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ABSTRACT We present a framework that generates a 2D Lego-compatible puzzle layout of greater than
thousands pieces of bricks using a reinforcement learning technique.Many existing 2D legorization strategies
have limitations in producing a Lego layout, which is composed of more than thousands of pieces. We attack
this problem by employing a reinforcement learning technique, which accelerates the progress of various
game strategies. We represent the legorization process as a game tree search problem, where each leaf node
of the tree corresponds to a Lego layout. The goal of legorization is to find an optimal Lego layout that
achieves maximum reward. To efficiently find a leaf node for the maximum reward layout, we reduce the
search space using a dueling deep Q-Network (DQN), which is a widely used reinforcement learning model.
Our framework is composed of a learning stage and a legorization stage. In the learning stage, we design a
dueling DQNmodel and train this model using three heuristics for legorization strategies. In the legorization
stage, we efficiently generate a large-scaled 2D Lego-compatible puzzle layout by reducing the search space
using the trained dueling DQN. This approach enables us to produce a puzzle layout of more than a thousand
of pieces, which has not been feasible for existing legorization schemes.

INDEX TERMS Lego, reinforcement learning, deep Q-network, legorization, heuristic.

I. INTRODUCTION
Image-based puzzles, which are played by placing small
pieces in their proper positions until a target figure is com-
pleted, have been widely popular for a long time. Jigsaw
puzzle is one of famous image-based puzzles. However,
the pieces of a jigsaw puzzle can only be used for a given
target image. We recognize a strong need for an image-based
puzzle with reusable pieces. Therefore, we devise an image-
based puzzle that uses Lego bricks for its pieces.

We identify another requirement for our study in the
widespread favors on pixel art, which represents complex
objects or scenes in a very low resolutional images. Unlike
Jigsaw puzzle, which uses an image of its own resolution,
Lego-based puzzles require pixel art images for their input.
Fortunately, the unceasing favors on pixel art will increase
the needs for the Lego-based puzzles.

Lego R© bricks are one of the most widely beloved toys,
enjoyed by children and adults alike. Many users complete
target models by assembling bricks according to an assem-
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bly guidance map. Lego designers exploit various characters
from multiple types content, such as movies, animations,
games, and comics to produce their models. Recently, many
Lego users have expressed their wish to build their own
Legomodels based on their favorite characters using common
Lego bricks. However, only a few Lego specialists can design
such models. Therefore, we present a framework that con-
structs an assembly guidance map for a Lego model based on
user-selected images. By combining these two requirements,
we present a framework that constructs an image-based puz-
zle layout using reusable Lego-compatible bricks from user-
selected images, as shown in Fig. 1. Our Lego-compatible
puzzle is assembled using Nano R© bricks [16], whose shape
is similar to a Lego R© brick. The physical scale of a Nano R©

brick is approximately 1/8 of a Lego R© brick.
Some studies [6]–[8] presented 2D legorization schemes

that build layouts of Lego-compatible bricks from low res-
olutional images. They have limitations in producing large-
scaled Lego layout, which is completed by assembling
thousands of bricks. Since large-scaled Lego layout is desired
by many Lego artists and enthusiasts, we aim to present a
framework that generates large-scaled 2D Lego-compatible
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FIGURE 1. The milestones of our algorithm: An original artwork image in (a) is pixelized to a pixel art image in (b). On (b), we build a 2D
Lego-compatible puzzle in (c), which is completed to a real Lego-compatible puzzle with 7,817 pieces of Nano R© bricks.

layout. Many legorization schemes suffer from the heavy
computational loads for producing large-scaled Lego layout.
To resolve this problem, we employ a reinforcement learn-
ing technique, which successfully improves the efficiency of
many game solving strategies such as AlphaGo [17]. Our
framework is distinguished from existing automatic Lego
generation frameworks by three points.

The first point is that the input to our framework is a low
resolution image, such as a pixel art image, whereas most
existing frameworks exploit 3D voxel models for their input.
By restricting the input to a low-resolution image, we can
concentrate on a Lego generation strategy for a 2D Lego lay-
out. Most Lego generation frameworks pursue various virtues
of Lego layouts, including stability, aesthetics and efficiency
via heuristics, such as the cover ratio, big brick, perpen-
dicularity, vertical boundary, T-shaped joining, and covered
edge by center heuristics. Because our framework aims to
produce a 2D Lego layout, we can concentrate on heuristics
that are more important and influential for 2D layouts. This
concentration enables our framework to efficiently produce a
2D Lego layout with specific characteristics.

The second point is that we employ a game framework for
the construction process of the Lego layout, where an optimal
Lego layout constitutes winning the game. The game tree

embeds all possible Lego layouts in its leaf nodes and the
reward of the game is designed according to the heuristics we
pursue in the Lego generation. We formulate the construction
of a puzzle layout from an input pixel artwork image as a
game that places proper bricks on the image until a brick
layout is completed. Each brick produces a corresponding
reward. At the completion of the Lego layout, we estimate
the total reward of the layout by summing the individual
rewards from the individual bricks. Therefore, winning the
game means that we find a brick layout whose reward is
maximized.

