
Received June 27, 2020, accepted July 14, 2020, date of publication August 12, 2020, date of current version August 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3016046

Computation Offloading for Distributed
Mobile Edge Computing Network:
A Multiobjective Approach
FARHAN SUFYAN , (Graduate Student Member, IEEE),
AND AMIT BANERJEE , (Member, IEEE)
Department of Computer Science, South Asian University, New Delhi 110021, India

Corresponding author: Amit Banerjee (amit@cs.sau.ac.in)

ABSTRACT Mobile edge computing (MEC) is emerging as a cornerstone technology to address the conflict
between resource-constrained smart devices (SDs) and the ever-increasing computational demands of the
mobile applications. MEC enables the SDs to offload computational-intensive tasks to the nearby edge
nodes for providing better quality-of-services (QoS). The recently proposed offloading strategies, mainly
consider a centralized approach for a limited number of SDs. However, with the growing popularity of the
SDs, these offloading models may have the scalability issue and can be susceptible to single point failure.
Although there are few distributed offloading models in the literature, they ignore the vast computational
resources of the cloud, load sharing between the MEC servers, and other optimization parameters. Toward
this end, we propose an efficient computation offloading scheme for a distributed load sharing MEC
network in cooperation with cloud computing to enhance the capabilities of the SDs. We formulate a
nonlinear multiobjective optimization problem by applying queuing theory to model the execution delay,
energy consumption, and payment cost for using edge and cloud services. To solve the formulated problem,
we propose a stochastic gradient descent (SGD) algorithm based solution approach to jointly optimize the
offloading probability and transmission power of the SDs for finding an optimal trade-off between energy
consumption, execution delay, and cost of the SDs. Finally, we perform extensive simulations to demonstrate
the effectiveness of the proposed offloading scheme.Moreover, compared to the other solutions, the proposed
scheme is scalable and outperforms the existing schemes.

INDEX TERMS Computation offloading, Internet of Things (IoT), mobile edge computing (MEC), queuing
theory, smart devices (SDs).

I. INTRODUCTION
A. BACKGROUND
Recent advancements in mobile technology and high
data-rate wireless networks have surged the innovation of
new smart devices, including smartphones, fitness bands,
connected cars, and smart-watches. These devices are also
collectively known as mobile devices [1], smart mobile
devices [2] or Internet of Things (IoT) devices [3]; how-
ever we refer them as smart devices (SDs). SDs can collect
data from the surroundings and take collective decisions by
sharing data with other devices. The connected network of
SDs forms an intelligent ecosystem of knowledge, which

The associate editor coordinating the review of this manuscript and

approving it for publication was Qing Yang .

changes the perception of modern lifestyle and revolutionizes
a new industrial age, commonly known as Industry 4.0 [4].
With the advent of IoT, many novel applications and services
emerged and gained enormous popularity. With increasing
demand, the IoT devices are becoming more resourceful in
terms of processing capability, memory, and battery. How-
ever, such advancements are not sufficient for supporting
computation-intensive or delay-sensitive applications, such
as health-care and autonomous driving, virtual, and aug-
mented reality [5], [6]. Thus, providing such services on the
SDs is a challenging task.

Conventionally, the mobile cloud computing (MCC) plat-
form is used to meet the soaring demand of these emerging
applications. SDs can offload the computational-intensive
tasks to a remote centralized cloud server for maintaining

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 149915

https://orcid.org/0000-0002-5094-1103
https://orcid.org/0000-0002-0473-0823
https://orcid.org/0000-0002-0683-5848

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

FIGURE 1. Broad categorization of offloading schemes.

the required quality of services (QoS) of an application.
Although the cloud infrastructure can provide ample storage
and computational resources for the IoT applications, due to
high communication latency, it may not be suitable for the
delay-sensitive applications [7]. Moreover, in the era of big
data, delivering a large amount of data from SDs to the cloud
for processing can cause a heavy link burden on the core
network [8]. Hence, it is efficient to bring computation and
storage closer to the SDs. For this, Mobile Edge Computing
(MEC) [9], also known as Multi-Access Edge Computing
(MEC) [3] or Fog Computing [10], has emerged as a key
enabler for supporting the real-time processing for IoT appli-
cations. MEC is a small-scale cloud platform that provides
computing resources and storage services at the edge of the
radio access networks in the proximity of SDs [11]. With
the emergence of different computational platforms, the com-
plexity of offloading increases, as the offloading algorithm
needs to make an efficient trade-off between various decision
problems, likewhy, what, when, where, and how, based on the
current application requirements [12]. Recently, the problem
of utilizing the MEC network for computation offloading has
gainedmany research efforts. However, efficient computation
offloading is still a challenging problem.

