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ABSTRACT With the growing complexity of integrated circuits (IC), more and more test patterns are added
to test set to test more defects, making the number of test pattern and individual test pattern length continues to
increase as the size of IC gets larger, boosting test time and consequently test cost. To solve this problem, this
paper proposes a kind of valid pattern identificationmethod. Themethod usesmachine learning to reorder the
test pattern which can select the most effective patterns, to determine the optimal training set and test set first.
Then, by means of the weighted SVMRANK algorithm to find the optimal pattern sequence. Experiment
results demonstrate that the method only sacrifices 2% prediction accuracy in exchange for 3.89 times the
time saving. The method aims at maximizing the accuracy of test, and minimizing the number of patterns.
The proposed idea significantly improves the test time and test efficiency compared to conventional test
flows. This is an innovative test cost reduction method with the growing complexity of IC.

INDEX TERMS Adaptive test, machine learning, test reorder.

I. INTRODUCTION
Very Large Scale Integration test is an important and first step
for identifying defects within a failing chips. To address this
problem, a large number of test patterns (referred to as ‘‘test
items’’ in this paper) are needed to ensure that the Defect
Part Per Million (DPPM) is less than one [1]. In traditional
testing, all test items are applied to the test, and the test set
(test content or patterns) is applied to each circuit until it
passes the whole suite of tests or fails one of the tests. A chip
is considered as pass only if it passes all the test items. Based
on the test results, each chip is classified as being either pass
or fail. The failed chips are either discarded or forwarded for
diagnosis and failure analysis, while the pass chips are sent
to the next stage of testing.

The standard test approach is straightforward to put in
place and results in high test quality. However, it incurs
very high test cost since it requires sophisticated Automatic
Test Equipment (ATE) and long test time [2]. According
to International Technology Roadmap for Semiconductors
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(ITRS) data, test cost is now amajor part of themanufacturing
cost [3], which has emerged as a major showstopper for fur-
ther advancement. Therefore, there is a pressing need to find a
new test method to reduce the test cost, and the corresponding
scientific issues are summarized as follows:

1. With traditional test approach, all parts are tested the
same, regardless of the individual performance of each part.
The approach is somewhat satisfactory when variation is
small, but when large variation exists, traditional methods
will be insufficient. For example, either an excessive number
of good dies are failed due to overly tight limits to ensure
defective dies are detected, or there are an excessive number
of test escapes (i.e., faulty circuits are undetected) due to
overly loose limits to reduce yield loss (i.e. non-faulty circuits
that are inadvertently discarded) [4].

2. The rapid growth of the silicon process over the last
few decades has significantly improved semiconductor inte-
gration levels. The transistors today are smaller, faster and
cheaper than ever before. However, this aggressive down-
scaling of dimensions in the forthcoming CMOS technology
generations poses critical testability issues [5], especially the
test cost keeps increasing as technology nodes advance.
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3. If the chips to be tested come from the same fabs,
the same batch, and the same flow, then the defects of this
batch may be the same, in this case, there is no need to use
all test patterns, only a small number of corresponding test
items can detect these defects [5]. However, traditionally,
the test limits, test content and test flows are statically set and
only occasionally updated based on expert experience, and
the time scale is typically every few months, so that there is
pressing need to find a new test method to remove ineffective
patterns depending on defect characteristics.

4. Some irrelevant or redundant test items exist in the
increased test pattern, and the effectiveness of the test pattern
is reduced [6]. Production test suites include a large number
of redundant test patterns due to the inclusion of multiple
test types with overlapping defect detection and the use of
simple fault models for test generation [7]. In addition to ever
increasing circuit sizes, the need for new test types constitutes
one of the main drivers of test pattern increase [8]. New
test types such as N-detect [9] and gate-exhaustive tests [10]
further exacerbate the issue by systematically adding redun-
dancy into the test set in order to increase the probability
of detection of actual silicon defects. Therefore, reducing
redundancy of test set becomes increasingly critical because
of the multiplication of data.

5. Enormous defect detection overlap problem between
test types has not yet received commensurate attention. IBM
has historically found that 70%-90% of the logic test pat-
terns can be removed for Application Specific Integrated
Circuit (ASIC) without any impact to test escapes shipped to
customers [11]. As previously reported by industry and aca-
demic researchers, a significant number of redundant patterns
exist in the test sets, resulting in a substantial increase in test
time yet at no concomitant defect coverage benefit.

