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ABSTRACT A wireless sensor network (WSN) is a collection of various tiny devices known as sensor
nodes, which are also called motes. Due to high-energy consumption, the possibility of hardware, link or
node failure, and some malicious attacks, sensor networks are considered error-prone networks. Hence, fault
tolerance (FT) in WSN is one of the prominent issues. This article presents a novel FT approach named
node-link failure fault tolerance model (NLFFT Model) in WSN, to handle the faults that occur either by
link or node failure during data transmission from the sensor to the sink or base station. The NLFFT model
consists of an improved quadratic minimum spanning tree (Imp-QMST) approach. This approach helps in
finding the alternate link whenever it fails due to various situations and also an improved-handoff (Imp-
Handoff) algorithm to support the node failure to the fault tolerance. Improved QMST presents a novel
mechanism to find an alternate edge in place of the broken or failed edge in the spanning tree, to improve
the fault tolerance in WSN. Imp-Handoff suggests a novel way to find the faulty node owing to less battery
power and replaces a defective node by an appropriate neighbor to shift the tasks performed by a faulty
node in WSN. Simulation results clearly state that as compared to the basic techniques i.e. Q-MST and
Handoff algorithm, the proposed NLFFT model improvises the performance of WSN around by 7%. The
results prove that the Imp-QMST gives about 6% improved throughput, 5% less end-to-end delay, and 6%
less power consumption than the QMST algorithm. Similarly, Imp-Handoff improves about 4% throughput,
6% less end-to-end delay, and utilizes 7% less power consumption.

INDEX TERMS Fault tolerance, handoff mechanism, MST, Q-MST, swarm intelligence, WSN.

I. INTRODUCTION
A WSN comprises of many tiny devices known as sensor
nodes and base stations. Such networks are useful for mon-
itoring and passing environmental and physical constraints
viz. temperature, pressure, and noise to a centrally located
base station. The base station processes the data and con-
cludes the necessary action. A typical WSN can be struc-
tured or unstructured, based on the locality where a sensor
network needs to be established, to control the region with
sensor devices. A structured network can be feasible in the
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region like buildings, streets, highways, and parking places,
whereas unstructured networks can be viable in the forest,
desert, flood situation, and disaster areas. In both kinds of
networks, a large area is divided into clusters, and each cluster
consists of tiny sensor devices (motes) and cluster head (CH).
The sensor nodes in the cluster are connected by hop-to-hop
with each other based on the coverage capacity among the
existing sensors nodes and each cluster has a cluster header
to communicate with other clusters. The clusters are inter-
connected through its cluster headers and finally aggregated
data from all the clusters is transferred to the base station
(BS), to process the information further or transfer to another
heterogeneous network.
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FIGURE 1. Typical WSN with various links.

Figure 1 shows an example ofWSNwith sensor nodes, CH,
and BS. In the considered WSN, mainly four kinds of links
exist namely sensor to sensor, sensor to CH, CH to CH, and
CH to BS. The link existence between ni to nj is based on the
available bandwidth B(ni, nj) and active status of both nodes.
Here, a node may be considered as sensor node, CH, BS. The
link existence will exist based on the predefined threshold for
various kinds of links. The proposed work applies to all kind
of links mentioned in Fig. 1.

Based on the environment, sensor networks can be classi-
fied into various categories such as terrestrial WSN, under-
water WSN, underground WSN, and mobile WSN. In some
critical applications, such as critical-medical care [1], the sen-
sor networks need to provide interminable services. Hence,
enabling endless services in critical systems is only possible
by fault tolerance. The efficient fault diagnosis method is
required to find the faults to support fault tolerance. The fault
tolerance is a combination of fault detection, fault diagnosis,
and fault removal [2] processes.

WSNs are vulnerable to faults mainly because of two
reasons- one is the failure of nodes, and the other is a link
failure. Tiny and less battery power sensor nodes are deployed
in a disastrous and harsh environment; hence, there may be
higher chances of hardware failures in WSN. Due to faults in
WSN, there may also be a loss in huge data transfer, long data
transmission delay, and less throughput. So, there is a need
for novel protocol architecture for WSN. Consequently, the
identification of faulty nodes and links is a must to improve
the capacity of WSN in terms of efficient data delivery.

Hence, a novel mechanism is needed to identify the faults
and create a recovery mechanism to improve the reliability
and quality of service during data transmission. The major
contributions of the proposed research are as follows:
1. A novel fault-tolerance model is proposed to handle both

kinds of faults i.e. link failure and node failure.
2. The Imp-QMST algorithm is introduced to find the alter-

nate link in case of link failure.
3. The Imp-Handoff algorithm is presented to identify the

faulty node and selection of appropriate new nodes in case
of node failure.

4. Imp-QMST and Imp-Handoff need MST. Thus, four
swarm intelligence-based algorithms have been used to
generate spanning trees in WSN and the performance
for different characteristics, i.e., throughput, end-to-end
delay, and power dissipation of proposedmethods to exist-
ing methods Q-MST [3-5] and Handoff [10] has been
evaluated.

The rest of the paper is organized thus: Related work is
explained in section II. Section III describes the proposed
helping algorithms to find active links and nodes in the
NLFFT model. Section IV narrates various system models
and the newly proposed NLFFT model in detail. Section V
elaborates on the proposed work along with examples and
describes the various algorithms used in constructing MST
to support the suggested fault tolerance model (given in
section IV). Section VI explains the experimental setup.
In section VII, the result analysis part highlights the experi-
ments and performance comparison with other mechanisms
namely PRIMS, Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Imperialistic Competitive Algo-
rithm (ICA) and Firefly (FF) algorithm concerning vari-
ous network parameters viz. throughput, end-to-end delay,
and power consumption. Finally, Section VIII concludes the
paper highlighting the future scope.

II. RELATED WORK
This section presents a comprehensive literature survey of
various routing protocols, data aggregation, and Fault Tol-
erance. Fault tolerance in WSN can be achieved broadly in
two ways, one is to find the link failure, and the other one
is to detect node failure. In the literature, there are several
techniques available to find links and node failures individ-
ually. However, very few research techniques are available
to find both node and link failures simultaneously. There
are several techniques available in the literature to improve
the reliability and quality of service (QoS) in WSN. The
multipath [6] finding is the one to improve the reliability,
timeliness, and load balancing inWSN. Faulty node detection
and interference model caused by neighbor nodes are also
equally popular in identifying the faults in WSN.

The work proposed in Lee and Choi [7] is a distributed
algorithm to find the faults in WSN. The faulty nodes are
identified based on the comparison of neighbor nodes and
dissemination decisions made by each node. The proposed
research identifies the transient faults in communication and
sensing inWSN. A sliding window is utilized to eliminate the
time redundancy.

