

hmu = β0d−2mu =
β0

H2 + x2mu + y2mu
, (1)

where β0 denotes the channel power at the reference distance
one meter, whose value depends on the carrier frequency,
antenna gain, etc. dmu =

√
H2 + x2mu + y2mu is the distance

between m and task area u. We denote pu as the transmission
power by task area. Thus the transmission rate from task area
to UAV in bits/second/Hz (bps/Hz) can be expressed as:

Rmu = log2

(
1+

puhmu
σ 2

)
= log2

(
1+

puγ0
d2mu

)
, (2)

where σ 2 is the noise power, and γ0
1
= β0/σ

2. Thus, the time
Tu of UAVs performing the tasks in the task area u can be
defined as:

Tu = max(
li
Ri
, . . . ,

lj
Rj
, . . .), i, j ∈ Xu, (3)

where Ri is the rate that UAVs perform the mission xi in
the task area u. The more UAVs with overlapping tasks
in the same task area, the shorter the time the UAV
performs the mission.

In addition, there are complementary relationships
between the task types of two UAVs. For a single UAV,
the types of tasks it can perform are not sufficient to meet
the task requirements of the task area. If the two UAVs
form an effective coalition, they can perform the tasks in
the mission area together. The types of tasks performed by
two UAVs are far more than that of a single UAV. UAVs
collaboratively perform the tasks that can greatly improve the
task completion degree in the task area.

For the task area, we want the tasks to be fully executed.
In the process of task assignment, UAVs should consider the
complementary relationship between the types of tasks that
the UAVs can perform. In addition to the overlapping tasks
of the UAVs, each type of task in the task area should be
executed, so we define the task completion degree. For the
task area u, its task satisfaction function Du is defined as:

Du =
1
|Xu|

∑
xi∈Xu

θ (xi), (4)

θ (xi) =

{
1, Ri 6= 0
0, Ri = 0,

(5)

where | · | represents the size of the set. xi is one type of tasks
Xu in the task area u. θ(xi) is the completion degree of task xi,
and it is defined as whether there is a UAV that performs this
type of task in the task area u. If there is a UAV performing

FIGURE 3. Schematic diagram of UAV location deployment.

FIGURE 4. Different flight situations with influence of acceleration.

this type of task in the task area, the satisfaction level of this
task type is 1. Otherwise, the satisfaction level of this task
type is 0. Du is the average of the task completion degree in
task area u.

3) UAV FLIGHT HEIGHT AND POSITION ADJUSTMENT
It is assumed that different UAVs are assigned different flight
heights, and each UAV is flying at its fixed altitude to ensure
safety and mission execution. The impact of different heights
is shown in Fig. 3. One UAV at point A can adjust their
location on the AB line, where the hemisphere represents the
coverage of the task area, and point U is the location of the
task target. A is the farthest point where the UAV can perform
this task, and point B is the closest one. BU line equals to the
height of the UAV.

4) UAV ENERGY CONSUMPTION MODEL
UAVs incur flight energy losses when they fly to the task
areas. There are also losses when UAVs hovering to perform
tasks. Under these conditions, UAVs need to complete related
tasks in the task area. We define the loss of UAVs performing
the task as a certain energy loss. The effect of acceleration on
the energy consumption of UAVs [37] is taken into consid-
eration. As shown in Fig. 4, two acceleration situations were
discussed as follow:

1) The hovering UAV increases the speed from zero to a
specific V1 speed less than Vmax with the stable acceleration
a during [0, t0], and then the UAV decreases the speed to zero
with acceleration −a.

2) The UAV increases the speed from zero to max velocity
Vmax with the stable acceleration a during [0, t1], and then
maintain the constant speed during [t1, t2]. Finally, the UAV
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decreases its speed to zero with acceleration −a. The slope
of the flight speed in Fig. 4 represents the acceleration a.