6. From another point of view, advanced semiconductor
processes allow design specifications to tolerate parameter
variations in the manufacturing process stage, to achieve
acceptable yields, sometimes this will lead to potential manu-
facturing defects, typically expressed in terms of test escapes.
Such undetected defect may lead to chip failures and reduce
reliability, leading to early life failures. Therefore, there is a
pressing need to find a new test method to improve reliability.

From the abovementioned scientific issues, with the grow-
ing complexity of IC, testing needs more and more test pat-
terns, the number of test patterns and individual test pattern
length continue to increase as the size of IC gets larger,
and thus, boosting test time and consequently test cost [12].
The objective of test is to cost effectively screen parts for
high quality and reliability, while at the same time limiting
unnecessary yield loss. It is extremely difficult to do this
using traditional methods. To improve the performance of
test, some forms of adaptation is essential.

In recent years, there has been an intense effort to develop
alternative test approaches that can replace effectively the
standard test approach. Therefore, an adaptive testing strategy
is now being advocated [2]. The concept of adaptive testing
is to divide the chip into multiple groups, randomly selects a

small set of chips as sample chips for each group, and then
applies a complete set of testing to these sample chips. Based
on the test outcomes of the sample chips, adaptive testing
selects only the most effective test items for each group.
In this way, significant test time savings and test quality
improvements expected can be achieved.

In adaptive testing, each wafer or die can be tested using
a unique test process. Adjusting the test process may involve
adjusting: (a) The test content, i.e. given a test suite certain
ineffective patterns are dropped so as to save test time; and
(b) The test order, tests with higher fail rate are moved
forward and applied first so as to save test time; and (c) The
test limits adjustment so as to improve outlier detection and
quality control [2]. This work uses the method to reorder the
test patterns to achieve the purpose of saving test costs.

Considerable amount of effort has been expended on test
pattern reordering schemes that aim at improving the test
time, and many works based on adaptive test methods have
been published in the field of testing. In [13], [14], authors use
the fault coverage metric to approximate pattern effectiveness
in pattern reordering, and investigate the impact of reorder-
ing four different types of tests (functional, IDDQ, stuck-at
and delay). However, the method may not be as effective
for catching defects. In order to address this problem, a
somewhat adaptive and finer grained test reordering approach
in [15] analyzes a sample set of failed devices, identifies
which devices fail which tests, and computes an optimal order
of tests via dynamic programming or heuristics. However,
it may not be effective in detecting effective chips quickly.
Although appreciable benefits have already been observed in
established work in [8], no algorithmic approach has been
proposed to efficiently utilize the correlation information in
adaptive test development, hindering the full exploitation of
the potential of adaptive techniques. Finally, the adaptive test
technique proposed in [7] continuously reorders tests based
on the test fail rates, which is the actual effectiveness measure
for tests. However, the method didn’t consider the trade-off
between test time and test accuracy.

As we can see, most of previous works are based on
minimizing test cost [16], [17], they don’t consider the test
quality, at the same time, increased hardware overhead leads
to increased manufacturing costs, and lacking research on
screen out the most effective test patterns, which can pro-
vide test cost reduction without increasing the defect level.
To bridge this gap and formally show that, in a quest to reduce
test cost and increase test quality, the work presented in this
paper adopts improved SVMRANK as a pattern selection
algorithm which can select the most effective patterns while
guaranteeing the test quality. This paper presents an innova-
tive pattern reorder approach to select the optimal test patterns
as is shown in Fig.1.

The main contributions of this paper are shown as follows:
1) We use machine learning algorithm to rank and reorder

the test patterns and consequently reduce test time.
2) We proposed an improved SVMRANK method with

weight function to improve defect prediction accuracy.
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FIGURE 1. Test reorder adaptive test flow.

The rest of the paper is structured as follows. Section II
presents the background and test strategy. In Section III,
the proposed reorder algorithm is presented in detail.
Section IV shows experimental environment and verification
results, and the conclusions are drawn in Section V.