The third point is that we propose a reinforcement learning-
based search strategy for the optimal Lego layout. A game
is simulated in a game tree structure whose root node cor-
responds to the initial empty layout and whose leaf nodes
correspond to complete layouts. We express the addition of a
brick to a state as a child node of the node that represents that
state. We search for the leaf node whose reward is the largest.
An exhaustive search on the game tree that can find the
optimal layout is not feasible due to the heavy computational
load. Therefore, many existing schemes employ heuristic
search algorithm such as beam search or A* search for game
trees. These schemes, however, have a size limitation when
finding an optimal layout.
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Our strategy aims to reduce the search space of the tree.
From our observations, the influence of a Lego brick is
limited only to its neighboring bricks. Therefore, we assign
a region of interest (ROI) in the tree to reduce the search
space in the tree. Another observation is that we can reduce
the candidates for a proper brick by properly training the
selection strategy for the brick. Accordingly, we employ a
dueling deep Q-network (DQN) structure, which is a widely
used reinforcement learning scheme. These two strategies
reduce the search space, allowing our framework to find an
optimal brick layout with a reasonable computational load.

This article is organized as follows. In Section II, we briefly
review the related work on legorization and reinforce-
ment learning. We present an overview of our approach in
Section III. In Sections IV andV, we explain the two stages of
our approach: the learning and legorization stages.We present
our results in Section VI and finally draw our conclusions in
Section VII.

II. RELATED WORK
A. 3D LEGO GENERATION STUDIES
Most 3D Lego generation schemes have employed a greedy
approach for building Lego layouts from 3D meshes or voxel
models.

1) EARLY WORK
Early Lego generation studies depended on several heuristics
that define the design scheme of a Lego model. These studies
built a Lego models by minimizing a penalty function, which
is designed according to several heuristics. Gower et al. [4]
presented pioneering work devising six heuristics for Lego
model design. These are the cover ratio, bigger brick, perpen-
dicularity, vertical boundary, T-shaped joining, and covered
edge by center heuristics. They designed a penalty function
that considers these six heuristics and presented a heuristic
approach that minimizes this function. Later, Petrovic [5]
minimized the heuristics from Gower et al.’s study using
a genetic algorithm, and van Zijl and Smal [6] employed
cellular automata that merges 1 × 1 sized bricks to satisfy
Gower et al.’s heuristics.

2) RECENT WORK
Recently, Testuz et al. [9] presented a graph-based greedy
approach that merges 1×1 sized bricks into bricks of various
shapes. They modeled a Lego model using a graph whose
nodes correspond to bricks and whose edges correspond to
the connectivity of the bricks. The articulation point of the
graph denotes the bricks with a low level of connection,
which are resolved by rearranging the close bricks. Ono et al.
[10] also presented a graph-based greedy merge algorithm to
build a Lego model using Gower et al.’s heuristics. Lee et al.
[11] merged the greedy and genetic algorithm to combine
1 × 1 sized bricks. Zhang et al. [12] presented a random
merge scheme that considers stability, symmetry and color.

Stephenson [13] presented a four-stage search algorithm that
merges 1× 1 sized bricks.
Most recently, Min et al. [3] presented a legorization

scheme that minimizes the heuristics using an A* search
algorithm. Three heuristics including stability, efficiency and
aesthetics were employed to express a proper Lego model.
They also presented a silhouette fitting scheme to construct a
voxel model that resembles the input 3D model.

3) PHYSICALLY-STABLE MODELS
Luo et al. [1] presented an automatic legorization framework
that included physical considerations, such as the friction
between bricks and the maximum load weight on the bricks.
They represented a Lego model using a graph and estimated
the stability of the model by measuring the weight loaded
on each brick. Kosaki et al. [2] presented a legorization
scheme that reconstructs the 3D geometry of a Lego model
by combining photographs of various views of an object.
They included a momentum term for their energy function
to improve the physical stability of their model.

B. 2D LEGO GENERATION WORKS
Zhang et al. [7] presented an interactive system for building
2D Lego models from an image. They applied pattern tiling
on a feature mask generated from the input image. They
drew features using the users’ intuition on the feature mask
and presented various layer operations and brick-editing tools
to modify the pattern results. Because they presented an
effective user-friendly 2D Lego model generation scheme,
the lack of algorithms for automatic Lego generation means
that the quality of their results depends heavily on the users’
interactions.

Kuo et al. [8] presented a scheme for building 2D Lego
models from pixel art images. They deformed the shape of
the pixel art image to obtain a proper centroid. Then, they
changed the colors of the image according to the available
color palette. To build a model, they optimized the layout of
the model by resolving dangling parts of the model and by
avoiding edge coverage by the bricks.

These two studies produced 2D Lego models from pixel
art images. They have a common limitation in that the size
of their resulting models is restricted. We determine that their
limitation arises from their greedy approach-based optimiza-
tion schemes. We aim to resolve this limitation by employing
an exhaustive search using reinforcement learning.