Both cases are affected by the distance between the UAV
and the task area. If dmu <

V 2
max
a , the UAV follows the case1 in

the Fig. 4. If dmu >
V 2
max
a , the UAV follows the case 2 in the

Fig. 4.
The acceleration a will influence the time that UAVs fly

to the task area. Thus, the energy loss of the UAV will be
effected by the acceleration. According to [37] Appendix A,
the propulsion power P′m of the UAV with horizontal flight
speed vm can be given by:

P′m = P0

(
1+

3v2m
U2
tip

)

+Pi$

√$ 2 +
ρ2A2v4m
W 2 −

ρAv2m
W

1/2

+
1
2
d0ρsAv3m, (6)

where W is the gravity of the UAV. ρ,A, d0, s,Utip are the
aerodynamic and aircraft design related constant [31], [33].
P0,Pi respectively indicate the blade profile power and the
induced power in the hover state, and

$ ⇔
F
W
=

(
1+

(ρSFPv2m + 2gma)2

4W 2

) 1
2

, (7)

where SFP is the fuselage equivalent flat plate area. gm is the
weight of UAV, and F is the rotor thrust. Moreover, the total
energy consumption during [0, t1] with acceleration a can be
expressed as [37]:

E fmu
′

=

∫ t1

0

[
P0

(
1+

3
Utip

v2m

)

+Pi

√
1+

(
ρSFP
2W

v2m +
gm
W
avm

)2

·

√√√√√
1+

(
ρSFP
2W

v2m+
gm
W
avm

)2

+ (
ρA
W

)2v4m−
(
ρA
W

)2

v2m

+
1
2
d0ρsAv3m

]
dt. (8)

When the UAV speed reaches Vmax, the propulsion power
P′′m of the UAV can be given by:

P′′m = P0

(
1+

3v2m
U2
tip

)
+ Pi

(
1+ (

ρSFPv2m
2W

)2
) 1

2

·

√√√√√
1+ (

ρSFPv2m
2W

)2 + (
ρA
W

)2v4m −
ρA
W
v2m

+
1
2
d0ρsAv3m. (9)

The total energy loss of UAV with speed Vmax can be
expressed as:

E fmu
′′
=

∫ t2

t1

(
P′′m
)
dt. (10)

UAVs need to hover over mission area during the mission,
the energy loss of the UAV cannot be ignored when they are
hovering. The hovering energy loss Ehmu of UAVs performing
the task in the task area u can be defined as:

Ehmu = Ph × Tu, (11)

when the UAV is hovering, UAV’s power consumption is a
constant Ph. As shown in (11), if UAVs in the same task area
have more overlapping tasks, the time of UAVs performing
the tasks will be shorter, this will reduce the hovering energy
loss of UAVs.

B. PROBLEM DESCRIPTION
The choice of UAV δm(u) will affect the performance of
networks. When a UAV make the decision, the set Mu will
be influenced. This will affect the overlapping and comple-
mentary relationship of UAVs in the mission area, and task
relationships will influence the energy loss of UAVs and the
task completion degree of task areas. We aim to maximize the
task completion while considering the flight loss of UAVs,
the UAV group should accomplish the mission area task with
minimum energy consumption.

When a UAV participates in a mission, this will bring the
cost of flying energy. If the UAV does not participate in the
mission, this will not bring energy loss, but the task comple-
tion degree in the task area will decrease. Here we discuss two
optimization goals: task completion degree for all task areas
and the flight energy loss of UAVs. When UAVs perform
tasks in the relevant task area, the higher the task completion
degree, the more types of tasks that UAVs need to perform.
In order to perform all types of tasks, UAVs will cause a
lot of energy loss. Therefore, in this paper, we consider the
weighted relationship between the flight energy loss of the
UAV and the mission completion degree in the task area. If a
UAV can better complete the mission area task, then we think
that the energy consumed by the UAV is worthwhile. The
utility function Sm(u) of UAVs performing the task area u is:

Sm(u) =
D2
u

αEhmu + βE
f
mu
, (12)

whereα,β are theweighting factor of flight energy, their roles
are keeping the hovering energy loss and the flight energy loss
in the same order of magnitude. E fmu is the total flight energy.
The higher the task completion degree in the task area is,
the higher the utility will be. Then, the optimization problem
formula for the entire network is as follows:

maximize
δm

∑
m∈M

Sm(δm), (13)

s.t. Xm ∩ Xδm 6= ∅, δm ∈ U, (14)

|Mδm | ≥ 1, δm ∈ U, (15)

|δm| ≤ 1, (16)
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where constraint (14) means UAV m travel to the task area
which has the same type of tasks with it. The constraint (15)
implies each task area requires at least one UAV to perform
tasks. The constraint (16) ensures that each UAV can only
perform tasks in one task area.