B. RELATED WORKS
The computation offloading problem is also referred to as
cyber foraging [13] or remote execution [14]. In general,
researchers have proposed various centralized and distributed
frameworks for studying the offloading problem in the MEC
platform. Further classification can be done on the number of
users, the number of MEC servers, and the sharing of avail-
able resources between the MEC servers, as shown in Fig. 1.
In the following section, we present a brief account of the
related scholarly works.

1) SINGLE-MEC SERVER AND SINGLE-USER SCENARIO
Recently, authors have proposed variousmodels for the single
SD and a single MEC scenario to optimize the offloading
decision problems [15]–[18]. In [15], the authors propose a
1-D search algorithm to optimize tasks scheduling on the
MEC server for minimizing the execution delay. Similarly,
in [16], [17], authors jointly optimize the task offloading deci-
sion, task scheduling, and power allocation for a single-user
MEC systemwith multiple independent tasks to minimize the
weighted sum of execution delay and energy consumption.
A two-step approach based on transparent computing (TC) is
proposed in [18], to minimize the energy requirements of the
IoT device by offloading delay constrained tasks to the TC
storage server. The first step analyzes the code block, includ-
ing the data associated with the task to determine if offloading
is required. The second step schedules the offloading tasks for
further minimizing the energy consumption of the IoT device.

2) SINGLE-MEC SERVER AND MULTI-USER SCENARIO
In addition to the above, researchers have studied the offload-
ing problem for the multi-user scenario, i.e., multiple users
sharing resources of a single-MEC server. For example,
Zhang et al. [2] propose an iterative search algorithm that
jointly optimizes the local computing resources, channel
allocation, and transmission power for obtaining an opti-
mal trade-off between energy consumption and execution
latency. In [30], the authors formulate the energy manage-
ment problem as a stochastic optimization programming by
using the Lyapunov optimization-based online algorithm.
Wu et al. [31] propose a delay-aware computation offloading
algorithm with joint optimization of secrecy-provisioning,
computation workload, and radio resource allocation to min-
imize the overall execution delay. Authors in [32] propose a
binary-search water-filling algorithm to optimize the MEC
server’s available resources by investigating resource allo-
cation policy in a multi-user scenario. In the above works,
researchers consider a single MEC server to cater to the
incoming offloading requests. Nevertheless, for a large num-
ber of SDs, the MEC server is liable to be congested, which
may affect the QoS of applications.

3) CENTRALIZED MULTI-MEC NETWORK AND MULTI-USER
SCENARIO
Many works consider multi-user and multiple MEC servers
for modeling the computation offloading problem. In [27],
authors use queuing theory to formulate a multiobjective
problem for minimizing the energy consumption, execution
delay, and payment cost of the mobile devices. Liu et al. [28]
consider the social relationships of the mobile devices
with energy harvesting (EH) capabilities, to design a game
theory-based dynamic computation offloading scheme for
the fog computing system to minimize the social group
execution cost. The above studies consider homogeneous
fog nodes for modeling the computation offloading prob-
lem. Whereas, in [29], authors consider a heterogeneous

149916 VOLUME 8, 2020

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

fog network and propose a fair and energy-minimized task
offloading (FEMTO) algorithm to offload the tasks from the
IoT devices effectively.