C. REINFORCEMENT LEARNING
Reinforcement learning (RL) is an area of machine learning
inspired by behaviorist psychology and is concerned with
how software agents ought to take actions in an environment
so as to maximize some notion of cumulative reward [14],
[24]–[26]. Instead of depending on labeled training data, RL
records the state, action, and reward at each iteration and
trains its model according to the chosen rewards.

Mnih et al. [18] proposed Deep Q-Network (DQN), which
can train AI agents to play an Atari game better than human
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players. The DQN trains a Q-network by estimating the
rewards of the actions for a given state. Even though DQN
improves the accuracy and efficiency of existing Q-Network
in a great scale, it suffers from an overestimation problem that
causes inaccurate results.

Hasselt et al. [19] presented double DQN, which resolves
the overestimation problem by decoupling the process of
selecting maximum value of the next state into different
networks. The decoupled processes are the process of deter-
mining action of maximum return value and the process of
estimating the values of candidate actions.

Schaul et al. [20] improved the uniform sampling scheme
of vanilla DQN by devising a prioritized scheme from replay
buffer that samples the transitions of higher training effects
more frequently. This scheme estimates priority for a transi-
tion by computing the probabilities about recent TD errors,
and the priority is employed for determining transitions of
higher learning effects.

Bellemare et al. [21] presented distributional DQN scheme
that is trained to build an approximation about the distribu-
tion of return values of the actions. Then, they construct an
approximate probability density function for the distribution
and adjust the parameters of the probability density function
to reduce the difference of the function and the distribution of
the return values. They employ the approximate probability
density function for the training of the model.

Wang et al. [23] improved DQN by presenting dueling
DQN, which trains the Q-network faster than the original
DQN. Dueling DQN separates the optimization function into
a value function V (s), which depends only on the state, and an
advantage function A(s, a), which depends on both the action
and the state. Dueling DQN trains V (s) more efficiently than
conventional DQN and consequently shows better robustness
in training the network by using a separate A(s, a).

Very recently, Hessel et al. [22] surveyed and compared
many existing deep reinforcement techniques onAtari games.
Among the compared methods including vanilla DQN [18],
double DQN [19], prioritized replay buffer [20], distribu-
tional DQN [21], and dueling DQN [23]. Even though the
rainbow scheme that conditionally selects a proper scheme
adaptively shows best performance, dueling DQN shows very
competitive performance. Therefore, we select dueling DQN
in our work.

III. OVERVIEW OF THE ALGORITHM
We present a legorization framework that produces a 2D
Lego layout from low resolution pixel artwork images using
dueling DQN, which is a well-known RL strategy. We aim to
build a brick layout, which is defined as an arrangement of
proper bricks that covers all the pixels of the input image.

Our framework regards the legorization process as a game
to produce a brick layout with the maximum expected reward
in two stages: a learning stage in which the rules for choosing
a proper Lego brick are learned and a legorization stage in
which an optimal Lego layout is produced using these rules.

In the learning stage, we build a dueling DQN structure to
learn the rules for choosing a proper brick at a given state.
To develop the rule for choosing a proper brick, we suggest
three heuristics: efficiency, stability, and aesthetics. From
these heuristics, we design ametric for estimating the rewards
to measure howmuch a brick layout satisfies these heuristics.
Our dueling DQN is trained to estimate the reward for a brick
and to propose a candidate list of optimal bricks. To train
our dueling DQN, we build brick layouts using five sample
images and construct a dataset by sampling patches from the
sample images and their layouts.

In the legorization stage, we fill an input image with proper
bricks using our trained dueling DQN. When choosing the
proper brick, we apply an exhaustive search on the game
tree that formulates the legorization process. Because an
exhaustive search on the entire input image for every brick
results in a computational load that is too large, we present
two strategies. One strategy is to set an ROI on a pixel to
choose a brick. Because bricks placed at a distance do not
influence each other, an exhaustive search restricted to an ROI
does not interfere with finding a layout with the maximum
reward. The second strategy is to employ our trained dueling
DQN to choose the candidate bricks that are expected to
achieve a maximum reward. Using these two strategies, our
legorization scheme produces a brick layout with a maximum
reward in a reasonable computational time.

IV. LEARNING STAGE
A. PRELIMINARIES
We employ only four types of bricks 1 × 1, 1 × 2, 1 × 3,
and 1 × 4 to build a Lego layout (see Fig. 4 (a)), whereas
some existing works on 2D Lego layouts, e.g. [7], [8], have
employed six bricks. The fundamental reason for using four
bricks is to reduce the computational load when building a
layout. Because our approach is designed based on game
tree traversal, the number of candidate bricks corresponds to
the number of child nodes in the tree, which influences the
computational load. Therefore, we can achieve a significant
improvement in the computational time by building a Lego
layout using this strategy.

B. HEURISTICS
We employ three heuristics to estimate the reward: two of
Gower et al.’s heuristics [4] and the color-match heuristic.
Gower et al.’s heuristics that we employ are the big brick
and vertical boundary heuristics. The big-brick heuristic,
which favors bigger bricks over smaller bricks, influences the
efficiency of the model, and the vertical-boundary heuristic,
which requires bricks to cover the vertical boundary in the
incident layer, influences the stability of the model. The
color-match heuristic forces the color of our model to match
that of the input image. The reward is estimated at the end of
each action.