II. BACKGROUND
A. ADAPTIVE TEST DEFINITION
As for traditional test approach, the test content, test order and
test limits are fixed, the test set is applied to each circuit until
it passes the whole suite of tests or fails one of the tests, and
it follows a fixed procedure. However, if there is only a small
part of test patterns are valid, and still use conventional 100%
test patterns, that obviously wastes of test time. Therefore,
there is a pressing need to find a new test method to reduce
test cost.

Adaptive testing is a promising approach that practically
ensures cost reduction (eliminate redundancy and use fewer
test patterns) and test quality (fewer test escape) for testing
strategy. In adaptive test, the test content, test order and
pass/fail limits are not fixed as in conventional test, but
depend on other test results of the currently or historically
tested data (training data), and data analysis that can be
used to adjust test limits and content during production
testing on-the-fly. Adaptive testing [16], [17] is now being
advocated, by dropping unnecessary test items to reduce the
test costs, or by heightening test limit criteria to improve
the test quality. Unlike conventional test, all test items do
not require thorough testing, it considers whether these test
items are effective based on the test outcomes of the sample
dies, and adaptive testing selects only the most effective test
items. In this way, significant test time savings or test quality
improvements can be achieved compared with traditional test
flows.

B. TEST REORDER UNDER STOP-AT-FIRST-FAIL
MECHANISM
In ATE test, where stop-at-first-fail is employed. The idea
is to apply more effective patterns/tests earlier to make
defective chips quickly fail. Fig. 2. shows the test reorder
approach. Item 2 composes of five test contents, the first two
test content pass and marked as P, and the third test fails
marked as F. Then, the fourth and fifth tests are no longer
executed, it means that test item 2 stops, and this is stop-
at-first-fail, which saves two fifths of test time. Apparently,
such schemes help reduce test time for only the dies that fail
the test, as all tests end up being applied on passing dies.
In addition, stop-at-first-fail is not only used to save test time,
but to protect the ATE hardware.

FIGURE 2. Test reorder flow under stop-at-first-fail mechanism.

In Fig. 2 the input data of test set consists of 5 tests (item 1,
item2, . . . , item5) that are called here the original set (the left
part in Fig. 2). Test item 1 to 5 are executed sequentially as
traditional test method. In order to achieve the biggest time
savings, adaptive test adopts reordering test item method (the
right part in Fig. 2), rank forward the item which are most
likely to fail, and the most effective test item can be executed
first.

C. ADAPTIVE TEST: SEARCHING THE OPTIMAL SUBSET
DATA
Multiple subsets of test patterns may have the redundancy
problems. Feature (pattern) selection is one of the effective
ways to solve the problems. The significance of feature selec-
tion is to remove some irrelevant subsets or duplicate subsets,
and reduce the number of subsets while ensuring the validity
of the subsets, reducing test patterns complexity and test time.
Hence, the objective of feature selection is to improve the
test performance by avoiding the interference of redundant
and irrelevant features, to provide faster and more effective
test pattens and to help the data processing by enabling a
more parsimonious representation of the test sets. Adaptive
test can shorten the test time by reducing or reordering the
test contents as is shown in Fig. 3.

Although the test time for a good die is fixed nomatter what
size is used for applying the tests, the test time for a faulty
die may vary greatly for distinct test size. The approximation
of the ideal test size represents essentially a search for the
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FIGURE 3. Searching for optimal subset.

maximization of the early defect detection probability.
Attaining such a goal requires mathematical models that
predict the capability of a particularly test in detecting the
defects that have not yet been covered by the tests before
it, in turn again necessitating an accurate correlation analysis
between tests.

III. PROPOSED IMPROVED SVMRANK METHOD
In test patterns ranking, the basic mechanism of SVMRANK
is to convert the patterns ranking problem to binary classifica-
tion problem of each candidate pair. Then, the support vector
machine (SVM) will be utilized for the binary classification
of multiple patterns, so as to achieve ranking. All candidate
items are ranked according to their importance features.