III. COALITION FORMATION GAME BASED
ON TASK ASSIGNMENT MODEL
In this section, the problem of task assignment is modeled as a
coalition formation game. The UAV group should perform all
types of tasks asmuch as possible.We refer to the overlapping
and complementary relationship of the UAV’s mission types
as the peer effect [18]–[20]. The explanation of the peer
effect will be given in the following sections. We propose a
coalition formation algorithm based on cooperation rule [16],
and prove the existence of a stable solution. According to
this algorithm, we get the suboptimal result of the UAV task
assignment.

A. COALITION FORMATION GAME
The gamemodel of UAVs task assignment problem is defined
as G = {δm,M,Fm, Sm, ru}, where δm is the UAV’s decision.
M is the set of UAVs’ decision, Sm is the utility function of
the UAV, it is defined in the (12). ru is the utility function of
the coalition u, which is defined as:

ru(Mu) =
∑

m∈Mu

Sm, (17)

where the utility of u is decided by the utilities of all
UAVs it employed Mu. A single UAV can perform tasks
in one task area. One task area requires multiple UAVs to
perform tasks. UAVs form a coalition near the task area
to perform the related tasks, UAVs form different coali-
tions based on the type of task that they can perform.
Fm = {0, 1, . . . , u, . . . ,U} is the optional policy set for the
UAVm, where 0means theUAV is in an inactive state, UAVm
does not participate in the execution of the task. A single UAV
can only choose one coalition at one time, the coalition we
study here is a non-overlapping coalition. The utility function
of the coalition is the total utility of UAVs in the coalition.

1) PREFERENCE ORDER
For each UAV, it can join any coalition to perform tasks in
any task area. For UAV m, �m is defined as a complete,
reflexive, and transitive binary relation over the set of all
feasible coalitions that UAV m can possibly form [16].
if Mui �m Muj , UAV m prefers being a member of

coalition Mui rather than coalition Muj , the preference
order can influence the convergence and final coalition
structure.

In the coalition formation game, the preference order can
guarantee the existence of coalition stability [15]. In addition
to the preference order, there are many rules for coalition for-
mation, and different rules lead to different coalition results.
The Pareto order is the most commonly used in coalition
formation.

2) PARETO ORDER
For an arbitrarily UAV m and two coalitions Mui ,Muj ,
the Pareto order define that whetherm joining or withdrawing
from a coalition, the utility function of UAV m will not be
harmed, and the utility of other users will not fall. In this
article, it is the energy loss of the UAV will not increase and
task completion degree will not decrease [16]. The Pareto
order is defined as:

Mui �m Muj

⇔ rui (Mui ∪ m) ≥ ruj (Muj ∪ m) ∧ rui (Mui ∪ m)

≥ rui (Mui ) ∧ ruj (Muj ∪ m) ≥ ruj (Muj )ui,

uj ∈ U ,m ∈M\Mui ∪Mui ,Mui ,Mui ⊆M, (18)

where rui (Mui ∪ m), ruj (Muj ∪ m) are the utility of the task
area ui, uj after the UAV m join the coalition. rui (Mui ) and
ruj (Muj ) are the utility of the task area ui and uj before the
UAV m join the coalition. The Pareto order is the commonly
used criterion in CFG. In Pareto order, UAVs will never
damage other UAVs’ utility in the original and new coalition.
The property ensures that the coalition profit will not decrease
and the existence of the stable coalition partition. However,
the UAV’s profit is limited. In this paper, we improve
a coalition formation algorithm based on the cooperation
rule [16].