We define the heuristics as our goals when building a
2D Lego layout. The three heuristics we employ for the
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FIGURE 2. The process of our algorithm: An input image is legorized through our Legorization stage to produce a Lego layout. For the Legorization stage,
we present a Learning stage where the Legorization heuristics are trained through a dueling DQN strategy [23]. The dueling DQN strategy produces a
candidate list of bricks to fill the pixel of interest.

generation of the 2D layout of Lego-compatible bricks
are therefore stability, efficiency and aesthetics. These are
expressed in terms of their reward, which are measured in the
legorization process.

1) STABILITY AND ITS CORRESPONDING REWARD
Our first heuristic is stability, which guarantees that the
assembled layout is physically stable. We define the consec-
utive edges of neighboring bricks as the vertical boundary
between two neighboring bricks (see Fig. 3 (a)). When esti-
mating the vertical boundary, we have several rules:

Rule 1. The vertical boundary for the continuous
edges is accumulated. As illustrated in Fig. 3 (a),
the vertical boundary for two continuous edges has
a length of 2.
Rule 2. The vertical boundary of continuous edges
that are not covered by a brick has a length of ∞
(see Fig. 3 (b)).
Rule 3.A vertical boundary that belongs to a longer
vertical boundary is not counted to avoid a dupli-
cate estimation. In Fig. 3 (c), the vertical boundary
between u′ and v′ is not considered, because it
belongs to the vertical boundary between u and v.

The longer the vertical boundary, the less stable the layout.
Even though we embed our model, which is composed of
thousands of bricks within a frame that holds them stably,
the assembly process for the model requires stability. Further,
some of our models are composed of less than a few hundreds
of bricks and do not require a frame. Physical stability is
essential for these models. Therefore, stability is the first
heuristic we pursue for our model.

FIGURE 3. The stability heuristic and its rewards (rs): As shown in (c),
the bigger bricks present higher reward than the smaller bricks.

The reward for stability, denoted as rs, considers the length
of the consecutive vertical boundaries of the layout. Because
a longer vertical boundary decreases the stability of the lay-
out, we define a covering brick that combines the vertical
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boundary in Eq. (1):

rs(u, v) =


1
m

∑ 1
d(u, v)

, u and v are neighboring

0, edge of u & v is not covered
(1)

where d(u, v) is the length of the vertical boundary between
two neighboring bricks u and v, and m denotes the total
number of edges in the layout. Fig. 3 (c) illustrates some cases
of rs.

2) EFFICIENCY AND ITS CORRESPONDING REWARD
Our second heuristic is efficiency, which requires that our
puzzle layout be assembled by as a small number of bricks
as possible. As illustrated in Fig. 4 (a), we employ four types
of Lego-compatible bricks. An increase in the number of
bricks results in a higher brick cost and a longer assembly
time and, accordingly, a larger amount of effort. Therefore,
the efficiency, which aims to decrease the number of bricks
for a model, is the second heuristic we pursue.

FIGURE 4. The efficiency heuristic and its rewards (re).

The reward for efficiency, which is denoted as re is
designed by assigning a higher reward for bigger bricks and
a lower reward for smaller bricks. Eq. (2) assigns the weight
for each brick we consider.

brick_weight =


0, if brick is (1× 1)
1/2, if brick is (1× 2)
3/4, if brick is (1× 3)
1, if brick is (1× 4)

(2)

Therefore, the sum of all the rewards can be estimated
using Eq. (3).

re =
1
n

∑
brick_weight (3)

where n denotes the total number of bricks in the layout. Fig. 4
(b) illustrates several cases of re.

3) AESTHETICS AND ITS CORRESPONDING REWARD
Our third heuristic is aesthetics, which necessitates that our
puzzle layout match the input pixel artwork image. Because
ourmodel is composed of bricks greater than or equal to a size
of 1 × 1 size, some details of the input pixel artwork image
may be suppressed or smeared.We aim to avoid a degradation
of the input pixel artwork image. Therefore, the aesthetics,
which aims to match our model to the input image, is our
third heuristic. As illustrated in Fig. 5, some bricks excess
the boundaries of the input image or do not match the input
image: in such a case, the reward for the aesthetics, denoted
as ra becomes 0. The formula for ra is given in Eq. (4).

ra =

{
1, if color matches
0, if color mismatch or out of brick

(4)

FIGURE 5. The aesthetics heuristic and its rewards (ra).

4) SUMMING THE REWARDS
After completing a layout, the total reward is estimated by
summing the rs and re rewards. The ra reward is multiplied by
the sum because aesthetics heuristic is prioritized. Therefore,
the formula for estimating the total reward r for a layout is
given in Eq. (5):

r = ra(ωere + ωsrs), (5)

where ωe and ωs are the weights for the efficiency and stabil-
ity, respectively, which we set both weights to 0.5.