4) DISTRIBUTED MULTI-MEC NETWORK WITHOUT LOAD
SHARING
In addition to centralized approaches, researchers have stud-
ied the offloading problem for the distributed MEC network.
However, most of these studies do not consider load shar-
ing among the MEC servers. Guo et al. [21], [22] propose
an offloading model for ultradense IoT networks, whereby
the mobile devices offload its service requests to the edge
servers placed at the mobile base stations (MBS) and small
cells (SCs). The objective of both papers is to minimize the
overall computation overhead, but approaches for achieving
the objectives are different. [21], propose a two-tier game-
theoretic greedy computation offloading scheme for dynam-
ically changing computational resources at the edge servers,
whereas in [22], authors formulate anMINLP and propose an
iterative searching based offloading algorithm.

Along with the above frameworks, some studies consider
MEC’s collaboration with the cloud platform for solving
the distributed offloading problem. For example, in [23],
the authors consider a collaborative MCC and MEC setup
and propose an iterative heuristic algorithm to solve the for-
mulated MINLP problem for reducing the execution latency.
Likewise, [25] is a computation offloading scheme for the
Maritime mobile cloud network for ships and vessel termi-
nals. The authors propose an improved Hungarian algorithm
to select the optimal task execution location for minimiz-
ing the energy consumption of the vessel terminals and the
execution delay of the computation task. Moreover, in [26],
the authors propose a generic architecture of collaborative
computation offloading with a centralized cloud to provide
support for multi-user multi-MEC scenarios over the hybrid
FiWi access network. The authors formulate the constrained
optimization problem to minimize mobile devices’ energy
consumption while satisfying execution time constraints.
In addition to the above works, Zhang et al. [24] consider a
blockchain empowering MEC to solve a joint computation
offloading and coin loaning problem, which resembles the
cost for executing tasks on remote servers. The problem
is formulated as a non-cooperative game to minimize the
monetary cost of mobile equipment.

5) DISTRIBUTED MULTI-MEC NETWORK WITH LOAD
SHARING
Next, we discuss the articles that consider load sharing in
the distributed MEC network, along with the collaboration
of cloud infrastructure. In [19], the authors study the com-
putation offloading problem where the fog nodes share the
processing load in a distributed manner to minimize the
service delay. The architecture of [19] does not consider any
centralized entity for distributing the load between the fog
nodes. However, it uses the neighboring node information for
distributing the tasks in the fog network. Meanwhile, in [20],

the authors propose an online approach to select a set of
neighboring nodes to form a fog network under uncertainty
on the arrival of the fog nodes. The goal is to minimize
the computational task latency by optimizing the task dis-
tribution in a hybrid fog-cloud network. However, in [19],
[20], the authors consider only a single-objective problem
of minimizing the execution delay. In this paper, we use
the Jackson network for modeling a load-sharing distributed
MEC network by formulating a more complex multiobjective
optimization problem for optimizing execution delay, energy
consumption, and financial cost of the SDs.

Apart from the MEC paradigm, researchers have
also proposed the computation offloading model for
infrastructure-less distributed mobile stream processing sys-
tems [33]–[35]. The system enhances mobile devices’ com-
putation capability in highly dynamic and critical scenar-
ios, such as military operations and disaster response. The
online system is deployed on a cluster of mobile devices
to execute computation-intensive streaming applications that
can quickly adapt to the changing environment (fluctuating
bandwidth and intermittent connectivity) to achieve high-
performance.

C. MOTIVATION
Table-1 summarizes the recently proposed offloading
schemes for the MEC platform. It is evident from the table
that most of the distributed offloading models do not consider
load sharing in the MEC network and ignores the support
of the cloud infrastructure from its model. Moreover, these
works only consider the objective of energy minimization
or execution delay but overlook the optimization of payment
cost for executing tasks on the remote servers. The limitations
of the existing works, motivate us to study the computation
offloading problem in multi-user and distributed load sharing
MEC network in collaboration with the cloud, and corre-
spondingly improve the SDs performance. Although the cen-
tralized model may be efficient for small IoT networks, while
distributed MEC model is more applicable for integrating
multiple heterogeneous IoT devices. Distributed MECmodel
can be more scalable, less vulnerable to single-point failure,
and the cost of deployment can be significantly less compared
to sophisticated centralized controller-based solutions [19].
The requirements of a distributed offloading model include
(a) sharing of load between theMEC nodes, which is essential
for better utilization of the available resources in the MEC
network. (b) The offloading framework must consider cloud
infrastructure resources to support the demand for different
applications. (c) The framework also needs to consider the
minimization of payment cost for remotely executing tasks
on the edge node or cloud along with energy consumption
and execution delay.

