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ABSTRACT In this article, an adaptive leader-follower formation control on the basis of neural network
(NN) is developed for a class of second-order nonlinear multi-agent systemswith unknown dynamics. Unlike
the first-order formation control that only needs to govern the position states, the second-order formation
control needs to govern both the position and velocity variables. Hence the second-order formation is more
challenging and interesting than the first-order case. In the control design, the adaptive NN approximator
is employed to compensate the nonlinear uncertainties, so that the control design difficulty coming from
the unknown dynamics is effectively overcome. Through Lyapunov stability analysis, it is demonstrated
that the proposed control method can complete the control tasks. To further demonstrate the effectiveness,
the formation method is implemented to a numerical simulation, and it shows the desired results.

INDEX TERMS Nonlinear multi-agent systems, formation control, double integral dynamic, neural
networks.

I. INTRODUCTION
Since the multi-agent control theory had been significantly
developed, and lots of research results were published in lit-
eratures. In recent decades, their applications are increasingly
being implemented to various fields, such as clusters of satel-
lites, sensor networks, robot team, coordination of unmanned
air vehicles [1]–[4]. A multi-agent system is made up of
multiple intelligent individuals under interaction. Because
of the outstanding performances, for examples, flexibility,
reliability, efficiency and new capabilities, the multi-agent
can finish many difficult and arduous tasks, and it can surpass
the ability of multiple single agents. Therefore, multi-agent
control is meeting the requirement for developing modern
military, modern industry and modern civilian.

Formation control is to find the control protocol for a
multi-agent system so that the system states are driven
to arrive the prescribed constraints finally. Due to wide
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applications, formation control is attracting the increasing
attention coming from the various areas. In general, sev-
eral basic formation control strategies are leader-follower
[5], behavior-based [6], virtual structure [7] and potential
function [8]. Particularly, leader-follower formation strat-
egy is the most popular one owing to the simplicity and
scalability. Recently, increasing attention is being devoted
to the neighbor-based formation control protocol [9], of
which the main advantage is that formation controller only
needs the information of a small number of agents.

Since the first-order multi-agent formation control
just needs to govern the position state, the demonstration
of technical feasibility is with simpler mathematics. After
several decades of development, lots of research results
were reported in literatures [10]–[15]. However, unlike the
first-order multi-agent formation, the second-order case
needs to govern both the position and velocity variables.
So the second-ordermulti-agent formation is more interesting
and challenging than the first-order case. In past decades,
the second-order multi-agent formation control received
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considerable attention, many gratifying research results have
been reported in the literatures [16]–[19].

It’s a fact that the unknown nonlinear dynamic is
ubiquitous in the real-world engineering systems. However,
most of the published nonlinear multi-agent control methods
either assume one of both the known dynamic function and
the Lipschitz continuous condition, or havemanymathematic
imperfect in the theory proof, for examples [20]–[23]. Since
neural networks (NNs) are proven to have universal approx-
imating and adaptive learning abilities, they are combined
with a lot of control techniques to deal with the unknown
dynamic problem of nonlinear systems, such as backstep-
ping, observer, dynamic surface, H∞ technique [24]–[28].
Recently, several adaptive nonlinear multi-agent consensus
control methods using NN are reported [29]–[32], they fur-
ther demonstrate that NN can be an effective tool to solve
the unknown dynamic problem for nonlinear multi-agent sys-
tems. Moreover, fuzzy logic systems (FLSs) are also demon-
strated to have excellent approximation ability, and have been
well applied to adaptive nonlinear control, such as [33]–[36].
Unfortunately, to the second-order multi-agent formation,
NN or FLS adaptive control are rarely reported.

Motivated by the above analysis, this paper develops an
adaptive formation control method for a class of nonlinear
double integral unknown dynamic multi-agent systems.
A numerical simulation example is performed via the pro-
posed control method, and it also shows the desired results.
The main contributions are listed in the following.