C. PREPARATION FOR REINFORCEMENT LEARNING
1) DUELING DQN FOR REINFORCEMENT LEARNING
We choose dueling DQN [23] as our reinforcement learning
technique for legorization. Dueling DQN separates the value
function as V(s), the value function, and A(s, a), the advan-
tage function, for an efficient estimation of the maximum
return value. By separating and dueling V(s) and A(s, a),
dueling DQN can determine whether a state is valuable or not
without estimating actions from the state. Therefore, dueling
DQN shows improved efficiency than vanilla DQN [18],
since it avoids estimations on the states whose values are
expected to be bad. The strategy of dueling DQN also shows
better performance than double DQN [19], which estimates
maximum computation for decoupled processes. The prior-
itized experience replay strategy [20] is not proper for our
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FIGURE 6. The environment of our framework: state, action, reward and next state. To determine a brick that will fill the next pixel in
the current brick layout, our environment estimates and records the corresponding reward of the newly chosen brick.

framework, since our framework assigns the weights for the
bricks according to our heuristics.

2) ENVIRONMENT
The RL environment, which is defined as the set of all com-
ponents required to execute learning, includes the state (s),
action (a), reward (r) and next state (s’). According to the
environment, we build a state and choose an action whose
reward is then calculated. (s, a, r, s′) are stored in replay
memory for training.

a: STATE
We express the state for legorization as an input pixel art
image and the brick layout filling the input image. The blue
rectangle in Fig. 6 illustrates the state of our framework.
Note that the bricks are filled from the lower left corner of
the image. The brick layout, which is empty in the initial
state, covers more and more pixels as legorization proceeds.
In the final state, the brick layout covers all the pixels of
the input image. In practice, we consider a patch of k × k
pixels sampled from the input image for the training of the
dueling DQN.

b: ACTION
The action of our model is to choose a brick that will maxi-
mize the reward of the layout. Since we consider the bricks
whose color is identical to the pixel to fill, we have four
candidates as illustrated in Fig. 4 (a).

c: REWARD
The reward is formulated from the heuristics suggested in
Section IV-B. We estimate the reward for a layout using
Eq. (5).

For a state s, dueling DQN produces an action whose
expected reward is themaximum. In our framework, an action
a is the choice of a brick that fills the pixels of the input
image. By adding a to s, we formulate the next state s’
and a reward r is calculated from that state. The envi-
ronment, composed of the state, action, reward, and next
state, is recorded for the training of the dueling DQN. The
legorization environment is illustrated in Fig. 6. We repeat
this process until the brick layout fills the entire input
image.

We train the dueling DQN by continuously adding bricks
until we reach a final state. At the final state, we estimate the
loss function and train our dueling DQN by backpropagating
the value of the loss function. We repeat this training process
several times until the value of the loss function falls below a
given threshold.

D. LEARNING DUELING DQN
1) THE STRUCTURE OF THE DUELING DQN
DQN estimates the reward from actions on an input state.
We design our DQN structure based on the network of
Wang et al. [23]. For an input whose magnitude is k × k ×
2, we execute convolution operations three times. The first
convolution uses a 5× 5 mask whose padding is assigned to
be 2 to preserve the magnitude of the input on the resulting
feature map. The second and third convolutions use a 3 × 3
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mask whose padding size is 1. After the convolution layer,
we assign two fully connected layers. The structure of our
dueling DQN is illustrated in Fig. 7. The estimation of the
final reward is computed by adding V (s) and A(s, a) from the
network.

FIGURE 7. The structure of our dueling DQN (k = 8).

2) Q FUNCTION
The Q function at a state s with an action a, which is denoted
as Q(s, a), returns the estimation of the maximum final
reward, when an action a is executed on a state s. Action a is
one of four candidates: {1×1, 1×2, 1×3, 1×4}. By Eq. (4),
the color of a brick is restricted to match the color of the
corresponding pixel in the input image. Therefore, the action
a considers only the type of the bricks, not the color of the
bricks. Therefore, the reward we have to estimate is Q(s0, a),
where s0 is the initial state and a is an action at the state.
We denote r as the reward of an action a at a state s. We also
denote s′ as a state that is transferred from s by an action a.
The reward from s′ by an action a′ is denoted as Q(s′, a′).
From this,Q(s, a) is estimated by adding r , the reward from a
at s, and the maximum value of Q(s′, a′). We apply a weight
term γ for the discount factor of the future reward. Q(s, a)
is defined in Eq. (6). The relation between Q(s, a), r and
Q(s′, a′) is illustrated in Fig. 8.

Q(s, a) = r + γmaxa′Q(s
′, a′), (6)

where maxa′Q(s′, a′) for final state s′ is qmax .

FIGURE 8. The definition of the Q function.

3) TRAINING PROCESS
The training of the DQN employs backpropagation. For the
backpropagation, we estimate the error between the estimated
value and the target value. The target value, which is recorded
during the legorization process, is noted as s, a, and r , and
the estimated value comes from the Q function. Q(s, a),
the result of the Q function, is the estimation of the final
reward. Because Q(s, a) is the estimation of the final state,
we estimate the reward from the current reward r by adding
the maximum reward, which is estimated as γmaxa′Q(s′, a′).
Therefore, the loss is estimated using Eq. (7).

loss =
1
2
[r + γmaxa′Q(s

′, a′)− Q(s, a)]2 (7)

For the training stage, we select five 16 × 16-sized pixel
art images and train our DQN model 50,000 times for each
image (see Fig. 9 (a)). The outcomes of the training process
are shown in Fig. 9 (b).