3) COOPERATION RULE
For any UAV and two coalition, the cooperation rule is
defined as follows:

Mui �m Muj ⇔ rui (Mui ∪ m)+ ruj (Muj )

≥ rui (Mui )+ ruj (Muj ∪ m). (19)

The cooperation rule is defined as: if the total utility
of the coalition after theUAV joins the coalition is higher than
the total utility of the UAV before joining the coalition, then
the UAV will stay in the new coalition. The cooperative rule
is measured by the utility of the entire coalition. The choice
of UAV m maximizes the optimization of the coalition rather
than just its own optimization.

After discussing the cooperation rule for coalition forma-
tion, we talk about the actions of coalition members. The
coalition changes the status by exchanging coalitionmembers
and coalition members withdraw from the current coalition.

4) UAV JOINS THE COALITION
When a UAV exits from a coalition or joins a coalition from
the idle state, the effectiveness of all UAVs in the coalition
will not decline, and the overall utility of the coalition can be
improved, then the UAV will stay in the current coalition and
perform the tasks in the current task area. That is:

m ∪Mui ⇔

∀m ∈M\Mui , rui (Mui ∪ m) ≥ rui (Mui ). (20)

5) UAV EXITS THE COALITION
When a UAV leaves from a coalition, the other UAVs in the
coalition will not be affected, and the overall effectiveness of
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the coalition will not be affected, then the UAV will choose
to withdraw from the coalition. That is:

Mui\m⇔ rui (Mui\m) ≥ rui (Mui ), (21)

where rui (Mui\m) is the utility of the task area ui after m
exit from the coalition. When the UAV leaves the coalition,
it can choose to join other coalitions or enter an inactive state.
When the UAV withdraws from the current coalition and
chooses to join other coalitions, this is the same as the UAV
joins the coalition. The rules for UAV joins the new coalition
are used to determine whether the UAV can stay in the new
coalition.

The basic rules of coalition formation are constituted by
the joining and exiting of the UAVs. When the UAV performs
a task, it is affected by the companion UAV. There may be
a transient drop in utility that interrupts the exchange action
when a single UAV join or exit from the coalition. Therefore,
we define the exchange rules of the coalition.

6) COALITION EXCHANGE ACTION
When a UAV exits from the current coalition to join other
coalitions, if the total utility of the existing coalition is greater
than the total utility of the coalition before the UAV’s deci-
sion, that is, the utility of the UAV joining the new coalition
is greater than the utility lost when the UAV exits from
the previous coalition, then the exchange action will occur.
This is:

∀m ∈ Mui ,m ∪Muj ⇔ rui (Mui\m)

+ ruj (Muj ∪ m)

≥ rui (Mui )+ ruj (Muj ). (22)

B. ANALYSIS OF STABLE GAME SOLUTIONS
We give the definition of the stable solution of the coalition,
if and only if all the UAVs follow the preferred order,
each UAV can’t improve its utility by leaving or joining a
coalition. At this time, the coalition reaches a steady state.
That is:

∀m ∈M\Mui , rui (Mui ) ≥ rui (Mui ∪ m). (23)

When the members of the coalition cannot improve the
effectiveness of the coalition by withdrawing and joining the
coalition, the coalition converges to a stable state.

In this scenario, the total number of UAVs is limited,
the number of task areas is certain, and the UAV’s policy set
is limited. Therefore, the combined state of all UAVs is also
limited. The problem is to find the optimal solution of the
combination in the finite state. According to the limitations
of the Pareto order, the UAV will eventually reach a stable
coalition structure among a variety of states. When the coali-
tion reaches a stable state, if a UAV changes the coalition
selection, and this brings better utility, it will converge to a
stable state again.

Due to the limited conditions of the Pareto order, when a
UAV makes the decision, this will cause a short-term utility
decline, and the final combination state will be interrupted.

Therefore, we continue to discuss the cooperation rule and
analyze the convergence of the cooperation rule.