Qu et al. [8] proposed a fault tolerance model with mobile
agents to attain consistent and efficient performance, with
required functions within a given period. The faults are
detected and identified as the kind of failures owing to the
behavior of the mobile agent. The behavior of the mobile
agents can be analyzed statistically by various parameters
viz. migration time from one sensor node to another sensor
node, the lifetime of the mobile agents, and distribution of
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mobile agent population. This mechanism overhead controls
the behavior of mobile agents to adopt the changes in the
environment.

Guo et al. [9] introduced the hybrid on-demand distance
vector multi-path (HODVM) routing protocol for spatial
wireless ad-hoc networks (SWAHN). The proposed protocol
HODVM divides the SWAHN into two parts. The first part is
with the backbone, and the second one is without a backbone.
HODVM finds adaptive multipath to balance the workload
and improve the fault tolerance in SWAHN. In WSN, main-
taining multipath is a very complicated task due to the size
and capacity of the links among various kinds of nodes.

Geeta et al. [10] described an active node based fault toler-
ance and interference (AFBTI) in sensor networks to pick out
faulty nodes using two models, one being the battery power
model, and another being interference model. They presented
the handoff mechanism as a fault tolerancemechanism to face
low battery power. However, the proposed work considers
only battery power as criteria to decide the faulty node. It may
not be appropriate in WSN.

Abba and Lee [11] proposed an autonomous self-aware
and adaptive fault-tolerant routing technique (ASAART)
for WSNs and compared the simulation results with
self-selective routing and self-healing routing protocols in
different simulation scenarios and found better in throughput,
delay (end-to-end), packets error rate and power conservation
in faulty and congested WSN. Yucai Zhou et al. [12] pointed
out in their paper that due to faults or node failures occurring
by abrupt environmental changes, sensor network perfor-
mance gets deteriorated. Hence, to solve the problem men-
tioned above, a protocol supporting high fault tolerance and
power efficiency based on a multi-way routing mechanism
has been proposed. It is an enhancement in hybrid, energy-
efficient distributed clustering mechanism (HEED) protocol,
called HEED-FT. The HEED-FT mechanism consumes less
energy and provides high reliability and increases network
lifetime.

Sutagundar et al. [13] proposed a fault-tolerance approach
based on multiple (both fixed and mobile) agents. This pro-
posed multi-agent-based scheme provides fault tolerance at
the node, cluster, and sinks level. In node-level fault toler-
ance, a node accepts only correct samples i.e., the samples
in the reference range and rejects the false samples. Thus,
the node calculates the average of all samples which were
found correct. At cluster level fault tolerance, after receiv-
ing the data from all the nodes, the difference in data is
computed by comparing the data of each node to all other
nodes. Finally, fault tolerance at the sink level, the sink node
broadcasts alive packets to every node and replicates the sink
node periodically. If nodes and replicated sink nodes get alive
packets from the sink node, then it transmits the data to the
sink otherwise replicated sink node broadcasts its ID to every
node.

Tien et al. [14] proposed dual separate paths (DSP) algo-
rithm to support fault-tolerance by improving network traf-
fic in WSNs. The DSP algorithm constructs two different

paths between the source and target (destination) nodes,
depending on the topology of the network. This algorithm
supports both wired and wireless networks and provides
non-interminable fault tolerance. Elsayed et al. [2] presented
an approach called distributed self-healing approach abbre-
viated as DSHA, wherein fault identification, diagnosis, and
repairs are performed. These are skilled at both the cluster
head and node level. DSHA mechanism was found effective
in identifying hardware failures and diagnoses to make sensor
networks resilient and reliable. The results showed that the
DSHA approach can handle up to 67.3% hardware malfunc-
tioning and hence improve 62.6% network lifetime.

Mitra and Das [15] observed that network reliability and
dependability can bemeasured by its fault identification, fault
diagnosis, and overcome techniques. The proposed archi-
tecture supported distributed fault tolerance and algorithms
for fault recovery by using checkpoints of data and state of
nodes in a distributed environment. Ma et al. [16] developed
a novel algorithm for fault tolerance by generating a multi-
routing tree abbreviated as FTMRT. In it, a multi-routing
tree is constructed to ensure k-disjoints routes from every
sensor node to a collection of super-nodes. Thus, to build a
fault-tolerant topology, each data transmitting node redefines
the transmission power in compliance with the multi-routing
tree.

Begum and Nandury [17], proposed a fault-tolerant
mechanism called component-based self-healing mechanism
which builds an alternate path to reach the root node
in a hierarchical aggregation tree when any node or link
fails. The said mechanism is based on two algorithms,
the first is Self-healing Component-based Reconfiguration
(SCR) for preserving precedence relations and another
one is SCR-Dynamic Transmission Range Adjustment
(SCR-DTRA). These two approaches are compared with
existing approaches i.e. Tree Reconstruction, WKLP, and
FTS. Simulation results prove that the SCR-DTRA approach
is effective in terms of the Affected Ratio (AR) and Recovery
Ratio (RR).

In [18], Kim et al. introduced a Maximum fault tolerance
barrier coverage problem related to hybrid sensor networks
(MFBP-HSN), containing both static and fully-controllable
dynamic (mobile) sensors. It tried tomigrate themobile nodes
in such a manner that fault tolerance of barrier-coverage of
hybrid sensor networks mentioned above, was maximized.
A polynomial-time exact algorithm was proposed for the
above-said problem.

Shagufta Henna [19] presented an algorithm for approx-
imation known as energy-efficient maximum disjoint cov-
erage (EMDC) with a resemblance estimation ratio. In the
proposed work, EMDC performance analyses showed up in
favor of power efficiency and fault tolerance. The EMDC
algorithm increased the lifespan of the network by choosing
two disarticulated set covers minimizing relay power. The
EMDC mechanism was found better in terms of network
lifetime in comparison of DSC-MDC for a different count of
nodes and ranges.
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Moussa and Elalaoui [20] proposed a mechanism related
to fault tolerance of cluster heads. The simulation was per-
formed and found better as compared to low energy adaptive
clustering protocol (LEACH), and informer homed routing
mechanism.

To overcome the challenges of WSN, Jassbi and
Moridi [21] presented an algorithm called the HEED algo-
rithm for clustering. Further, for improving power consump-
tion, they proposed a sleep/wake-up method for the cluster
members. The main focus of work [21] was to identify and
repair faults of cluster heads as well as cluster member sensor
nodes. Hence, to perform this task, a node is chosen as a
backup node of the cluster head. The failed node is separated,
and its place is taken by its neighbor node, which goes to
wake-up mode from the sleep mode.

Hence, by anatomizing the literature it has been found that
a unique mechanism is needed to diagnose the faults and
novel methods must be discovered to ameliorate the reliabil-
ity and quality of service during the transmission of data. Fur-
ther, the existing literature on spanning trees to achieve data
aggregation is devoid of any fault tolerance procedure and
thus, it influences the various important parameters of WSN
viz., throughput, end-to-end delay, and power consumption.