D. PROBLEM STATEMENT AND CONTRIBUTION
In this paper, we address the computation offloading prob-
lem for a large number of SDs in a collaborative MEC net-
work supported by the cloud infrastructure. We assume that

VOLUME 8, 2020 149917

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

TABLE 1. Summary of recent offloading models in MEC.

a service request generated by a SD can be processed locally
or offloaded to the MEC server or edge nodes. Offloading
introduces an additional communication delay on the exe-
cution of the service request and payment cost for utilizing
the MEC or cloud servers’ resources. Although the local
execution of a service request does not incur a communication
delay, it can consume considerable battery life. In our model,
we assume that the SDs are competing with each other to
access the MEC network’s resources to maximize their qual-
ity of experience (QoE), including battery life. In particular,
the significant contributions of this paper are summarized as
follows:

• We introduce a generic three-tier distributed offloading
framework for an IoT-edge-cloud scenario. The bottom
layer consists of the SDs that often need to offload their
tasks to the edge nodes for enhancing there performance
and processing capabilities. Interconnected heteroge-
neous edge nodes form the middle layer or distributed
MEC network. A service request can enter the system
through any edge node and be routed independently
between the nodes until it is processed or forwarded to
the cloud for execution. The top layer is formed by cloud
infrastructure, Fig. 2.

• We use queuing theory to simulate the network traf-
fic to model energy consumption, execution delay, and
cost of executing the tasks at different network entities.
We considerM/M/1 queue to model the service request
generated by the SDs. The load sharing distributedMEC
network is modeled using the open queuing network or
Jackson Network.M/M/∞ queue is used for the central
cloud, which is consistent with the resources of a data
center.

• We formulate a constrained nonlinear multiobjec-
tive optimization problem to address the computa-
tion offloading challenges in IoT-edge-cloud networks.
To solve the formulated problem, we use the Stochastic

FIGURE 2. IoT-edge-cloud architecture.

Gradient Descent (SGD) based solution approach com-
bined with the Penalty method. The algorithm jointly
optimizes the transmission power and the offloading
probability of the SDs to achieve the offloading objec-
tives, i.e., minimizing of energy consumption, process-
ing delay, and payment cost.

• We perform extensive simulation analysis to investigate
the performance of the proposed scheme. Simulation
results show the offloading framework’s effectiveness
under different parameter settings for the increasing
number of SDs. We also show that the proposed scheme
yields better performance in comparison to the other
existing solutions.

149918 VOLUME 8, 2020

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

E. PAPER OUTLINE
The rest of the article is organized as follows. Section II
presents the IoT-edge-cloud architecture and formally intro-
duce the analytical model for evaluating energy consumption,
service delay, and monetary cost characteristics at different
components in the system. In Section III, we formulate the
computation offloading as the multiobjective optimization
problem and propose an iterative searching-based offload-
ing scheme to solve the formulated problem. Section IV
implements the proposed algorithm, and extensive simula-
tion provides the illustrative results to validate our proposed
scheme and make comparisons with existing offloading mod-
els. Finally, we conclude and discuss future directions in
Section V.

II. SYSTEM MODEL
In Fig. 2, we consider an underlying three-tier generic
IoT-edge-cloud architecture with the bottom-most layer con-
sisting of resource-constrained SDs, interested in offloading
tasks to the middle tier. The middle tier is formed by a dis-
tributed network of the edge nodes orMEC servers, providing
service to the SDs. Finally, the topmost layer is the cloud
infrastructure. The necessary interaction between the three
layers are as follows:
• Mobile applications executing on the SDs generatemany
service requests that are atomic and independent of each
other. These requests can be executed either locally or
offloaded for the remote execution [17], [26].

• MEC server can process the received request, forward
requests to other edge nodes in the MEC network,
or send it to the cloud if the load on the MEC network is
higher than its processing capacity.