1) A formation control scheme for the second-order
nonlinear multi-agent system is developed. Based on
the Lyapunov stability theorem, it is proven that the
control scheme can ensure to achieve the desired
control objective.

2) The unknown dynamic problem is solved by employing
the adaptive NN. The NN in the control is used to
approximate the nonlinear dynamic function, so that
the unknown dynamic is effectively compensated.

The paper is organized as follows. In section 2, the
preliminaries concluded neural networks, graph theory, and
supporting lemmas are introduced. In section 3, the main
results involved problem formulation, control protocol
design, and theory proof are presented. In section 4, a
simulation example is provided. Section 5 is the conclusion.

II. PRELIMINARIES
A. NEURAL NETWORKS
Neural networks (NNs) has been demonstrated to have the
universal function approximation ability. Give a continuous
function f (x) : Rm

→ Rn, NN can approximate the function
over a compact set � in the following form:

f̂ (x) = W T S(x) (1)

where W ∈ Rq×n is the weight matrix with the neuron num-
ber q, S(x) =

[
s1(x), · · · , sq(x)

]T is the basis function vector

with si=1,··· ,q(x) = e−
(x−µi)

T (x−µi)
2 , µi = [µi1, · · · , µim]T is

the center of receptive field.

For the continuous function f (x), there exists the ideal NN
weightW ∗ ∈ Rq×n described as

W ∗ := arg min
W∈Rq×n

{
sup
x∈�

∥∥f (x)−W T S(x)
∥∥}, (2)

so that f (x) can be rewritten as

f (x) = W ∗T S(x)+ ε(x), (3)

where ε(x) ∈ Rn is the approximation error, and there exists
a positive constant δ such that ‖ε(x)‖ ≤ δ.
The ideal NNweightW ∗ is to ensure theminimumpossible

deviation between W T S(x) and f (x). However, it cannot be
directly applied to design the control protocol because it is
just an ‘‘artificial’’ quantity for analyzing. Usually, its esti-
mation obtained via adaptive tuning is used to construct the
actual control.

B. GRAPH THEORY
For the multi-agent system in this paper, the interconnected
graph is assumed to be an undirected connected graph
G = (A,M , 4), where A =

[
aij
]
∈ Rm×m is the adjacency

matrix whose the element aij ≥ 0 is the communicatedweight
between agents i and j, M = {1, 2, · · · ,m} is the label set of
all nodes, 4 ∈ M × M is the edge set. If the edge ξij holds
ξij = (i, j) ∈ 4, then it means exiting a communication from
node j to node i, and the node j is said to be a neighbor of
the node i, and 3i = {j|(i, j) ∈ 4} denotes the neighbor
label set, and the adjacency element aij associated with the
edge ξij is assigned aij = 1. If ξij /∈ 4, then aij = 0. If the
adjacency elements of matrix A is with the property aij = aji,
i, j = 1, · · · ,m, which means ξij ∈ 4 ⇐⇒ ξji ∈ 4, then
the graph G is called as an undirected graph. The undirected
graph G is called to be connected if there is an undirected
path, (i, i1), · · · , (ii, j), for any two different nodes i and j.
Associated with the graph G, the Laplacian matrix is

L = diag


m∑
j=1

a1j, · · · ,
m∑
j=1

anj

− A. (4)

The communication weights between agents and leader are
described by the matrix D = diag {d1, · · · , dm}. If the agent
i can have the communication with the leader, then di = 1;
otherwise di = 0. It is supposed that d1 + · · · + dm ≥ 1,
which implies that at least one of agents connected with the
leader.

C. SUPPORTING LEMMAS
Lemma 1: [37] If an undirected graph G is connected,

a necessary and sufficient condition is that its Laplacian
matrix is irreducible.
Lemma 2: [38] Let L = [lij] ∈ Rm×m with lij = lji ≤ 0

and lii = −
m∑
j=1

lij be an irreducible matrix. Then all the

eigenvalues of L̃ =

l11 + d1 · · · l1m
...