III. PROCEDURES TO FIND ACTIVE NODES AND ACTIVE
LINKS
In WSN, fault tolerance is a crucial issue, and it can be
achieved by finding the active node and active link. The
number of active nodes and links, define the fault toler-
ance factor of WSN. In this proposed model, we derived a
procedure to find the active node and link. The proposed
dynamic nodemodelmakes use of the neighbor node, average
battery power, and distance. The dynamic connection can be
identified based on the available bandwidth over the link. The
following sections illustrate the mechanism to find the active
node and link separately.

A. ACTIVE NODE IN WSN USING BATTERY POWER AND
DISTANCE
The active state of the node is represented by nactive =
[nbp, d], where nbp is the battery power of node, and d is
the distance between the intermediate node and its neighbor
node. In the proposed model, the active node is decided based
on the heuristic method, in which existing neighbor node
battery power and distance are compared with predefined
threshold values. The threshold values are node’s average bat-
tery power denoted by navg−bp and average distance indicated
by davg. These values are evaluated based on the existing
neighbor node’s average battery power and average distance.
The following is the procedure to find the active node in the
improved handoff algorithm (refer algorithm 1).

B. ACTIVE LINK IN WSN USING AVAILABLE BANDWIDTH
In the given WSN, all sensor nodes are connected with
the base station, cluster head (CH), and with other sensor
nodes with specific bandwidth (i.e. frequency range). In the

Algorithm 1 Procedure to Find Active Node
Procedure (Node, BP, Dist)
Begin:

If (BP > navg−bp && Dist > davg)
Then
Return active

Else
Return Inactive

End

TABLE 1. Various thresholds.

proposed model, certain bandwidth thresholds are defined
between sensor to sensor (Bs−s), a sensor to CH (Bs−ch),
CH to CH (Bch−ch), and CH to Base Station (Bch−bs). If any
link (edge) weight is less than the threshold, then it is consid-
ered as a broken link. The thresholds among the various kinds
of links and bandwidth thresholds are given in Table 1.

The following procedure is used to find the active link in
the improved Q-MST algorithm (refer algorithm 2).

IV. PROPOSED SYSTEM MODELS
Various systemmodels used in this article are discussed in the
subsequent section:

A. PATH LOSS MODEL
In wireless communication literature, various path loss mod-
els and their analysis exist. The followings are well-known
path loss models in wireless communication.
• Free-space model
• Two-ray model
• The simplified path loss model
• Empirical models.

Path loss is defined as PL = (Pt
/
Pr ) > 1 where, PL is the

path loss, Pt is power transmission, and Pr is received power.

PL(dB) = 10 log10(Pt/Pr ) > 0 (1)

The radio signals, as propagates away from the transmitters,
the power of the radio signals is reduced according to dis-
tance traveled from the transmitters. In most of the wireless
communication systems, often, the default path loss model is
the free space path loss model, which computes attenuations
according to the inverse square law along a single line-of-
sight propagation path.

In all of the above-saidmodels, the path loss is proportional
to distance with some exponent, and exponent depends on
the path model. Further, in all of the path loss models, the
distance from the receiver and transmitter is the key factor.
Hence, in our proposed model, we have considered the aver-
age distance, which is the threshold to decide the active node.
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Algorithm 2 Procedure for Finding Active Link
Procedure (Type of the Link, Bandwidth)
Begin:

If (Type == 1)
If (Bandwidth > Bs−s)
Then
Return active.

Else
Return Inactive.

Else
If (Type == 2)

If (Bandwidth > Bs−ch)
Then
Return active

Else
Return Inactive

Else
If (Type == 3)

If (Bandwidth > Bch−ch)
Then
Return active

Else
Return Inactive

Else
If (Type == 4)

If (Bandwidth > Bch−bs)
Then
Return Active

Else
Return Inactive

END:
END:

Figure 2 shows the path loss in the first order radio model
and its relation with distance. In WSN currently, there is a
great deal of low radio energy consumption models. In the
proposed model, we have adopted first order radio model for
simplicity and the radio dissipates Eelec = 50 nJ/bit to run the
transmitter or receiver circuitry and Eamp = 0.1 nJ/bit/m2 for
the transmit amplifier. These parameters also are shown in
Table 5.

PL = Pt/Pr α dn (2)

The eq. (2) indicates the path loss model, which depends
on the radio transmission and receiving power, which is
proportional to some of the power of the distance in all the
well-known path loss models [22]. The distance between two
nodes (xi, yi) and (xj, yj) will be evaluated using the formula
sqrt[(xj−xi)2+(yj−yi)2]. PL is path loss from each neighbor
at node n from each neighbor node 1, 2, 3, 4, and 5.

In the proposed model, using the average distance (davg)
among n nodes, consider nodes 1, 3, and 5 are active and
thus deemed to intended. Similarly, nodes 2 and 4 are inac-
tive; hence, these are not considered to intend. In nodes
2 and 4, the interference problem arises, and it is handled

FIGURE 2. Path Loss Model.

FIGURE 3. Active Neighbor Node based on Average Distance Due to
Interference.

by the interference model given in [10], but according to
suggestedwork in this article, it is essential not to consider the
interference model as already selecting the node of a higher
average distance. Further, due to interference, there is a kind
of node or link failure that has been previously handled by
the proposed fault tolerance model; hence, the interference
model is not required in the proposed approach.

B. THE FLOW CHART OF THE PROPOSED NLF FAULT
TOLERANCE MODEL
A model for fault tolerance is proposed to support both
node and link failure; its functioning has been presented
here in Fig. 4. For a link or edge failure, the Imp-QMST
algorithm and, for node failure, the Imp-Handoff algorithm
have been proposed, which are improved forms of QMST
and Handoff algorithm, respectively. A WSN comprises of
several sensor nodes. Let an undirected fully connected graph
G = (V, E) represent the topology of the network where
V = {v1, v2, v3, . . . . .vn}, stands for a set of nodes, E =
{(vi, vj)|vi, vj ∈ V ∧ d(vi, vj) < min(Ri,Rj)} are the set of
edges and d(vi, vj) is Euclidean distance of vi, vj and Ri is the
transmission range of vi.
The proposed NLFFT model control flow illustrated in

Fig. 4.

C. ENERGY CONSUMPTION MODEL OF WSN
A variety of power consumption models [23] are available,
but this article uses Heinzelman et al. [24] model for power
dissipation and the meaning of symbols has been illustrated
in Table 5. The proposed work uses, to transmit and receive
an n-bit message to a distance (d) by using radio model:

Energy Consumption at Transmitter (refer Eq. 3)

ETx = ETx−ele × n+ εamp × d2 (3)

Energy Consumption at Receiver (refer Eq. 4)

ERx = ERx−ele × n (4)
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FIGURE 4. Proposed NLFFT Model.

In the simulation, it summarizes that the size of every incom-
ing and outgoing message is one bit. Hence, the Eq. (2) and
Eq. (3) are converted into (4) and (5) respectively.