A. CONVERT THE RANKING PROBLEM TO A
CLASSIFICATION PROBLEM
First, we define a feature vector: x. The ranking function
is f (x), and then determine which test item is ranked first
and which item is ranked next based on the size of f (x). That
is, if f (xi) > f

(
xj
)
, then xi should be ranked before xj, and

vice versa. It can be expressed by the following formula:

xi > xj ⇔ f (xi) > f
(
xj
)

(1)

In theory, f (x) can be any function. For simplicity, this
work assume that it is a linear function:

f (x) = 〈w, x〉 (2)

If this ranking function f (x) is a linear function, then it
can be converted a ranking problem to a binary classification
problem. The reasons are as follows:

First, for any two feature vectors xi and xj, under the
premise that f (xi) is a linear function, the following relation-
ship exists:

f (xi) > f
(
xj
)
⇔
〈
w, xi − xj

〉
> 0 (3)

Then, the binary classification problem can be considered
as the difference vector of xi and xj. We can assign a label to
the difference:

y =

{
+1, if xi − xj > 0
−1, if xi − xj < 0〈

w, xi − xj
〉
> 0⇔ y = y+ 1 (4)

B. USING SVM MODEL TO SOLVE THE RANKING
PROBLEM
After converting the ranking problem into a classification
problem, it can use the commonly used classification model
to learn. Here this work chooses Linear SVM. Similarly, it can
be extended it to nonlinear SVM through the kernel function
method.

As shown in the Fig. 4 below, it is an example of a
ranking problem. There are two sets of queries and their
corresponding recalled documents. Where the relevance level
of documents is divided into three ranks. The weight vector w
corresponds to the ranking function f (x) = 〈w, x〉, and the
query pair can be scored and sorted.

FIGURE 4. Ranking problem.

The following Fig. 5 shows how to convert the ranking
problem into a classification problem. The feature vectors
of pattern with different relevance levels in the same group
(under the same query) can be combined to form new feature
vectors: x1 − x2, x1 − x3, x2 − x3. Similarly, the label will
be re-assigned. For example, the labels of the feature vectors
such as x1 − x2, x1 − x3, and x2 − x3 are assigned as the pos-
itive labels in the classification problem. Further, in order to
form a standard classification problem, we also need negative
samples. Here this work uses the reverse vectors of the new
positive feature vectors as corresponding negative samples:
x2 − x1, x3 − x1, x3 − x1. In addition, it should be noted that
when we combine to form a new feature vector, it cannot use
two feature vectors at the same similarity level in the original
ranking problem, nor can we use two feature vectors under
different queries.

FIGURE 5. Classification problem.

147968 VOLUME 8, 2020



T. Song et al.: Pattern Reorder for Test Cost Reduction Through Improved SVMRANK Algorithm

C. SOLVING PROCESS OF SVM MODEL
After transforming into a classification problem, it can be
used the general method of SVM to solve classification, and
mark the classes of all relevant candidate pairs

(
x(1)i , x(2)i

)
,

where x(1)i is the first candidate of the i-th pair, and x(2)i is the
second one. To achieve the binary classification target for the
built dataset, the SVM is established as follows:

minw,ε
1
2
‖w‖2 + C6N

i=1εi

s.t. yi
〈
w, x(1)i , x(2)i

〉
≥ 1− εi

εi ≥ 0

i = 1, . . . .,N (5)

wherein, C represents the penalty factor, εi denotes slack
variable, and yi ∈{0,1} signifies the class of i-th pair.
By introducing constraints into the relaxation variables of

the original optimization problem, it can be further trans-
formed into an unconstrained optimization problem:

min
w

∑N

i=1
[1− yi

〈
w, x(1)i , x(2)i

〉
]+ + λ ‖w‖2 (6)

The first term of the sum represents the hinge loss, and the
second term represents the regular term.

D. IMPROVED SVMRANK METHOD
The above part is the introduction of the basic SVMRANK
classification algorithm. The following is to find the opti-
mal solution by modifying the loss function. In SVM-
RANK, the optimization goal is better consistent with the
commonly used evaluation index of information retrieval
problem, specifically, it needs to give different weights to
distinguish, in addition, it uses cost sensitive classification
instead of 0-1 classification, the usual hinge loss is modified
to give different loss weights.

1) For a pair with a higher similarity level, a larger loss
weight is assigned.

2) For a smaller number of queries, a larger loss weight is
given.

FIGURE 6. Loss weight function.