. . .
...

lm1 · · · lmm + dm

 are positive,
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where d1, · · · , dm are nonnegative constants satisfied
d1 + · · · + dm > 0.
Lemma 3: [21] The matrix inequality that[

A1(x) A3(x)
AT3 (x) A2(x)

]
> 0, (5)

where A1(x) = AT1 (x), A2(x) = AT2 (x), is equivalent to any
one of the following two inequalities: i)

1) A1(x) > 0, A2(x)− AT3 (x)A
−1
1 (x)A3(x) > 0;

2) A2(x) > 0, A1(x)− A3(x)A
−1
2 (x)AT3 (x) > 0.

Lemma 4: [31] The continuous function V (t) ≥ 0 is with
bounded initial condition. If it holds V̇ (t) ≤ −aV (t) + c,
where a and c are two positive constants, then the following
inequality can be held

V (t) ≤ V (0)e−at +
c
a
(1− e−at ). (6)

III. MAIN RESULTS
A. PROBLEM FORMULATION
Consider the nonlinear multi-agent system that is made up of
m agents modeled by the following double integral dynamics:

ẋi(t) = yi(t),

ẏi(t) = ui + fi(xi, yi),

i = 1, · · · ,m, (7)

where xi(t) = [xi1, · · · , xin]T ∈ Rn is the position state,
yi(t) = [yi1, , · · · , yin]T ∈ Rn is the velocity state, ui ∈ Rn

is the control input, fi (·) ∈ Rn is the unknown nonlinear
dynamic function.

The desired reference signals are described by the
following dynamics, which is viewed as an independent
leader agent,

˙̄x(t) = ȳ(t)
˙̄y(t) = h(t) (8)

where x̄ ∈ Rn is the reference position, ȳ ∈ Rn is the
reference velocity, h(·) ∈ Rn is a smooth bounded function
[11], [24].
Definition 1 ([18]): The second-order leader-follower

formation is achieved if the solutions of multi-agent system
(7) satisfy lim

t→∞
‖xi(t)−x̄(t)−pi‖ = 0, lim

t→∞
‖yi(t)−ȳ(t)‖ = 0,

i = 1, · · · ,m, where pi =
[
pi1, · · · , pin

]T
∈ Rn is a constant

vector, which describes the desired relative position between
agent i and the reference (8).
The Control Objective: Design an adaptive formation

control protocol for the nonlinear multi-agent system (7) so
that i) all error signals are semi-globally uniformly ultimately
bounded (SGUUB); ii) the second-order leader-follower
formation is achieved.

B. CONTROL PROTOCOL DESIGN
Define the following coordinate transformations as

zxi(t) = xi(t)− x̄(t)− pi,

zyi(t) = yi(t)− ȳ(t),

i = 1, · · · ,m. (9)

According to (7) and (8), the following error dynamics are
yielded as

żxi(t) = zyi(t),

żyi(t) = ui + fi(xi, yi)− h(t),

i = 1, · · · ,m. (10)

Rewrite the error dynamic (10) to the compact form as

ż(t) =
[

zy(t)
u+ F(z)− h(t)⊗ 1m

]
, (11)

where z(t) = [zTx (t), z
T
y (t)]

T
∈ R2mn with

zx(t) = [zTx1(t), · · · , z
T
xm(t)]

T
∈ Rmn and zy(t) =

[zTy1(t), · · · , z
T
ym(t)]

T
∈ Rmn, u = [uT1 , · · · , u

T
m]

T
∈ Rmn,

F(z) = [f T1 , · · · , f
T
m ]T ∈ Rmn, 1m = [1, · · · , 1]T ∈ Rm,⊗ is

Kronecker product.
Define the position and velocity formation errors as

exi(t) =
∑
j∈3i

aij
(
xi(t)− pi − xj(t)+ pj

)
+ di

(
xi(t)− x̄(t)− pi

)
,

eyi(t) =
∑
j∈3i

aij
(
yi(t)− yj(t)