ETx = ETx−ele + εamp × d2 (5)

ERx = ERx−ele (6)

D. END TO END DELAY MODEL
To calculate the end-to-end delay, the following formulae
have been used:
The Time required to send a packet at k-links

= k∗[(H + (D/P))/C] (7)

Here, H is the header size (in bits), D is bit size of data,
P is some packets and C is the link capacity, also known as
buffer size. It has been assumed that the header size (H) of
each packet is 2 bits and the data size is (D) 1 bit. All the

links are considered as homogeneous and having a capacity
to store 50 packets (identical to the link capacity).

Thus, it can be seen that the number of packets is identical
to the sum of the size of all the data packets. Thus, by putting
D/P = 1, H = 2, and C = 5 the above-given formula (refer
Eq. 7) is converted to Eq. (8).

End_to_End_Delay = (3/5)× k (8)

V. NLFFT MODEL: A NOVEL FAULT TOLERANCE MODEL
TO SUPPORT FAILURE AT BOTH LINK AND NODE LEVEL
Though the flow chart of the NLLFT model has been
presented in the previous section, this section highlights
the implementation of the techniques used in the proposed
NLFFT model.

Firstly, MST is generated by using swarm-based
approaches (ACO, PSO, FF, and ICA algorithm) and tradi-
tional PRIMS algorithm to implement the proposed NLFFT
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model for fault tolerance. Every node as a part of MST acts
as a data aggregator node. The Prims algorithm is known
as Jarnik’s algorithm, which is a greedy algorithm to find
MST by calculating the subset of edges that construct a tree,
including all vertices, at least once.

MarcoDorigo gave the ant colony optimization (ACO) [25]
in 2006. In ACO, artificial ants are deployed to perform
a heuristic search. The ACO [26]–[28] algorithm uses a
probabilistic approach to get MST, which acts as a data
aggregation tree. After obtaining the desired solution, the
pheromone and evaporation parameters get updated.

The PSO algorithm is a meta-heuristic and population-
based algorithm. It was developed by Eberhart and
Kennedy in the year 1995 [29]. It is a nature-inspired and
swarm-intelligence based heuristics method, provided by
recognizing the movement and behavior of birds and fish
flocks. The minimum spanning tree using the PSO algorithm
and various parameters related to it have been explained by
Goldbarg et al. [30] and improved by various researchers for
performance improvement [31].

The Firefly algorithm was developed by Xin-She Yang at
the end of the year 2007 and the beginning of 2008 [32], [33],
similar to PSO, it is also a meta-heuristic algorithm inspired
by the flashing behavior of fireflies and their biolumines-
cent communication [34]. A discrete Firefly algorithm for
improved data collection and data aggregation in WSN was
elaborated in [35], [36]. The ICA [37] algorithm was given
by Atashpaz-Gargari and Lucas in 2007[38]. ICA can be
considered as a human counterpart of the Genetic Algo-
rithm [39]. It performs human social evolution while the
Genetic Algorithm performs biological evolution of species.
Sayadnavard et al. explained sensor network localization
using the ICA algorithm [40].

The ABC algorithmwas presented by Devis Karaboga [41]
in the year 2005. It is a meta-heuristic algorithm based on the
swarm. It was designed to optimize and solve multivariable
and numerical problems [42], and it was influenced by the
honey bees and their genius foraging behavior. The ABC
algorithm contains three components, mainly, i.e., working
bees, unemployed bees, and the food source. The detailed
algorithm related to this article, to solve Q-MST using ABC,
is explained in [4]. In the NLFFTmodel, an improved version
of QMST [3]–[5] and Improved Handoff algorithm were pro-
posed and named as Imp-QMST and Imp-Handoff algorithms
respectively. Tools generally used for WSN are discussed
in [43] and energy-efficient protocols are developed in [44].
A detailed study of the swarm and evolutionary algorithm
available in [45]–[49].

A. IMP-QMST MECHANISM
In theQ-MST approach, at the place of edge cost (weight), the
cost of enjoined pair of edges is also considered, and the target
is to find out the side with the lowest side cost, to be replaced
at the place of broken link or edge. The Q-MST is anNP-Hard
problem, which was suggested by Asad and Xu [42]. Further,
it was extended by Sundar and Singh [4] by implementing an

ABC algorithm to find MST. The concept of applying fault
tolerance in WSN using the Q-MST approach, along with an
example, has been implemented by Menaria et al. [3].
Going a step ahead of the above-mentioned Q-MST

approach, this article proposes an improved-QMST (Imp-
QMST) mechanism. The flowchart of Imp-QMST has been
shown in section 4.A.2 and can be explained thus:

1. When a node or link breaks down, or failure occurs due
to battery power or any other reason, the sensor network
is separated into two components. (one remains to the
left side of the broken link and another to the right side)

2. Find the edges which connect the two parts mentioned
above (sets).

3. Calculate the total cost (Total_Weight) of every
connecting edge mentioned in step 2, by using
the inter-cost matrix as procedure mentioned in
Q-MST [4], i.e., the cost (weight) from each existing
edge to every connecting edge of above components
and vice versa. (Detailed example provided in [3])

4. Now, instead of selecting minimum cost edge
(Q-MST), calculate the average cost davg, of all the
corresponding costs of sides calculated in step 3.

5. Calculate average battery power (baverage) for each
edge separately using Eq. 9:

baverage =

2∑
i=1

bi

2
(9)

where bi is the battery power of ith node on the edge ei.
6. Similarly, calculate the cumulative average battery

power (Bcum−avg) for all the edges using Eq. 10, which
are included in the connecting sets, i.e. edges which
connect both components.

Bcum−avg =

n∑
i=1

baverage(i)

n
(10)

7. Edge Selection (Select the edgewhich has its cost lower
than or equals to average cost davg, and its average bat-
tery power baverage is higher than or equal to cumulative
average battery power i.e. Bcum−avg.

8. If no edge is found in step 6, then follow a simple
Q-MSTmechanism, i.e., select the edge with minimum
cost as calculated by step 3.

9. Replace the selected edge at the broken edge or link in
the network and continue transmissions.

10. End
Let’s consider the steps mentioned above with a sensor

network taken as an example in Fig. 5.
Figure 5(a) shows a complete undirected graph with 5 sen-

sor nodes, and these nodes are connected through 10 numbers
of sides (edges), called links in the WSN ranging from e1 to
e10. The inter-cost matrix (edge-to-edge cost matrix) of the
said network has been shown in Table 2.

Table 3 depicts the battery power at the given moment, for
all the five nodes participating in the network.
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FIGURE 5. A Sensor network with QMST/Imp-QMST Process.

TABLE 2. Inter-cost matrix.

In thementioned inter-cost matrix in Table 2, each diagonal
element presents the edge weights (cost or distance), and
the remaining elements are edge-to-edge costs, which can
be considered as a parameter related to WSN, i.e., channel

TABLE 3. Battery Power of all the nodes during link failure.

strength. Figure 5(b) is a minimum spanning tree with a total
weight of 223. Now suppose, due to any valid reason, the link
e9 becomes weak or broken down (refer Fig. 5(c)), then the
whole graph is separated into two sets, one is {1, 2, 5}, and
another set is {3, 4}.