1) STABILITY ANALYSIS OF COOPERATION RULE
Based on the proof of cooperation rule, we prove the
existence of the stable coalition by introducing the existence
of Nash equilibrium solution of the potential game
theory [21].
Theorem 1 (Exact potential game [21]): If there exists a

potential function ϕ, when a UAV changes its decision uni-
laterally, the difference in the potential function and in its
utility function is the same, the game is an exact potential
game with potential function. The following equation exists
for any strategy δm ∈ Fm and δ′m ∈ Fm of any UAV m ∈M:
Sm(δm, δ−m)− Sm(δ′m, δ−m)

= ϕ(δm, δ−m)− ϕ(δ′m, δ−m), (24)

where Sm(δm, δ−m) is the utility function of the UAV m when
m′s decision is δm, δ−m is the decisions of other UAVs.
Sm(δ′m, δ−m) is the utility function of the UAV m when its
decision is δ′m.
The game model is called the exact potential game. We can

see that in the exact potential game, the change of the utility
function, and the change of the potential function caused by
any UAV change strategy is the same.
Lemma 1: There is at least one pure strategy Nash

equilibrium for the exact potential game [21].
Lemma 2: The global or local optimal solution of the

potential function in an exact potential game is a Nash
equilibrium.

Next, we give proof of the convergence of the cooperative
rule. First, we define the potential function ϕ as:

ϕ(δm, δ−m) =
∑
u∈U

ru(δm, δ−m), (25)

where ru(δm, δ−m) is the utility function of coalition u, when
m’s decision is δm. Through the formula, we can see that
the potential function is the sum of the utility of the whole
network. When the coalition selection of the UAV m changes
from δm to δ′m, the change in the potential function at this
time is:
ϕ(δm, δ−m)− ϕ(δ′m, δ−m)

=

∑
u∈U

ru(δm, δ−m)−
∑
u∈U

ru(δ′m, δ−m)

= [rui (Mui\m)− rui (Mui )]

+ [ruj (Muj ∪ m)− ruj (Muj )]+
∑

k∈U\ui,uj

1ruk , (26)

where ui = δm, uj = δ′m,m ∈ Mui . 1ruk is the change
of utility function for other coalitions, which are not related
to the coalition that m joins and quits. Because the decision
of m does not affect the UAVs of other coalition members,
so 1ruk = 0, and the change in the potential function is:

ϕ(δm, δ−m)− ϕ(δ′m, δ−m)

= [rui (Mui\m)− rui (Mui )]

+ [ruj (Muj ∪ m)− ruj (Muj )]. (27)
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Second, we consider the impact of UAV’s decision on the
utility of the coalition:

Sm(δm, δ−m)− Sm(δ′m, δ−m)

=

∑
n∈Mui\m

Sn(δm, δ−m)−
∑

n∈Mui

Sn(δ′m, δ−m)

+

∑
n∈Muj∪m

Sn(δm, δ−m)−
∑

n∈Muj

Sn(δ′m, δ−m)

= [rui (Mui\m)− rui (Mui )]

+ [ruj (Muj ∪ m)− ruj (Muj )]

= ϕ(δm, δ−m)− ϕ(δ′m, δ−m), (28)

where ui = δm, uj = δ′m,m ∈Mui . Sn(δm, δ−m) is the utility
of UAV n in the coalition. Through the change of potential
function and lemma1, we conclude that there is at least one
pure Nash equilibrium in the coalition game model. When
no UAV can increase the utility of the entire network by
unilaterally joining or leaving a coalition, the stable coalition
state is achieved.

IV. COALITION FORMATION ALGORITHM BASED ON
COOPERATION RULE DESIGN
In this section, we propose a coalition formation algorithm
based on the cooperative rule, where the peer effect among
UAVs during the coalition selection is analyzed.

A. PEER EFFECT OF THE COALITION
Different from the traditional coalition formation [14]–[16],
which is not only based on conditions such as neighbor rela-
tions and location relations. In this paper, UAVs have the task
complementarity relationship in addition to the overlapping
task relationship. When a UAV join the coalition, the task
relationships between UAVs will influence other UAVs’ util-
ity function. We define this influence between UAVs as the
peer effect [18]–[20].