FIGURE 9. The training samples and training results.

In the training, we set batch size as 32 and learning rate
as 0.001. The γ in Eq. (6) and (7) is set as 0.99. The weight
decay is set as 0.5.We illustrate a reward curve for the training
process in Fig. 10.

FIGURE 10. The reward curve for our training.
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V. LEGORIZATION STAGE
A. PREPROCESSING
The input of our legorization stage is a low resolution pixel
art image and a color palette, which is constructed from the
colors of the Lego-compatible bricks. We build an image
map by substituting the colors of the input image into an
index, which corresponds to a color in the palette. Therefore,
if the color from the input image is not included in the color
palette, we find the closest color to it in the color palette by
minimizing the distance in Lu*v* coordinates.

B. LEGORIZATION STRATEGY
We add a Lego-compatible brick starting in the lower left
corner of an input image until the entire image is filled with
bricks. As shown in Algorithm 1, we execute this process
for each line of the input image starting on the bottom line
(line 3 of Algorithm 1). During this process, the pixel where
we are going to place a brick is denoted as the pixel of
interest (POI), and the brick that will be placed on the POI
is the brick of interest (BOI) (line 6 of Algorithm 1). The
function Choose_optimal_brick is defined in Algorithm 2.
To determine the BOI, we need to consider the expected
reward of a brick layout constructed from the POI. To esti-
mate this reward, we simulate the legorization process from
the POI to the remaining region of the input image and pick
the BOI that optimizes the total reward of the Lego layout.
The simulation process is executed through Algorithm 3.
We include two key ideas in this simulation. The first key
idea is that bricks located sufficiently far from each other do
not influence each other. Therefore, we build an ROI where
we simulate the legorization process. The ROI is computed
adaptively according to the location and environment of the
POI. Our second key idea is to employ an RL-based game
tree search strategy for the simulation. Each node of the tree
has four child nodes, which correspond to the four candidate
bricks. The child node to explore is decided via the dueling
DQN, our RLmodel, which was trained in the previous stage.
Our legorization strategy is expressed in Algorithm 1.

C. ADAPTIVE ROI
We build an ROI as a box of N × M pixels whose lower
left corner is the POI. For the pixels in the box, we exclude
any pixels whose colors are different from the color of the
POI because our aesthetics heuristic necessitates that pixels
of different colors be filled with different bricks. We assign
set N to 12, allowing three 1 × 4 bricks can be placed, and
set M to 4, so that four lines are covered. Note that bricks
located at farther distances than this do not influence each
other. Fig. 11 illustrates various cases of POIs and ROIs.

D. LEGORIZATION VIA GAME TREE SIMULATION
We build a game tree whose nodes correspond to the Lego
layout. The root node of the tree corresponds to an empty
layout, whereas the leaf nodes correspond to final layouts that
fill the entire image. Each node has four child nodes, each

Algorithm 1 Legorization
Input: W (width of input image), H (height of input

image), PixelArtImage (input pixel art image)
Output: brick_layout (brick layout for the input image)
1: brick_layout← φ

2: POI← (1, 1) // leftmost-bottom pixel
3: while (POI.y <= H) do
4: while (POI.x <=W) do
5: ROI← Set_ROI (POI, PixelArtImage)
6: BOI← Choose_optimal_brick (POI, ROI,

brick_layout)
7: brick_layout← brick_layout ∪ BOI
8: POI.x← POI.x + BOI.width
9: if (POI.x >W) then

10: POI← (1, POI.y + 1)
11: break
12: end if
13: end while
14: end while
15: return brick_layout

FIGURE 11. Various cases of ROIs on various POIs and their
environments.

of which matches one of the four bricks we employ in the
legorization process. Therefore, a child node corresponds to
a layout with one brick added to the layout of the parent node.
We add the bricks starting in the lower left corner of the input
image for each line of the input image. We illustrate the game
tree simulation in Fig. 12 (a).

In a game tree simulation, choosing a brick for a layout
corresponds to choosing a child node to explore. We estimate
the rewards of the complete layout produced by the candi-
date bricks and choose the brick that produces the complete
layout for the maximum reward. For such an estimation,
several strategies have been proposed. A brute-force strategy
is an exhaustive search that explores all the child nodes
and estimates the rewards of all the possible layouts. This
strategy guarantees a layout that optimizes our heuristics;
however, it is not feasible for heavy computational loads.
Some researchers have employed heuristic search algorithms,
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FIGURE 12. Illustration of the game tree and a comparison of existing schemes to our scheme. Since our scheme reduces the number of child nodes to
two most promising bricks, our scheme can find a leaf node whose reward is maximum in an efficient way.

such as beam search [15] or A* search [3] to efficiently
traverse the tree. Their schemes, however, do not guarantee
an optimal solution or an efficient computation.