Now, it is required to select the alternate edge or side
connecting the said two sets. Fig. 5(d) depicts that there
are 3 possible edges connecting the two sets namely {e5,
e6, e8). Now, the total weight (cost) is to be calculated for
all three edges. First, an edge-to-edge cost is calculated by
considering every possible alternate edge using following
steps:
• For the link e5 (connecting the vertexes 2 and 3)

Total Edge Cost = cost (e5, e5)+ cost(e1, e5)
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+cost(e5, e1)

+cost(e7, e5)+ cost (e5, e7)

+cost (e10, e5)+ cost (e5, e10);

= 76+ 8+ 7+ 20+ 12+ 14+ 8

= 145

• For the link e6 (connecting the vertexes 2 and 3)

Total Edge Cost = cost (e6, e6)+ cost(e1, e6)

+cost (e6, e1)

+cost(e7, e6)

+cost (e6, e7)+ cost (e10, e6)

+cost (e6, e10)

= 80+ 9+ 7+ 14+ 11+ 12+ 7

= 140

• For the link e8 (connecting the vertexes 2 and 3)

Total Edge Cost = cost (e8, e8)+ cost(e1, e8)

+cost (e8, e1)+ cost(e7, e8)

+cost (e8, e7)+ cost(e10, e8)

+cost (e8, e10)

= 87+ 10+ 5+ 9+ 16+ 8+ 15

= 150

As the total weight (cost) of edge e6 is low i.e., 140 than
other replaceable edges hence, in QMST approach the broken
edge, i.e. e9 will be replaced by e6 depicted in Fig. 5(e)
but, Imp-QMST will apply some modifications and other
parameters viz. battery power as:

1. Calculate the average weight (cost) of all the alternate
edges

davg = (147+ 140+ 150)/3

2. Calculate the average battery power (baverage) of each
edge connecting both the sets (SET-1 and SET-2) as:

a) baverage of edge e5 = (250.50+700.35)/2.0
= 475.42
b) baverage of edge e6 = (250.50+405.62)/2.0
= 328.06
c) baverage of edge e8 = (320.20+700.35)/2.0
= 510.27
3. Calculate the cumulative average battery power

(bcum−avg) of all the nodes participating in connecting the two
sets:

bcum−avg = (475.42+ 328.06+ 510.27)/3;

= 437.91

4. Now, the selection process starts by using the informa-
tion provided in steps 1 to 3 and can be concluded by making
a decision table, i.e. Table 4.

Thus, it can be seen clearly in the decision table that
the edge e5, having the link cost lower than average cost,

TABLE 4. Decision table.

FIGURE 6. Time Frame for Battery Energy Level.

i.e.145<=145.66 and its average battery power is higher than
the cumulative battery power, i.e., 475.42>=437.91). Hence,
the edge e5 will get selected as an alternative edge at the place
of broken edge e9, as shown in Fig. 5(f).

The side e6 and e8 do not fulfill both the conditions,
so these sides will not be considered. Now the question arises
that by following the above Imp-QMST procedure, what to do
when more than one edge found suitable. In this case, among
all suitable edges, the edge with minimum cost gets selected
as a replaceable edge.

B. IMP-HANDOFF MECHANISM
Similar to the QMST mechanism, the Handoff algorithm
is used in fault tolerance to handle node failure in WSN.
The only difference is that Q-MST or proposed Imp-QMST
algorithm works on a link or edge failure while the Hand-
off or Imp-Handoff mechanism works on node failure.
The flowchart of the Imp-Handoff mechanism is shown in
section 4.A.2 in the proposed NLF Fault Tolerance Model.
The algorithm is shown in this section.

The handoff mechanism [10] is used to replace the faulty
node with an alternate sensor node. In the handoff mecha-
nism, whenever a fault occurs at any node due to low battery
power or power failure, the neighboring node with the high-
est battery power replaces the faulty node, and all services
running on the defective node get transferred to the new
neighbor node. Thus, the data transmission process does not
get interrupted.

The Imp-Handoff algorithm is applied as the fault tolerance
technique because of the battery power drain mentioned in
Fig. 6.

Whenever a node, either a malicious or non-faulty, rec-
ognizes that its battery energy level is reduced to a degree
up to bth, i.e., if bk ≤ bth (bk indicate to the k th time
window), a handoff connection to its neighbor node needs to
be initiated. In the Handoff mechanism, the malicious node
gathers the status of the energy level of all its neighbor nodes
and transmits the handoff parameters to the neighbor node,
containing the superior battery power. The battery power
gathering process has two phases: (1) sending a request of
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battery power to all neighbor nodes (2) all the neighbors, send
reply packets having their latest battery power.

In the Imp-handoff mechanism, besides including the pro-
cess mentioned in the above paragraph (related to the battery
power), two more parameters are also considered- namely
the distance (weight) of all neighbor nodes to faulty node and
fault index of every node. The term fault index (FI ) is defined
as:

FI =
nmissed
ntotal

(11)

where nmissed = total number of missed packets and ntotal is
the total number of packets.

Initially, the fault index of every node is considered zero,
but as soon as transmission starts, its value gets updated. After
receiving all the parameters, the average battery power and
average distance for all the neighbor nodes are calculated.

At first, the neighbor node with battery power higher than
or equals to average battery power and with distance higher
than or equal to the average distance will get selected. While
in some cases, if the above condition does not get satisfied,
then the neighbor node with the least fault index will get
selected. The notations used and the Imp-Handoff algorithm
are presented below:

Algorithm 3 Improved Handoff Algorithm (Imp-Handoff
Algorithm)

1. Initially assign a battery power (bi) to every sensor node
arbitrarily.

2. Define Source, Sink, and Threshold value (bth) of the
Battery Power.

3. Start data transmission from defined source to destina-
tion repeatedly.

4. Update the battery power for every transmission
defined in step 3.

5. IF any fault occurs in step 3 (bk < bth) then
6. Send REQUEST packets to all neighbor nodes for both

distance and updated battery power excluding next-
hop.

7. Receive the REPLY packets in the response of request
given in step 6, from each n-1 neighbor node.

8. Arrange all the neighbor nodes of a failed node in
ascending order of distance.

9. Calculate the parameters baverage and davg.
10. For each node from the list of (n-1) nodes
11. Check whether it’s the last updated battery power ≥

baverage and distance ≥ davg.
12. If any suitable node found in step 10 then replace the

faulty node from this node by sending all parameters
related to connection to the identified node i.

13. Else select the node which has the lowest fault index
(FIi).

14. Replace the faulty node with the identified node in
steps 8 to 12.

15. End

Notations: bk is the battery power of the faulty node in a k th

time frame, bth is the threshold power which is a predefined
constant, n is the count of neighbor nodes, dk is the distance
(weight) of a neighbor node from the faulty node, baverage
is the average battery power, davg is the average distance
(weight) of neighbors from faulty nodes, and FIi is the fault
index of node i.