)
+ di

(
yi(t)

− ȳ(t)
)
, i = 1, · · · ,m, (12)

where aij and di are the elements of the matrices A and D,
which are introduced in Subsection II.B, 3i is the neighbor
label set of agent i.
Furthermore, the two formation error terms in (12) can be

rewritten on the basis of (9) as

exi(t) =
∑
j∈3i

aij
(
zxi(t)− zxj(t)

)
+ dizxi(t),

eyi(t) =
∑
j∈3i

aij
(
zyi(t)− zyj(t)

)
+ dizyi(t),

i = 1, · · · ,m. (13)

In (11), the nonlinear function fi(xi, yi) is unknown but
continuous, give a compact set�i ⊂ R2n, for [xTi , y

T
i ]
T
∈ �i,

it can be re-described by using its NN approximation as

fi(xi, yi) = W ∗Ti Si(xi, yi)+ εi(xi, yi), (14)

where W ∗i ∈ Rqi×n is the ideal NN weight matrix with the
NN neuron number qi, Si(xi, yi) ∈ Rqi is the basis function
vector, εi(xi, yi) ∈ Rn is the approximation error satisfied
‖εi(xi, yi)‖ ≤ δi, where δi is a constant.
In (14), since the ideal weight matrix W ∗i is an unknown

constant matrix, it is unavailable for the actual control design.
By using the estimation Ŵi(t) of the ideal NN weight W ∗i ,
the formation control is constructed in the following:

ui (t) = −γxexi(t)− γyeyi(t)− Ŵ T
i (t)

× Si(xi, yi), i = 1, · · · ,m, (15)

where γx > 0, γy > 0 are two design constants, Ŵi(t) ∈
Rqi×n is the estimation ofW ∗i .
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The NN updating law for tuning Ŵi(t) is given in the
following:

˙̂Wi (t) = 0i
(
Si(xi, yi)

(
exi(t)+ eyi(t)

)T
− σiŴi(t)

)
, i = 1, · · · ,m, (16)

where 0i ∈ Rqi×qi is a positive definite matrix, σi > 0 is a
design constant.
Remark 1: In the controller (15), both the position error

term exi(t) and velocity error term eyi(t) defined in (12) aim
to control the multi-agent system arriving and keeping the
formation pattern and velocity consensus, respectively. The
NN term Ŵ T

i (t)Si(xi, yi) aims to compensate the unknown
dynamic via on-line tuning the NN weight Ŵi(t) using the
updating law (16). Since the proposed scheme provides a
basic formation control ideal for the second-order nonlinear
multi-agent systems, it can be applied and extended by com-
bining with various control techniques, such as H∞ robust
control [28], reinforcement learning [39].

C. THEOREM WITH PROOF
Theorem 1: Consider the nonlinear second-order multi-

agent system (7) with the bounded initial conditions under
the undirected connected graph G. If the adaptive formation
control (15) with the NN weight updating law (16) is per-
formed for the multi-agent system, and the design constants
are chosen to satisfy

γx > 1, γy > 1
1
2
+

1

2(λL̃min)
2
,

γx + γy >
1

λL̃min

, (17)

where λL̃min is the minimal eigenvalue of matrix L̃, then the
following control objectives can be achieved.

1) All errors are SGUUB.
2) The multi-agent formation can be achieved for

sufficiently smooth movement trajectory.

Proof: The Lyapunov function candidate is chosen as

V (t) =
1
2
zT (t)

([
(γx + γy)L̃L̃ L̃

L̃ L̃

]
⊗ Im

)
× z(t)+

1
2

m∑
i=1

Tr
{
W̃ T
i (t)0

−1
i W̃i(t)

}
, (18)

where L̃ = L + D, and W̃i(t) = Ŵi(t)−W ∗i .
According to Lemma 2, it can be directly concluded that

the symmetric matrix L̃ is a positive definite matrix. If the
design parameters satisfy the condition (17), there is the fact

(γx + γy)L̃L̃ − L̃ > 0. Hence,
[
(γx + γy)L̃L̃ L̃

L̃ L̃

]
is a posi-

tive definite matrix in accordance with Lemma 3. And thus
the function V (t) can be considered as a Lypunov function
candidate.