UAVs prefer to form coalition with UAVs who have more
overlapping tasks. That is:

{mi} ∪ {mj} �mi {mi} ∪ {mk}

⇔ |Xmi ∩ Xmj |

> |Xmi ∩ Xmk |, ∀mi,mj,mk ∈M. (29)

The overlapping relationship will influence the hover time
of both UAV mi and mj. In addition to the overlapping rela-
tionship, UAVs want to perform all types of tasks in the
task area, so the complementary relationship also needs to
be considered. For task area u, that is:

{mi} ∪ {mj} �mi {mi} ∪ {mk} ⇔

|{Xmi ∪ Xmj} ∩ Xu| > |{Xmi ∪ Xmk } ∩ Xu|,

∀mi,mj,mk ∈M. (30)

The complementary relationship will influence the task
completion degree of the task area. For example, as shown
in Fig. 5, UAV1 choice to perform the tasks. In order to
save the task performing time, the UAV2 will join the coali-
tion. The UAV2 has the same task types {1, 2} with UAV1.

FIGURE 5. Peer effects in the coalition formation.

Affected by UAV2, UAV1 will spend a shorter time in per-
forming the task. When UAV3 joins the coalition, the task
types {3, 4} in the task area can be performed, the task com-
pletion degree of the task area will be affected by UAV3.
The task relationships between UAVs can influence the utility
function of the coalition, and the utility function will finally
influence UAVs’ decision. Peer effects among UAVs are
considered in the task cooperation process.

B. ALGORITHM DESIGN
In section III, the definition of cooperation rule is given,
as well as the stability is proved. When the UAV goes to the
mission area to perform the tasks, each UAV sends its own
location information and task information to the control UAV.
The control UAV sends task assignment results to the UAV.
When UAVs’ decisions can improve the effectiveness of the
entire network, the result of this decision will be retained.
If the subsequent decision does not lead to a better result,
then this decision is a stable solution. Considering the demand
of the mission area, some UAVs may not have the types of
tasks, which associated with the mission area. Forcing all
UAVs to perform the task will increase the energy loss of the
whole network. Therefore, we joined the exit mechanism of
the UAV. In addition to performing the task, when the UAV
makes a decision, it can choose to do nothing. The UAV is not
involved in missions, we assume that the UAV in this state has
no energy loss.

The mechanism of coalition formation algorithm based on
cooperative rule mainly contains the following steps:
• UAVs share information of the mission area. Each UAV
randomly selects a task area as its initial decision.
Calculate the initial utility of the whole network.

• Random number of UAVs change their decisions. UAVs
should complete the tasks in the mission area as much
as possible, so UAVs select the task area, which has the
same type of tasks with them. When a UAV join in a
coalition, the coalition can make the decision whether
to accept the new UAV. If the addition of this UAV can
improve the utility of the coalition, then the UAV can
stay in this coalition.

• When UAVs’ joining and exiting can not lead to a better
utility, UAVs are assigned to the best task area.

With the equilibrium properties of coalition formation in
UAV networks, UAVs can optimize their positions within the
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Algorithm 1Coalition Formation AlgorithmBased on Coop-
erative Rule
Input: location information of each UAV, task attribute infor-
mation, location information of the task area, task type infor-
mation of the task area, and task amount of each type of task
in the task area.
Step1: Each UAV randomly selects the task area to be
executed to generate the initial coalition selection, ∀m ∈
M,∀u ∈ U, δ′m = u.
Step2: Each time a certain number of UAVs are randomly
selected to change their choices, each UAV selects a task area
with task relevance or does not participate in the execution of
the task, ∀m ∈M,m ∪Mu,Xm ∩ Xu 6= ∅.