The optimization problem of SVMRANKcan be expressed
as follows:

min
w

N∑
i=1

k(i)µq(i)[1− yi
〈
w, x(1)i , x(2)i

〉
]+ + λ ‖w‖2 (7)

where k(i) represents the loss weight value of the instance
belonging to the k-th grade pair. And average all the reduction
values to get this loss weight. It is conceivable that the greater
the loss weight value, the greater the influence of the pair on
the overall evaluation index, so the importance of training is
correspondingly greater. This is to make the training result
focus on the ranking position, and vice versa.

Because the relative importance of SVMRANK training
will be low, the improvedmethod can increase the importance
of the pattern pair under the query by increasing the weight
parameter, so that the model training can attach considerable
importance to the doc pair under different queries. Therefore,
the optimization problem of SVMRANK is as follows:

minw,ε
1
2
‖w‖2 + Ci6N

i=1εi

s.t. yi
〈
w, x(1)i , x(2)i

〉
≥ 1− εi

Ci =
k(i)µq(i)

2λ
εi ≥ 0

i = 1, . . . .,N (8)

The correlations among multiple importance evaluation
criteria are generally non-linear. It is difficult for the linear
classifier to capture the non-linear relationship among var-
ious features. In the application of SVM to address the
non-linear problems, kernel functions can be used to map
the feature space from the low-dimensional space to the
high-dimensional space. Subsequently, the non-linear prob-
lems may be solved by using linear classifier in the
high-dimensional space.

IV. EXPERIMENTAL RESULTS
A. FAULT SIMULATION ENVIRONMENT SETUP
The simulation experiment is conducted according to
reference [22], [23] as is shown in Table 1. Due to the absence
of actual defect detection data, the simulation test patterns
reduction may vary based on real defect behavior and test
types used in the production.

To better mimic reality, a pool of defective circuits is
generated by randomly injecting cell defects, open defects,
and bridge defects, one at a time, into a layout implemen-
tation of each benchmark [19]. The cell defects injected
include internal line opens, bridges between internal lines,
bridges between inputs of a cell, feedback bridges between
the inputs and output of a cell, transistor stuck-opens, transis-
tor stuck-close defects [20]. For each layout with an injected
defect, the corresponding circuit-level [21] netlist is extracted
and circuit-level simulation is performed using a test set
that achieves 100% stuck-at fault efficiency, and the circuit
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TABLE 1. Preliminary number of defective circuits.

responses are digitized and collected. In order to simulate
industrial design, by means of iterative method consisting
of 48,500 flip flops and 1.1 million gates are used in the
experiments. 4,000 stuck-at scan vectors are generated by a
commercial ATPG tool.

B. DETERMINE RATIO
In order to select the best ratio of training set and test set, and
find the optimal value of ranking result, therefore, the training
data are selected randomly but different from each other, and
the test data are collected from the rest of the sampled data.
The ratio of the size of training data to that of the test data are
1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1. The resampling
is repeated 10 times. As is shown in Fig 7. The result might
expect that the larger the size of training data, the smaller the
value of MSE for test data.

FIGURE 7. Comparison MSE of various ratios.

Fig 7. Shows that the value ofMSE is preferably at 0.17 and
ratio at 8:2. it is obvious that the ratio of 8:2 is more robust
than 9:1. Therefore, 80% of test patterns as training data and
20% of test patterns as test data were chosen in this work.

To evaluate the efficiency and accuracy of the proposed
method, the experiment is performed on the test pattern gener-
ated by simulation results. Test simulation program is imple-
mented using Python. Machine learning experiment platform

adopted python 3.7 and scikit-learn library, test_size = 0.2,
and random_state = 0.

C. PREDICTIVE ACCURACY COMPARISON
In order to compare the accuracy of the proposed method,
four different test flows were used. The ratio of the size
of training data to that of the test data are 8:2. The resam-
pling is repeated 10 times and get the average value of
accuracy. Fig. 8. shows the predictive accuracy. The method
uses traditional method, the proposed method (with weight),
SVMRANK method (no weight), and the test-set reordering
method [7] are compared in Fig. 8 respectively. The predictive
accuracy of the proposed method (which is 89%) is 2% lower
than the traditional method (which is 91%), but higher than
SVMRANK method (which is 83%) and test-set reordering
method [7] (which is 82%). From the results, it can be seen
that the accuracy of the proposed method is better than SVM-
RANK and the method [7].