The proposed model’s main objective is to determine the
amount of work that can be offloaded from the SDs for remote
execution on the edge server or the cloud while minimizing
the response time, energy consumption, and remote execution
cost.

We utilize queuing theory to model our system, which is
widely used for resource contention and delay analysis in
the computing and communication systems [36]. Queuing
theory abstracts the nodes’ underlying hardware and avoids
the need to decide for an individual offloading task [37].
The frequently used key notations are given in Table 2 along
with its corresponding description. In the table, we use the
super-script m, e and c to denote the SDs, edge nodes, and
cloud, respectively. The sub-script i indicates a specific SD,
whereas j and k represents a particular edge node, respec-
tively. Note that the term edge node, MEC node, and MEC
server used interchangeably to refer the nodes in the middle
tier, i.e., MEC network. In the rest of the paper, we also refer
to the incoming service requests as requests, tasks, or jobs
interchangeably. We also mention that we have used and
applications and users mutually.

A. LOCAL EXECUTION MODEL
We assume that there are N numbers of single processor
SDs in the system. The applications running at the SDs

TABLE 2. Frequently used notations in the paper.

generate many service requests that are atomic and indepen-
dent of each other. The arriving service requests pending
for execution on the SD are stored in a first-in-first-out
(FIFO) queue. The Poisson process is the most common
and widely used stochastic process to model the arrival
of tasks within a time-span for a single server computing
system [38]. Thus, the process queue at the SDs is mod-
eled using the M/M/1 queue, which approximates the task
arrival process with a Poisson distribution rate of λmi [20],
[36], [39]. The service processing rate is Exponentially dis-
tributed with an average processing rate µmi of an ith SD.
The offloading probability pmi (0 ≤ pmi ≤ 1) impacts
the rate at which a SD can offload its service requests for
the remote execution. If the offloading probability pmi is
increased, the service requests are offloaded more frequently,
and vice-versa. The offloading rate of a SD follows the
Poisson process with an average rate of pmi λ

m
i . The requests

that are processed locally also follow the Poisson processwith
an average rate of (1− pmi)λ

m
i , referred to as local execution

rate [39]. Hence, the average response time (Tmi) and energy
consumption (Emi) for executing a request locally is given
by [40]:

Tmi (p
m
i) =

1
µmi − (1− pmi)λ

m
i

(1)

Emi (p
m
i) = η

m
i T

m
i (p

m
i) = η

m
i

(
1

µmi − (1− pmi)λ
m
i

)
(2)

where, ηmi is the energy coefficient, representing the per
time energy consumption of an ith SD. The parameter ηmi
depends upon the hardware specifications and architecture
of the SD [41]. In our implementation, we assume that the
value of ηmi is the same for all SDs during the computation
process.

VOLUME 8, 2020 149919

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

B. COMMUNICATION MODEL BETWEEN SMART DEVICE
AND MEC NETWORK
In our model, we assume the SDs are equipped with a single
network interface card (NIC) and single radio access trans-
mission (RAT) antenna for offloading its service requests to
a particular edge node at a time [17]. We refer to Shannon’s
theorem [42] to get wireless uplink data rate rmi of an ith

device:

rmi = B log2

(
1+

Pigi
σ 2 +

∑
jεN ,j 6=i Pjgj

)
(3)

where B is the channel bandwidth, gi is the channel gain
between an ith SD and the MEC network, and σ 2 is the
background noise power. The power required by the SD for
transmitting data to the edge nodes is Pi, (0 < Pi < Pmax).
We adopt thewireless interferencemodel [19], wherebymany
SDs can share the same spectrum resource simultaneously.
Thus, the interference caused by other SD’s, can be calculated
as
∑

jεN ,j6=i Pjgj.
The transmission time for offloading tasks from an ith SD

to the edge node can be obtained by dividing the product of
offloading rate (pmi λ

m
i) and size of the service request (d

m
i) by

the received uplink rate (rmi), as shown in (4).

T ti (p
m
i ,Pi) =

pmi λ
m
i d

m
i

rmi
=

pmi λ
m
i d

m
i

B log2

(
1+ Pigi

σ2+
∑
jεN ,j 6=i Pjgj

) (4)

Similarly, (5) shows the energy required for transmitting
the data to the edge nodes, which is calculated by multiplying
the power (Pi) required for transmitting the data and the
transmission time (T ti).