Our idea is to employ dueling DQN, an RL scheme,
to determine candidate brick lists for the child node to
explore. Choosing one candidate brick is similar to heuristic
search schemes, and choosing four candidate bricks corre-
sponds to an exhaustive search. Therefore, we select two
bricks for our list. We execute a simulation on the ROI for
the bricks on the candidate list. Because the bricks outside
the ROI do not influence the BOI, tree traversal on the ROI
is sufficient to estimate the layout with the maximum reward.
This process is illustrated in Algorithm 2. We compare exist-
ing heuristic schemes and our approach in Fig. 12 (b) and (c).

Algorithm 2 Choose_Optimal_Brick
Input: POI (pixel of interest), ROI (region of interest),

brick_layout (current brick layout)
Output: chosen_brick (a brick that optimizes the total

reward)
1: candidate_list← duelingDQN (POI, ROI,

brick_layout)
2: optimal_r← 0
3: chosen_brick← NULL
4: for ( candidate in candidate_list ) do
5: r← Simulate (POI, ROI, candidate, brick_layout)
6: if ( r > optimal_r ) then
7: optimal_r← r
8: chosen_brick← candidate
9: end if

10: end for
11: return chosen_brick

During the simulation, we repeat the process of choosing
bricks using dueling DQN and filling the ROI with bricks

with optimal rewards. After the simulation, we estimate the
expected reward for the candidate bricks at the POI and
choose a brick that produces the optimal reward. This process
is described in Algorithm 3.

Algorithm 3 Simulate
Input: POI (pixel of interest), ROI (region of interest),

candidate_brick (candidate brick to simulate),
brick_layout (current brick layout)

Output: optimal_r (optimal reward)
1: brick_layout← brick_layout ∪ candidate_brick
2: POI← Update_position (POI, candidate_brick)
3: candidate_list← duelingDQN (POI, ROI,

brick_layout)
4: optimal_r← 0
5: for ( candidate in candidate_list ) do
6: r← Simulate (POI, ROI, candidate, brick_layout)
7: if ( r > optimal_r ) then
8: optimal_r← r
9: end if

10: end for
11: return optimal_r

VI. IMPLEMENTATION AND RESULTS
We implemented our legorization framework using Python
2.7 and PyTorch 0.3.1, which is a Python-compatible library
for deep learning. The framework was implemented and exe-
cuted on LinuxUbuntu on a personal computer with an Intel R©

Core i7 CPU, 16 GByte of memory and nVidia R© Titan X
GPU.

We applied the trained dueling DQN to the input pixel art
images in Fig. 13 to produce the 2D Lego puzzles in Figs. 1,
14, and 15.
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TABLE 1. The results of our scheme: The resulting Lego puzzle is evaluated in terms of its efficiency and stability for images in Fig. 13. As shown in the
table, some of the models are completed using more than 7,000 bricks, which was not possible for the existing schemes.

FIGURE 13. Various cases of ROIs on various POIs and their
environments.

We show layouts of the Lego-compatible puzzle in Fig. 14.
In Fig. 15, we compare two layouts for a portrait at different
resolutions. We physically completed two Lego models using
Nano R© bricks, which is a cheaper substitute for Lego bricks,
as shown in Figs. 1 and 16.

A. ANALYSIS
The performance of the resulting Lego puzzles is illustrated
in Table. 1 and Fig. 17. The performance is measured via two
aspects: efficiency and stability. Aesthetics, which is tightly
preserved, is not considered in the performance analysis.

1) EFFICIENCY
For the efficiency, we measure the distribution of the brick
size, which is composed of 1×1, 1×2, 1×3, 1×4 bricks. The
distribution of the brick size is illustrated in the green blocks
in Table. 1 and Fig. 17 (a). As shown, the biggest brick, whose
size is 1 × 4, is exploited at a rate of 42.1 ∼ 67.1% and the

FIGURE 14. The input pixel art images.

smallest brick, whose size is 1 × 1 is exploited at a rate of
0.9 ∼ 2.4%.

2) STABILITY
For the stability, we measure the length of the vertical bound-
ary, which is defined as the number of consecutive brick
boundaries in the vertical direction. For the most stable
model, the vertical boundary is expected to be one. A long
vertical boundary indicates that the Lego layout may be
separated into several parts, which results in a very unstable
layout. We count the vertical boundaries of bricks of identical
colors because bricks of different colors are not considered
in the stability heuristics. As illustrated by the blue blocks
in Table. 1 and Fig. 17 (b), our resulting Lego layouts from
six inputs consist of 97.0 ∼ 98.7% vertical boundaries of
length of 1. They show no vertical boundaries that are longer
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FIGURE 15. The results of our algorithm for high resolution layouts. As shown, (a) has 11,250 pixels, and (b) and (c) have
36,000 pixels. The legorization process of these high resolutional images are not feasible for the existing schemes.
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FIGURE 16. The results of our algorithm for portraits. The left model is completed using original Lego R© brick, while the right model is
completed using Nano R©. Note that the resolution of the left panel is lower than that of the right panel.