FIGURE 8. Predictive accuracy receiver operating characteristic (ROC)
curve.

D. TEST TIME COMPARISON
In order to compare the test time of the proposed method,
200,000 faults that are randomly selected from the sample set
of stuck-at faults are injected to the design one at a time [23].
The experiments start with a random test order. The trailing
average of test time for the last 10,000 faults at each point
during the testing is reported in Fig. 9.

Since each pattern has the identical length in our experi-
ments, the test time reported is proportional to the number
of patterns applied. Fig. 9. shows that the proposed method
(with weight) has the smallest testing time.

In order to compare the test time of proposed method
and the traditional method and choose the optimal pro-
portion of the test patterns, Table 2 shows a close exam-
ination of the results shows that detection time scoring
(150,000 faults and 200,000 faults) delivers better results than
detection count scoring (50,000 faults and 10,000 faults). The
improved SVMRANK test method with detection time scor-
ing (250.47 ÷ 64.32 = 3.89X) delivers the highest reduction

147970 VOLUME 8, 2020



T. Song et al.: Pattern Reorder for Test Cost Reduction Through Improved SVMRANK Algorithm

FIGURE 9. Average test time comparison.

in test time, which shows that the more test patterns, the
greater the test time savings.

E. TEST ITEMS COMPARISON
In our application, the test items have similar test time.
In order to compare the selected test items to each other,
the experiment is repeated 5 times to get the value of test
items, and the overall comparison result is shown in Fig. 10,
which shows that the proposed method always has the small-
est test items.

FIGURE 10. Select test item comparison.

F. TEST ESCAPE COMPARISON
In order to compare the test escape of the proposed method,
10% to 100% of the test items were used. The resampling is
repeated 10 times to get the average value of test escape.

Fig. 11 shows the proposed method has the smallest num-
ber of test escapes compared to the other three methods.

FIGURE 11. Test escape comparison.

In order to compare overall result and prove that our
method is better than the other methods, the proposed method
is compared with the conventional test scheme and the
test reorder method proposed in [7], in terms of test cost
(test time) and test quality (predictive accuracy). The com-
pare results for the improved SVMRANK techniques (with
weight) are listed in Table 2 when proportion of test pattern
is 20%.

TABLE 2. Test time improvement over the traditional test.

The last column of Table 3 shows the comparison between
the proposed technique and the approach in [7]. Distinct
benefits of the proposed technique over the previous adaptive
approach can be observed, both in terms of test time and
quality. From Table 3 it can be calculated that the proposed
method saves test time to 10.6% and the test quality is
improved to 8.5% compare with the approach in [7].

In order to show the superiority of the proposed method,
this work compared the pattern reordering method in the last
three years. In terms of accuracy, test time, select test items
and the number of test escape. The compare results are shown
in Table 4.

From Table 4 we can see the reorder-based [2] and [23]
shown that the test time equivalent to test cost are less than
the proposed method, but there are more test escapes than
proposed method, they only consider the reduction of test
cost and ignore the increase of test escape. The reorder-based
Ref [7] and Ref [12] have the same test escape as proposed
method, experimental results show that they only focus on
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TABLE 3. Comparison of other test flow.

TABLE 4. Comparison of other reordering methods.

test quality, but ignore the test cost. The most similar result
is to based Ref [17] method, however, it is the reduction
of test time and test escape by increasing a large amount
of hardware circuit and area overhead, and the proposed
method is completely software-based and does not require
any additional hardware overhead. Therefore, it is the best
compromise between test escape and test cost of proposed
method.

V. CONCLUSION
Our work is an innovative test cost reduction method, which
selects the effective test patterns with improved SVMRANK
algorithm. The advantage is that it will make test patterns
with higher fail rate are moved forward and applied first so
as to save test time, and comparison show that the proposed
idea significantly improves the test time and test efficiency
compared to conventional test flows, which can provide test
cost reduction without increasing the defect level obviously.
Furthermore, this algorithm is completely software-based
and does not require any additional hardware overhead.
However, the bad samplingmay lead to inaccurate predictions
or increased test escape. With the growing complexity of IC,
more data will be used for testing, and the sampling will
be more accurate. In addition, the reordering method can
update the prediction model according to the statistical data,
and update the test patterns simultaneously, which shows the
method’s adaptive ability.
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