Loop in each unit time. A certain number of UAVs are
randomly selected and their coalition selection is changed.
Calculate the utility of the whole network.

if
UAVs change decision can bring an improvement in util-

ity, then keep current plan, and continue selecting a number
of UAVs to change decisions. If ru(Mu∪m) < ru(Mu), then
save (δ′m, δ−m).
else Continue selecting a number of UAVs to change

decisions, save (δm, δ−m).
end

Any UAVs change decision cannot bring an improvement in
utility, then a set of stable solutions is obtained.
End Loop
Output: decision results of each UAV, final utility, task com-
pletion in each task area, and energy consumption across the
network.
UAVs begin to perform the tasks in the task area.

mission coverage to obtain better energy-saving effects. The
steps to adjust the position of the UAV are as Algorithm 2.

In the algorithm proposed in this article, the UAV’s
optional strategy set is the mission areas that have the same
mission types with the UAV. UAV’s selectable strategy set
is limited, the number of UAVs is also limited. During the
UAV selection process, the total effectiveness of the coalition
will vary depending on the UAV’s decision. UAV travel to
the mission area, which has more relevant tasks with the
UAV. UAVs with complementary relationships work together
can increase the utility of the entire network. During finite
iterations, when the network cannot get better utility by UAVs
change their decisions, the UAV network reaches a stable
result.

The complexity analysis of the proposed algorithm is
further discussed [38]. We define the number of iterations for
the coalition formation algorithm based on the cooperation
rule as NC . Each iteration of the algorithm needs to calcu-
late the utility of the entire network, which includes flight
energy loss caused by all UAVs and task completion degree
of the task areas. Each task area needs to calculate the exe-
cution time of all types of tasks, the time complexity of this

Algorithm 2 A UAV Position Deployment Algorithm
Input: location information of each UAV, location informa-
tion of the task area, UAVs’ decisions.
Step1: Randomly choose a UAVm, calculate the utility of all
coalitions at the current position, when coalitions converge to
the steady state.
Step2: The selected UAV m moves on the shortest path with
the task area in steps. Calculate the utility of the whole
network under the current position of the UAV, if the utility
of the whole network is improved, the UAV will stay in this
position.
Step3: The UAV continues to move in steps until the UAV
reach the coverage boundary of the task area or the utility of
the whole network will not improved.
Output: UAVs’ new state.

TABLE 2. Main notations and terminologies.

is O(U · X ). The calculation of distance is included in each
time, and its time complexity is O(M2). Finally, when cal-
culating the global utility, the utility includes all the task
areas, this is a constant, and its time complexity is O(1).
The algorithm also includes the judgment of whether a new
coalition can be formed, its time complexity isO(1). The final
total time complexity C of this algorithm is:

C = Nc
(
O (U · X) · O

(
M2
)
· O (1)+ O (1)

)
. (31)

V. SIMULATION RESULTS AND ANALYSIS
A. NETWORK SCENE SETTINGS
In this section, we will give the simulation results of the algo-
rithm to verify its convergence and effectiveness. First, we set
the aerodynamic parameters of the UAV. The parameter set-
tings and physical meanings was given in reference [33],
related notation settings and physical meanings are shown
in Table 2. The simulation scene is set to a two-dimensional
space of [0; 2000] [0; 2000] square meters, nodes in space are
placed as UAVs to perform tasks. The position of the UAV is
randomly generated every time. The types of tasks that the
UAV can perform each time is also randomly generated. The
network structure generated at one time is shown in Fig. 6,
black dots represent UAVs, the red triangles are the mission
areas for this time, and The circle indicates the coverage of the
task area. We define the UAV’s max flight speed as 20m / s.
Each group of results is an average of 800 iterations.
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FIGURE 6. The initial state of the UAV network.

FIGURE 7. UAV network after convergence.

As we can see in Fig. 7, the black dots in each circle repre-
sent the UAVs performing this task. When a UAV is far away
from the mission area, if it can bring a high degree of comple-
tion to the task area, then we think that the energy loss of the
UAV is worthwhile, and the UAV will move to the task area.
Fig. 7 showswhere UAVswill eventually perform these tasks.