The time derivative of V (t) along (11) and (16) is

V̇ (t) = zT (t)
([

(γx + γy)L̃L̃ L̃
L̃ L̃

]
⊗ Im

)
×

[
zy(t)

u+ F(z)− h(t)⊗ 1m

]
+

m∑
i=1

Tr
{
W̃ T
i (t)

(
Si(xi, yi)

×
(
exi(t)+ eyi(t)

)T
− σiŴi(t)

)}
. (19)

Using the facts ex(t) = L̃zx(t) and ey(t) = L̃zy(t),
where ex(t) = [eTx1(t), · · · , e

T
xm(t)]

T
∈ Rmn and ey(t) =

[eTy1(t), · · · , e
T
ym(t)]

T
∈ Rmn, the equation (19) can be

rewritten as

V̇ (t) =
[
(γx + γy)eTx (t)L̃ + e

T
y (t), e

T
x (t)

+ eTy (t)
] [ zy(t)
u+ F(z)− h(t)⊗ 1m

]
+

m∑
i=1

Tr
{
W̃ T
i (t)

(
Si(xi, yi)

(
exi(t)

+ eyi(t)
)T
− σiŴi(t)

)}
. (20)

After several simple operations, the following one can be
derived from (20),

V̇ (t) =
m∑
i=1

(
(γx + γy)eTxi(t)eyi(t)+ e

T
yi(t)

× zyi(t)
)
+

m∑
i=1

(
eTxi(t)+ e

T
yi(t)

)
×

(
ui + fi(xi, yi)− h(t)

)
+

m∑
i=1

Tr
{
W̃ T
i (t)

(
Si(xi, yi)

(
exi(t)

+ eyi(t)
)T
− σiŴi(t)

)}
. (21)

Inserting the NN approximation (14) and the controller (15)
into (21) yields

V̇ (t) =
m∑
i=1

(
(γx + γy)eTxi(t)eyi(t)

+ eTyi(t)zyi(t)
)
+

m∑
i=1

(
eTxi(t)

+ eTyi(t)
)(
−γ xexi(t)− γyeyi(t)

− Ŵ T
i (t)Si(xi, yi)+W

∗T
i Si(xi, yi)

+ εi(xi, yi)− h(t)
)

+

m∑
i=1

Tr
{
W̃ T
i (t)Si(xi, yi)

(
exi(t)

+ eyi(t)
)T
− σiW̃ T

i (t)Ŵi(t)
}
. (22)
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In the light of the equation W̃i(t) = Ŵi(t)−W ∗i , the equation
(22) can be rewritten as

V̇ (t) = −
m∑
i=1

γxeTxi(t)exi(t)−
m∑
i=1

γy

× eTyi(t)eyi(t)+
m∑
i=1

eTyi(t)zyi(t)

−

m∑
i=1

(
eTxi(t)+ e

T
yi(t)

)
W̃ T
i (t)

× Si(xi, yi)+
m∑
i=1

(
eTxi(t)+ e

T
yi(t)

)
× εi(xi, yi)−

m∑
i=1

(
eTxi(t)+ e

T
yi(t)

)
× h(t)+

m∑
i=1

Tr
{
W̃ T
i (t)Si(xi, yi)

×
(
eTxi(t)+ e

T
yi(t)

)}
−

m∑
i=1

Tr
{
σi

× W̃ T
i (t)Ŵi(t)

}
. (23)

According to the property of trace operation, aT b =

Tr{abT } = Tr{baT } for ∀a, b ∈ Rn, there is the following
fact(
exi(t)+ eyi(t)

)T W̃ T
i (t)Si(xi, yi)