The above proposed Imp-Handoff algorithm is compared
with the existing handoff algorithm. The results have been
analyzed in section 7, with the experimental setup discussed
in section 6.

VI. EXPERIMENTAL SETUP
A. ASSUMPTIONS
While examining the performance of the proposed NLFFT
model, the following assumptions are considered:

• It is assumed that every node in the sensor network setup
is homogeneous and is deployed statically.

• Every sensor node has an equal capability to sense the
surrounding data.

• The probabilistic approach is taken into consideration
from the Prowler Simulator for networks, in the context
of packet transmission from source to sink node. In this
approach, every packet has a probability between 0 and
1 and those packets that have a probability greater than
0.5, will only be transmitted to the next hop.

• After constructing the MST using various swarm intel-
ligence techniques, this MST is considered as a data
aggregation tree where all the leaf nodes are considered
as data aggregator nodes.

B. SIMULATIONS AND SIMULATION PARAMETERS
The simulation was performed in the MATLAB environ-
ment. The sensor nodes were set out randomly in a 200∗200
square unit area. The source and destination (sink) nodes
were also declared arbitrary. The Euclidean distance of all the
pairs of connected nodes was calculated and if it was found
less than 150 meters, then those nodes could be considered
as disconnected. Finally, the depth-first search (DFS) was
imposed on examining whether the network was connected
or disconnected. If the network was found as disconnected,
then the whole procedure was repeated to get the connected
graph to carry out the further simulation.

After getting a connected graph, MST is originated with
various algorithms, as mentioned in section V, and then per-
forms packet transmission. While carrying out packet trans-
mission, if any node or link fails due to less battery power or
power failure, Handoff and Imp-Handoff algorithms, Q-MST,
and Imp-QMST algorithms are applied to support fault toler-
ance, as elaborated in section V.

As the packet transmission process is completed, various
parameters like the total number of packets transferred, total
packets received, total packets lost, the power consumed, and
the end-to-end delay are calculated. The various comparative
graphs are plotted in the result analysis in section VII.
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TABLE 5. Simulation parameters.

Table 5 enlists various simulations parameters that are con-
sidered as an experimental setup to measure the performance
of the proposed NLFFT model.

VII. RESULT ANALYSIS
Competitive analysis between QMST versus Imp-QMST and
Handoff versus Imp-Handoff has been performed through
various swarm intelligence techniques viz. ACO, PSO, FF,
ICA, and traditional PRIMS algorithms.

Initially, MST is constructed through techniques as men-
tioned above.Whenever there are link or node failure, the said
fault tolerance techniques, i.e. Q-MST, Imp-QMST, Handoff,
and Imp-Handoff are applied. Results are calculated in terms
of throughput, end-to-end delay, and energy consumed during
thewhole data transmission process. After performing several
simulations, for each of the transmission, the average results
are computed, as shown in Table 5. Results for QMST and
Imp-QMST have been discussed in section VIII part A.

A. QMST VS IMP-QMST ALGORITHM
In this section, MST is generated by using the above-
mentioned swarm intelligence algorithms and the PRIMs
algorithm. Further, QMST and Imp-QMST are applied for
the fault-tolerance purpose. TheQMST and Imp-QMST algo-
rithms deploy the ABC algorithm to find an alternate edge or
link at the place of the broken link. The comparison of results
has been depicted in subsequent sections.

1) THROUGHPUT COMPARISON
Table 6 and Fig. 7 shows the throughput comparison between
QMST and the Imp-QMST approach. The graphical presen-
tation of throughput comparison is shown in Fig. 7. It is
clear by analyzing Table 6 and Fig. 7 that the throughput
received through Imp-QMST is almost 2% better than the
Q-MST approach. If it is analyzed algorithm wise, then it
is found that Imp-QMST is 7% better than QMST for the
PRIMS algorithm, 3% for ACO algorithm, 7% better for PSO

algorithm, 6% better for FF algorithm and finally it is (Imp-
QMST).50% better than ICA algorithm.

Further, it can be seen that among all the swarm-based
techniques, the ACO algorithm gives the highest through-
put (203%, 177%, 203%, and 146% more as compared to
PRIMS, PSO, FF and ICA algorithm for Imp-QMST) and
it remains almost the same along with a varying number of
nodes.

2) END-TO-END DELAY COMPARISON
The end-to-end delay between Q-MST and proposed Imp-
QMST has been analyzed in Figure8. The calculation of end-
to-end delay is performed using Eq. 7, which is mentioned in
section III. The explicit values are shown in Table 7.

Figure 8 depicts that the end-to-end delay achieved by Imp-
QMST is lower than the QMST approach. By analyzing the
simulation results, shown in Table 7, it becomes clear that
Imp-QMST is almost 9% better than the QMST approach.
Regarding Imp-QMST, the ACO algorithm is almost 80%
better than other algorithms viz. ACO, PSO, FF, and ICA
algorithms.

Hence, it’s clear by Fig. 8 that the ACO algorithm has a
lower end-to-end delay as compared to other swarm intelli-
gence approaches, depicted in the above-said figure.

3) POWER DISSIPATION COMPARISON
On the lines of the comparison performed in sub-section 1
and 2, a similar comparison related to power dissipation is
shown here in Table 8 and Fig. 9.

It is clear from the tabular analysis that the average
power dissipation while considering all the swarm intelli-
gence algorithms, the Imp-QMST is 10% better than the
QMST approach. Further, it is also apparent in Fig. 9 that
power dissipated in the Imp-QMST is less than QMST. By the
Imp-QMST approach with the ACO algorithm, it is 25%
better than the PRIMS algorithm, 34% better than the PSO
algorithm, 26% better than the FF algorithm, and 37% better
than the ICA algorithm. Hence, it is concluded that among
all the MST construction algorithms, the ACO algorithm has
less power dissipation as compared to others and Imp-QMST
performs better than the QMST approach.

The graphical representation of power dissipation is shown
in Fig. 9.

4) DATA AGGREGATION USING VARIOUS SWARM
INTELLIGENCE APPROACHES WHEN NUMBER OF NODES
WERE KEPT FIXED (I.E. THE NUMBER OF NODES N = 35)
Here, the above-mentioned comparisons have been elabo-
rated again by setting the count of nodes fixed to 35 and
varying the call of data transmissions from 100 to 1000. The
throughput, delay, and power dissipation comparisons are
given in this section and subsections:

a: THROUGHPUT COMPARISON
A tabular comparison of throughput is shown in Table 9.
Figure 10 narrates the throughput comparison between
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TABLE 6. Throughput Comparison of QMST v/s Imp-QMST.

TABLE 7. End-to-End Delay Comparison of QMST v/s Imp-QMST.

FIGURE 7. Throughput Comparison of QMST v/s Imp-QMST.
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TABLE 8. Comparison of Energy Dissipation (in nJ) between QMST and Imp-QMST.

TABLE 9. Throughput Comparison when numbers of nodes are fixed.