B. ANALYSIS OF RESULTS
As shown in Fig. 8, we study the relationship between the
convergence of the algorithm with the number of UAVs
increases. Under different network topologies, we iterate the
program 5000 times and get the CDF graph of the conver-
gence result. When the number of UAVs is 10, in most cases,
the program can reach convergence in about 400 iterations.
With the number of UAVs grows to 20, UAVs need more
iterations to reach convergence. In most cases, the program
with 20 UAVs can reach convergence in about 800 iterations,
and the program with 30 UAVs can reach convergence in
about 1400 iterations. With the number of UAV increase,
the program may need more iterations to reach a better result,
but the network can quickly reach the convergence state.

FIGURE 8. CDF of algorithm based on the cooperation rule.

FIGURE 9. The total utility of the whole network various the number of
UAVs.

Next, we further analyze the performance of the algorithm.
As shown in Fig. 9, we study the relationship between
the utility of the entire network with the number of UAVs
increases. In this simulation, we fixed the location of the task
area, the task types of the task area, and the amount of each
type of task. The coordinates of four task areas are (500,500),
(500,1500), (1500,500), (1500,1500). The types of tasks need
to be performed in four task areas and the amount of tasks
for each type of task are [{2,4,5,7}, {3,4,1,5}], [{1,3,5,6},
{3,3,7,4}], [{1,3,4}, {4,3,4}], [{1,5,7}, {9,2,6}]. The number
of UAVs ranges from 5 to 35. The positions of the UAVs are
randomly generated each time. The types of tasks that the
UAV can perform are randomly generated each time, and the
result is an average of 800 times.

For distributed network scenarios, it is difficult to obtain
the optimal result in theory. Compared with the optimal solu-
tion, the stable solution of the algorithm is more effective
for the distributed system. We compared the performance
of the proposed algorithm with the algorithm base on the
exhaustive search. As shown in Fig. 9, with the number
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FIGURE 10. The change in the energy loss of the whole network various
the number of UAVs.

of UAVs increases, the global utility gradually increases.
Increasing the number of UAV bringsmore kinds of combina-
tions for UAVs. According to the proposed algorithm, UAVs
can accurately find the most suitable task area to join, and can
form the best coalition with overlapping and complementary
tasks. Therefore, with the increase of UAVs, the result of the
cooperation rule is closer to the optimal result.

Under the same algorithm environment, the algorithm
based on the cooperation rule performs better than that of
the Pareto order. The reason is that the Pareto order has more
restrictions than the cooperation rule, which limits the perfor-
mance.Moreover, with the number of UAV increases, the task
planning algorithm without considering energy consumption
will drive long-distance UAVs to perform tasks, which will
increase the energy of the network. Thus, the algorithm based
on task completion degree shows a downward trend in the
utility of the network.

As shown in Fig. 10, the proposed algorithm performs
better than the algorithm based on the Pareto order and task
completion rule in terms of energy consumption control.With
the number of UAV increases, in order to improve the task
completion degree, the task planning algorithm will drive
long-distance UAVs to perform tasks, which will increase
the energy of the network. With the increasing number of
UAVs, there are more UAV combinations to perform tasks,
the result of the cooperation rule is closer to the optimal
result.

As shown in Fig. 11, in terms of task completion
degree, the proposed algorithm is very close to the optimal
result. The algorithm proposed in this paper performs better
than the algorithm based on the Pareto order. Under the
premise of consuming more energy, the task completion
degree of the task completion driven algorithm is slightly
better than other algorithms, but compared with the overall
performance, this improved effect is not obvious. Integrated
the energy efficiency performance, it can be seen that the
proposed algorithm is more reasonable.

FIGURE 11. The performance of task completion degree various the
number of UAVs.

VI. CONCLUSION
In this paper, we studied the multi-task cooperation problem
for multiple UAVs. We modeled the task assignment problem
of UAVs as a coalition formation process and proposed a
task assignment algorithm. According to the analysis of the
simulation results, the algorithm in this paper performed
excellently in terms of task completion degree and flight
energy loss. Assigning UAVs to various task areas by the
proposed method can effectively reduce the UAV’s flight loss
and increase the task completion degree, it can achieve the
best results of the whole network.
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