FIGURE 17. A real model from an image in Fig. 13 (d) whose resolution is 250× 144. The corresponding Lego-compatible puzzle is illustrated in Fig. 14 (c).
The number of Nano R© bricks required to complete this model is 7,875.

than four. Only 0.02 ∼ 0.22% of the vertical boundaries have
a length of 3.

3) COMPUTATION TIME
We compare two existing methods including exhaustive
search method and heuristic search method [3] with our
method. For further comparison, we compare the computa-
tion time for four-brick set and six-brick set. The six-brick
set is composed of the four bricks in the four-brick set and

1 × 6 and 1 × 8 bricks. The computation time is presented
in Table. 2 and illustrated in Fig. 18.

B. COMPARISON
We compared our scheme with several existing schemes,
including beam search [15], cellular automata [6], graph-
based search [9], and pixel2brick [8]. Because some of these
schemes only process monochrome images, we generated
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FIGURE 18. Graphs of the performance: For the term of efficiency, the six figures in Fig. 13 is completed using 56.0% ∼ 68.6% of
biggest bricks. For stability, the vertical boundary is less than 2.8% for all the input images.

FIGURE 19. The comparison of computation time for three methods: exhaustive search, heuristic search and our method: The
computation time of an exhaustive search for a model of 3,322 bricks takes much more than a model of 604 bricks, while ours
show similar computational time.

FIGURE 20. The first comparison of our result with existing studies. We compare five existing studies including beam search [15], cellular
automata [6], graph-based method [9], pixel2brick [8] and ours. Note that they use different sets of bricks for their models.
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FIGURE 21. The second comparison of our result with existing studies. We compare five existing studies including beam search [15], cellular
automata [6], graph-based method [9], pixel2brick [8] and ours. Note that they use different sets of bricks for their models.

TABLE 2. Comparison of computation time: Two existing methods
including exhaustive search and heuristic search [3] and two different
versions of our method are compared. Our final result is produced by
four-brick version.

monochrome Lego layouts for comparison.We used the com-
parison data in [6], [8], [9], [15] from [8]. The resulting
Lego-layouts are illustrated in the top row of Fig. 19 and 20.
We compared the results using two heuristics: efficiency and
stability.

1) COMPARISON 1: EFFICIENCY
The efficiency for a Lego puzzle is achieved by using larger
bricks more than smaller bricks. Because we use only four
bricks, such as 1 × 1, 1 × 2, 1 × 3, and 1 × 4, an exact

FIGURE 22. Limitations of our framework.

comparison with other studies that also use 1 × 6 and 1 × 8
bricks is not straightforward. However, the distribution of the
bricks used in the resulting Lego puzzle indicates that 60%
of the bricks used by our scheme are 1 × 4 sized bricks.
The distributions of the bricks according to their sizes are
illustrated in the middle row of Fig. 19 and 20.

2) COMPARISON 2: STABILITY
The stability of Lego puzzle is estimated based on the ver-
tical boundary. The best Lego puzzle is a puzzle whose
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vertical boundaries are of length 1. Many of the existing
studies, including [6], [8], [15], generate Lego puzzles whose
largest vertical boundary is one. Our scheme produced a
Lego layout that has 181 vertical boundaries. Of these, only
two vertical boundaries are of length 2. Even though our
result possesses vertical boundaries of length 2, the stability
is not compromised. Therefore, we argue that our scheme
produces stable layouts for Lego puzzles. The distribution
of vertical boundaries are illustrated in the bottom row of
Fig. 19 and 20.

C. LIMITATION
After applying our framework to produce Lego layouts of var-
ious resolutions, we found several limitations to our method.
First, the simulation on an ROI to determine a proper brick at
a POI can be reused for the pixel to the POI. Because the brick
on the next pixel is a child node of the brick on the POI, some
descendants of the node are traversed during the simulation
on its parent node. Therefore, reusing the simulation could
greatly improve the legorization performance.

Second, we employed four bricks for the Lego layout,
whereas many existing works employed six bricks. Using
four bricks, our framework reduces the computational load
for building a layout at the sacrifice of increasing the number
of bricks in the layout, which damages the efficiency heuris-
tic. Further, bricks lying on multiple layers can be employed
to further improve the efficiency (see Fig. 22 (a)).
Third, we employed the efficiency, stability and aesthetics

heuristics for our Lego layout. We did not consider the bal-
ance of the bricks, which constrains the edge of the bricks to
lie on the center of the bricks in the upper layer or lower layer.
Balance can improve the visual satisfaction of a Lego layout
(see Fig. 22 (b)).

VII. CONCLUSION AND FUTURE WORK
We presented a reinforcement learning-based framework for
generating a 2D Lego-compatible puzzle from a pixel art
images. Our strategy is to design a game that builds a suc-
cessful 2D Lego-compatible puzzle. We build a brick lay-
out of the puzzle by searching the space of the layouts
using RL.

In future work, we plan to build a framework that learns
a high-quality puzzle layout created by an artist. Further,
we aim to build a pixelation scheme that produces the input
for our framework.
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