= Tr
{
W̃ T
i (t)Si(xi, yi)

(
exi(t)+ eyi(t)

)T}
. (24)

Using the above equation (24), the equation (22) can become
the following one

V̇ (t) = −
m∑
i=1

γxeTxi(t)exi(t)−
m∑
i=1

γy

× eTyi(t)eyi(t)+
m∑
i=1

eTyi(t)zyi(t)

+

m∑
i=1

(
eTxi(t)+ e

T
yi(t)

)
εi(xi, yi)

−

m∑
i=1

(
eTxi(t)+ e

T
yi(t)

)
h(t)

−

m∑
i=1

Tr
{
σiW̃ T

i (t)Ŵi(t)
}
. (25)

Applying Cauchy-Buniakowsky-Schwarz inequality and
Young’s inequality, the following results can be get

eTyi(t)zyi(t)

≤
1
2
eTyi(t)eyi(t)+

1
2
zTyi(t)zyi(t),

(
exi(t)+ eyi(t)

)T
εi(xi, yi)

≤
1
2
eTxi(t)exi(t)+

1
2
eTyi(t)eyi(t)

+ ‖εi(xi, yi)‖2 ,
(
eTxi(t)+ e

T
yi(t)

)
h(t)

≤
1
2
eTxi(t)exi(t)+

1
2
× eTyi(t)eyi(t)+ ‖h(t)‖

2 . (26)

Substituting the inequalities (26) into (25) yields

V̇ (t) ≤ −zT (t)
([

(γx − 1)L̃L̃ 0
0 (γy − 1 1

2 )L̃L̃ −
1
2 In

]
⊗ Im

)
z(t)

−

m∑
i=1

Tr
{
σiW̃ T

i (t)Ŵi(t)
}

+

m∑
i=1

‖εi(xi, yi)‖2 + n ‖h(t)‖2 . (27)

Using W̃i(t) = Ŵi(t) − W ∗i , the following equation can be
obtained

Tr
{
σiW̃ T

i (t)Ŵi(t)
}
=
σi

2
Tr
{
W̃ T
i (t)W̃i(t)

}
+
σi

2
Tr
{
Ŵ T
i (t)Ŵi(t)

}
−
σi

2
Tr
{
W ∗Ti W ∗i

}
. (28)

Substituting (28) into (27) has

V̇ (t) ≤ −zT (t)
([

(γx − 1)L̃L̃ 0
0 (γy − 1 1

2 )L̃L̃ −
1
2 In

]
⊗ Im

)
z(t)

−

m∑
i=1

σi

2
Tr
{
W̃ T
i (t)W̃i(t)

}
+1(t). (29)

where 1(t) =
m∑
i=1

σi
2 Tr

{
W ∗Ti W ∗i

}
+

m∑
i=1
‖εi(xi, yi)‖2 +

n ‖h(t)‖2. Because all terms of 1(t) are bounded, it satisfies
‖1(t)‖ ≤ c, where c is a constant.
Let λamin denote the minimal eigenvalue of[
(γx − 1)L̃L̃ 0

0 (γy − 1 1
2 )L̃L̃ −

1
2 In

]
, and λbmax denote the max-

imal eigenvalue of
[
(γx + γy)L̃T L̃ L̃

L̃ L̃

]
, and λ

0−1i
max denote the

maximal eigenvalue of 0−1i , then the following one can be
yielded from (26)

V̇ (t) ≤ −
λamin

λbmax
zT (t)

([
(γx + γy)L̃T L̃ L̃

L̃ L̃

]
⊗ Im

)
z(t)

−
1
2

m∑
i=1

σi

λ
0−1i
max

Tr
{
W̃ T
i (t)0

−1
i W̃i(t)

}
+ c. (30)

Let a = min{2
λamin
λbmax

, σ1

λ
0
−1
1

max

, · · · , σm

λ
0
−1
m

max

}, then the inequality

(30) becomes

V̇ (t) ≤ −aV (t)+ c. (31)

Applying Lemma 4 to (31), there is the following inequality

V (t) ≤ e−atV (0)+
c
a

(
1− e−at

)
. (32)

From the above inequality, it can be proven that i) these errors
zxi(t), zyi(t), W̃i(t), i = 1, · · · , n, are SGUUB; ii) the tracking
errors zxi(t), zyi(t), i = 1, · · · , n, can obtain the desired
accuracy by choosing the design parameters large enough,
and it means that the multi-agent formation can be achieved.
�
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FIGURE 1. The multi-agent formation performance.