TABLE 10. End-to-End delay Comparison when numbers of nodes are fixed.

QMST and Imp-QMST algorithms by using various artificial
intelligence techniques as anMST generation algorithm (data
aggregation).

The tabular analysis in (Table 9), shows that the cumu-
lative throughput of proposed Imp-QMST applied to all
the said algorithms is almost 11% better than the QMST
approach. The individual analysis of each algorithm between
Imp-QMST v/s QMST shows that the PRIMS algorithm
with Imp-QMST is 48% better than with QMST. Similarly,
ACO algorithms with Imp-QMST are 2% better than QMST,

PSO algorithm with Imp-QMST is 24% better than QMST,
FF algorithm with Imp-QMST is 21% efficient than QMST
and finally, ICA algorithm with Imp-QMST is about 7%
more, efficient than QMST approach. Further, regarding the
Imp-QMST approach it has been found that the ACO algo-
rithm performs 363% better than PRIMS, 295% better than
the PSO algorithm, 264% better than the FF algorithm, and
230% better than ICA algorithm.

Hence, it is comprehensive that the throughput from the
Imp-QMST procedure is higher than QMST while numbers
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FIGURE 8. End-to-End Delay Comparison of QMST v/s Imp-QMST.

FIGURE 9. Comparison of Energy Dissipation between QMST and Imp-QMST.

of nodes are kept fixed and the ACO algorithm performs
better than all the other said algorithms.

b: END-TO-END DELAY COMPARISON
The comparison regarding the delay between QMST and
Imp-QMST by fixing the count of nodes is delineated in
Table 10 and the graphical representation is shown in Fig. 11.

The analysis of Table 10 shows that the cumulative end-
to-end delay of all the algorithms with Imp-QMST performs

better. If we compare it individually on the ACO algorithm
then it is found that the ACO algorithm with Imp-QMST per-
forms almost 2% better than ACO with the QMST approach.

Further, it is clear from Fig. 11 that the Imp-QMST algo-
rithm causes lesser delay than the QMST approach.

c: POWER DISSIPATION COMPARISON
Table 11 and Fig. 12 show that the energy consumed (nJ) by
QMST is greater than Imp-QMST.
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FIGURE 10. Throughput Comparison when numbers of nodes are fixed.

FIGURE 11. End-to-End delay Comparison when numbers of nodes are fixed.

Similar to previous analyses, here also the ACO algorithm
performs better than to other algorithms i.e. in Imp-QMST,
the ACO algorithm is about 32% better than PRIMS and PSO
algorithm, 29% better than FF algorithm and 39% better than
ICA algorithm.

B. HANDOFF VS IMP-HANDOFF ALGORITHM
Along the lines of the previous sub-section i.e. subsection A,
the performance comparison between Handoff and proposed
Imp-Handoff algorithm is measured on various artificial
intelligence (AI) algorithms for three network parameters.
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TABLE 11. Power Dissipation Comparison when numbers of nodes are fixed.

TABLE 12. Throughput Comparison of Handoff vs. Imp-Handoff algorithm.

1) THROUGHPUT COMPARISON
Table 12 and Fig. 13 enlist the throughput comparison
between Handoff v/s IMP-Handoff algorithms on the data
aggregation tree generated by various swarm intelligence
techniques.

The tabular analysis makes it clear that the Imp-Handoff
algorithm is better than handoff algorithm, tested on various
AI algorithms i.e. Imp-Handoff algorithm is about 3% better
than handoff algorithm for PRIMS algorithm, 1.5% better for
ACO algorithm, 3% better for FF algorithm and 2% better for
ICA algorithm.

To find a better-suited algorithm, the performance of all
the said AI algorithms are compared and it is found that
the performance of the ACO algorithm for generating MST
along with Imp-Handoff algorithm for fault tolerance is best
suited. The ACO algorithmwith Imp-Handoff FT gives about
214% better throughput than PRIMS with the Imp-Handoff
algorithm for FT. Similarly, ACO performs 198%, 229%, and
184% better than to PSO, FF, and ICA algorithms.

Hence, it is clear and it can also be seen from Fig. 13 that
the throughput produced through the Imp-Handoff algorithm
is way better than the Handoff algorithm.

2) END-TO-END DELAY COMPARISON
The tabular comparison between the handoff and the Imp-
Handoff algorithm on various algorithms shown in Table 13.

Considering the end-to-end delay in Table 13, it is clear that
on an average Imp-Handoff algorithm is about 9% better than
the Handoff algorithm. If the PRIMS algorithm is considered
then applying handoff and Imp-Handoff algorithms on it
as FT techniques, the Imp-Handoff technique is around 7%
better than the handoff algorithm. Similarly, Imp-handoff on
ACO, FF, and ICA algorithm is found to be 11% better than
handoff and on PSO it is found 7% better than the handoff
algorithm.

Further, concerning Imp-Handoff, while comparing the
performance of various algorithms, the ACO algorithm is
found 80% efficient than PRIMS, PSO, FF, and ICA algo-
rithm. Apart from the tabular comparison, the graphical rep-
resentation of the end-to-end delay comparison of aforesaid
is shown in Fig.14.

By observing Fig. 14, it is clear that the end-to-end delay
using the Imp-Handoff algorithm is less than the Handoff
algorithm. Further, it is also clear that as the number of nodes
increases, the end-to-end delay also increases.
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TABLE 13. End-to-End Delay Comparison using Handoff and Imp-Handoff algorithm.

TABLE 14. Power Dissipation Comparison between Handoff and Imp-Handoff algorithm.

3) POWER DISSIPATION COMPARISON
The comparison of power dissipated in the fault toler-
ance process by using both the Handoff and the proposed
Imp-Handoff algorithms on various AI algorithms is visual-
ized in Table 14. Further, graphical analysis of shown com-
parison is shown in Fig. 15.

Table 14 shows that cumulatively considering all the AI
algorithms shown in this table, the proposed Imp-Handoff
algorithm is 7% more efficient in energy consumption as
compared to the existing Handoff algorithm. If we compare
the Handoff and Imp-Handoff algorithm on an individual
algorithm, then it is found that, for the PRIMS algorithm, the
Imp-Handoff algorithm is 10% better than the Handoff algo-
rithm. Similarly, for ACO, PSO, FF, and ICA algorithm, the
Imp-Handoff is 2%, 5%, 9%, and 4% better than the Handoff
mechanism.

Further, to find out the best-suited algorithm to construct
MST respective to the Imp-Handoff mechanism, it is found
that the ACO algorithm (Table 14) is about 56% efficient than
PRIMS, PSO, FF, and ICA algorithm.

Figure 15 also makes it clear that during transmission,
the power dissipated by the traditional Handoff algorithm is
higher than the Imp-Handoff algorithm. Power consumption
is a crucial parameter in any network as it directly affects
network lifetime.