FIGURE 2. The velocity tracking performance for the fist coordinate∥∥yi1(t)
∥∥, i = 1, 2, 3, 4.

IV. SIMULATION
In this simulation example, the multi-agent system moving
on the 2-D plane is composed of 4 agents, and it is described
in the following:

ẋi(t) = yi(t),

yi(t) = ui +
[
xi1 + αi cos2(xi1yi1)
yi2 + βi sin2(xi2yi2)

]
,

i = 1, 2, 3, 4, (33)

where xi(t) = [xi1, xi2]T , yi(t) = [yi1, yi2]T , αi=1,2,3,4 =
−0.5, 0.7,−0.4, 0.3 and βi=1,2,3,4 = 0.6, 0.3,
−1.6,−1.2, respectively. The initial values are
xi=1,2,3,4(0) = [5.2, 5.1]T , [4.3,−4.2]T , [−5.1, 4.3]T ,
[−4.2,−5.3]T respectively.
The desired formation movement trajectory can be

depicted by the following dynamic function with the zero
initial values x̄(0) = [0, 0]T

˙̄x(t) = ȳ(t),
˙̄y(t) =

[
3 cos(0.7t), 3 sin(0.7t)

]T
. (34)

The desired relative positions between agents and the
reference signal are pi=1,2,3,4 = [3, 3]T , [3,−3]T ,
[−3, 3]T , [−3,−3]T .
The communication among agents are described by

the adjacency matrix A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

. The communication

between agents and leader are described by D =

diag {0, 1, 0, 0}.
In accordance with the control conditions (17), the

formation control with respect to (15) chooses the design
parameters γx = 60 and γy = 40. The NN is designed to have

FIGURE 3. The velocity tracking performance for the second coordinate∥∥yi2(t)
∥∥, i = 1, 2, 3, 4.

FIGURE 4. The norm of NN weight
∥∥Wi

∥∥, i = 1, 2, 3, 4.

12 neurons, and the centersµi are also evenly spaced from−6
to 6. The updating law with respect to (16) chooses the design
parameters 0i=1,2,3,4 = 1.6I12 and σi=1,2,3,4 = 0.5, and the
initial values are Ŵi=1,2,3,4(0) = [0.8]12×2.
The simulation results are shown in Figs.1-4. Fig.1 shows

that the desired multi-agent formation is achieved, and
Figs.2-3 show the velocity tracking performance. Fig. 4 shows
the NN weights to be bounded. These simulation figures
show that the desired results are obtained, it can be concluded
that the proposed formation method can achieve the desired
control tasks and objectives.

V. CONCLUSION
In this paper, a leader-follower adaptiveNN formation control
is developed for a class of second-order multi-agent systems
under unknown nonlinear dynamics. In the proposed control
scheme, NN is used to approximate the unknown dynamic
functions, then, based on the NN approximation, the pro-
posed control scheme is constructed to solve the unknown
dynamic problem. According to Lyapunov stability analysis,
it is proven that the proposed adaptive NN formation method
can realize the control objectives. Simulation results also
show the desired control performance.

To the best of authors’ knowledge, most of multi-agent
optimal control is focused on the first-order case.
Therefore, our future works will consider optimal control
of second-order nonlinear multi-agent systems. Based on the
proposed control scheme, by employing reinforcement learn,
we will develop optimal control for nonlinear second-order
nonlinear multi-agent systems.
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