4) DATA AGGREGATION USING VARIOUS SWARM
INTELLIGENCE APPROACHES WHEN NUMBER OF NODES
WERE KEPT FIXED (I.E. THE NUMBER OF NODES N = 35)
Along the lines of section 4 of subsection A of result
analysis section i.e. section VII-A-4, an analysis between
Handoff and Imp-Handoff is demonstrated here by adjusting
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FIGURE 12. Power Dissipation Comparison when numbers of nodes are fixed.

FIGURE 13. Throughput Comparison of Handoff vs. Imp-Handoff algorithm.

the count of nodes to 35 and varying the number of
transmissions.

a: THROUGHPUT COMPARISON
Table 15 and Fig. 16 in this section enlist the throughput
comparison between the Handoff and Imp-Handoff algorithm
by keeping the fixed number of nodes and increasing the
number of transmissions.

The tabular comparison makes it clear that the cumulative
throughput of the Imp-Handoff mechanism is about 3-4%
more than the Handoff mechanism. The individual compar-
ison of various algorithms by the Imp-Handoff mechanism
shows that the Imp-Handoff applied to the PRIMS algorithm
is about 28% efficient than the Handoff algorithm. Similarly,
the Imp-Handoff applied on ACO, PSO, FF, and PSO algo-
rithms are about 1%, 19%, 14%, and 9% efficient than the
Handoff algorithm.
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FIGURE 14. End-to-End Delay Comparison using Handoff and Imp-Handoff algorithm.

TABLE 15. Throughput Comparison between Handoff and Imp-Handoff Algorithm when numbers of nodes are fixed.

Further, it can also be concluded from Table 15 that for
Imp-Handoff, the ACO algorithm is around 355% efficient
than the PRIMS algorithm, 350% efficient than PSO, 261%
than FF, and 215% efficient than ICA algorithm.

Hence, it can be concluded that by keeping the fixed num-
ber of nodes and changing the transmissions in ascending
order, the throughput by the Imp-Handoff algorithm becomes
better than the Handoff algorithm.

b: END-TO-END DELAY COMPARISON
The end-to-end delay comparison of the Handoff algorithm
and the Imp-Handoff algorithm with said data aggregation

algorithms by setting the count of nodes to 35, has been given
in Table 16. The pictorial analysis of the end-to-end delay
comparison of Handoff and Imp-handoff algorithms is shown
in Fig. 17.

The analysis of Table 16 shows that the Imp-Handoff
algorithm performs better and, on average, it is about 2%
better as compared to the Handoff algorithm. By comparing
individual algorithms with Imp-Handoff and Handoff, it is
found that Imp-Handoff applied on the PRIMS algorithm
gives about 2% better performance, ICA gives 8% better
performance and rest of the algorithmsmentioned in Table 16
give a slightly better or equal performance as compared to
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FIGURE 15. Power Dissipation Comparison between Handoff and Imp-Handoff algorithm.

FIGURE 16. Throughput Comparison between Handoff and Imp-Handoff Algorithm.

Handoff approach. Further, by analyzing Table 16, it becomes
clear that by Imp-Handoff, the ACO algorithm is an average
82% efficient as compared to PRIMS, PSO, FF, and ICA
algorithms.

Hence, Fig. 17 concludes that the end-to-end delay of
the Imp-Handoff algorithm is way lesser than the Handoff
algorithm and stays almost the same for all the number of
transmissions, for all MST generation algorithms.

c: POWER DISSIPATION COMPARISON
The power dissipation comparison is also specified in
Table 17. Table 17 depicts that, on an average, Imp-Handoff
algorithm is 8% efficient in saving energy as compared
to the Handoff algorithm. The Imp-Handoff on PRIMS
algorithm saves 5% energy as compared to the Handoff
algorithm. Similarly, the Imp-Handoff algorithm, as a fault
tolerance algorithm applied on ACO, PSO, FF, and ICA;

149250 VOLUME 8, 2020



V. K. Menaria et al.: NLFFT: A Novel FT Model Using Artificial Intelligence to Improve Performance in WSNs

FIGURE 17. End-to-End Delay Comparison of the Handoff v/s Imp-Handoff Algorithm.

FIGURE 18. Power Dissipation Comparison between the Handoff and Imp-Handoff algorithm.

saves about 11%, 2%, 5%, and 12% less energy as com-
pared to the Handoff mechanism. Similar to previous result
analysis sections, Fig. 18 depicts the graphical analysis of
power dissipation between handoff and Imp-Handoff tech-
niques on MST constructed by various artificial intelligence
techniques.

Further, the Imp-Handoff mechanism applied to the ACO
algorithm is around 68% energy efficient as compared to
other algorithms viz. PRIMS, PSO, FF, and ICA algorithm.

Hence, by viewing Fig. 18 and Table 17, it is concluded
that the power dissipation by the Imp-Handoff mechanism is
low as compared to the existing handoff mechanism.
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TABLE 16. End-to-End Delay Comparison between Handoff and Imp-Handoff Algorithm when numbers of nodes are fixed.

TABLE 17. Power Dissipation Comparison between the Handoff and Imp-Handoff algorithm when numbers of nodes are fixed.

VIII. CONCLUSION AND FUTURE SCOPE
The result analysis of section VII makes it clear that the pro-
posed NLFFTmodel for fault tolerance (shown in section IV)
is successful when any node or link failure occurs in the sen-
sor networks. The supportive Imp-QMST and Imp-Handoff
algorithms are found to be way better than QMST and
Hand-off algorithm in terms of throughput, end-to-end delay,
and power dissipation. In the mentioned result analysis
section, four swarm intelligence techniques (ACO, PSO, FF,
and ICA) and one traditional PRIMS algorithm have been
applied to generate MST to support data aggregation, and
then fault tolerance mechanism is imposed according to the
proposed NLF fault-tolerance model.

Simulation results depict that as compared to basic tech-
niques, i.e. Q-MST and Handoff algorithm, the proposed
NLFFT model improvises the performance of WSN around
7%. The comparison of the individual algorithm shows that

the Imp-QMST gives about 6% improved throughput, 5%
lesser end-to-end delay, and 6% less power consumption as
compared to the QMST algorithm. Similarly, Imp-Handoff
improves about 4% throughput, 6% lesser end-to-end delay,
and 7% less power consumption as compared to the Handoff
algorithm. Hence, the proposed NLFFT model proves the
improved performance in terms of throughput, end-to-end
delay, and power consumption.

Though the complexity of the proposed algorithms in
the NLFFT model is increased by involving more than one
parameter, i.e. battery power, cost of edges but the competent
results go on to prove the efficacy of the proposed NLFFT
model and shows that it can be applied to handle node or link
failures.

Further, as the proposed NLFFT fault tolerance model
is applied to the statically deployed sensor nodes only,
it can be extended and applied to the dynamically deployed

149252 VOLUME 8, 2020



V. K. Menaria et al.: NLFFT: A Novel FT Model Using Artificial Intelligence to Improve Performance in WSNs

sensor networks also. This work can also be extended in
Internet-based applications by adding some security proto-
cols and regulations.
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