E ti (p
m
i ,Pi) = PiT ti =

Pipmi λ
m
i d

m
i

B log2

(
1+ Pigi

σ2+
∑
jεN ,j6=i Pjgj

) (5)

According to Kleinrock independence approximation the-
orem, the total incoming traffic on the MEC network can be
approximated as a Poisson process [43]. Equation (6) shows
the total offloaded service requests load (λmT) from the SDs
to the MEC network, which is obtained by adding the indi-
vidual offloading rates from the SDs connected to the edge
nodes.

λmT =

N∑
i=1

λmi p
m
i (6)

C. MOBILE-EDGE COMPUTING MODEL
In our model, the distributed MEC network consists of inter-
connected edge nodes that interact with each other in an
ad-hoc manner to provide computational services to the SDs.
We assume that the edge nodes are connected to the primary
power grid, so that we can concentrate on the energy con-
sumption of the SDs, as considered in [29], [32]. Further,
we also assume that network delay in forwarding the service
requests within the MEC network is negligible, as the edge
nodes are connected to a backhaul network [21], [22], [26].

The service requests can enter in the MEC network for pro-
cessing via any edge node. On receiving a service request,
the edge node can either execute the task or forward it to
another edge node for processing. The services requests are
routed between the edge nodes depending upon their resource
availability, load on the current MEC server, and total load of
the MEC network. Finally, the processed request depart from
the system, and the result can be stored in the cloud or sent
back to the user.

We use the Jackson network to model the distributed
resource sharing MEC network, which is an open queuing
network consisting of multiple nodes [44]. Previously, [45]
used the Jackson network for modeling the cloud architec-
ture with a single entry point. Also, in [46], the authors
model the sensor network as an Open Jackson network to
balance the computational load, which improves the overall
system performance. According to Jackson’s theorem, if the
equilibrium exists at each edge node, i.e., server utilization
ρj = λj/µj < 1, then the joint state distribution for M edge
nodes in the system is given by the product of the individual
queue equilibrium distributions. This can be represented by
the following product-form solution [44].

Q(n1, n2 . . . , nM) =
M∏
j=1

Qj(nj) (7)

where Q is the probability of overall system state
(n1, n2 . . . , nM) for M edge nodes, Qj is the probability that
there are n tasks in the queue of edge node j ∈ M .

The total service arrival rate λej at the j
th MEC server j ∈

{1, 2, . . . ,M} is given by (8). In (8), 3e
j is the arrival rate of

the service request from the SDs. pkj is the routing probability
that a job moves from edge node k to the neighboring edge
node j and leaves the network with probability 1−

∑M
j=1 pkj.

Hence, the incoming traffic from the neighboring edge nodes
to the jth edge node is

∑M
k=1 pkjλk . Notice that, for an open

network, we must have at least one queue with 3e
j 6= 0 [47].

λej = 3
e
j +

M∑
k=1

pkjλk (8)

Fig. 3 shows an open queuing network with four edge
nodes {e1, e2, e3, e4}, that are connected with each other to
form a load sharing distributed network. The incoming ser-
vice request from SDs to the edge node is {3e

1,3
e
2,3

e
3,3

e
4}

and the processing service rate of the edge node is
{µe1, µ

e
2, µ

e
3, µ

e
4}. In the figure, {p12, p21, p23, p32, p34, p43}

are the associated routing probabilities between the edge
nodes. For example, e2 forwards its traffic load to e1 and
e3 with routing probabilities p21 and p23, respectively. Thus,
the traffic load forwarded by e2 to e1 and e3 is p21λe2 and p23λ

e
2

and processes the remaining services locally with (1− p21 −
p23)λe2. The notation λ

e
2 shows the total incoming traffic on e2

from SDs and edge nodes e1 and e3, i.e. (p12λe1+p32λ
e
3+3

e
2).

In our model, the edge nodes with independent queues
form the Jackson network, that receives the incoming service

149920 VOLUME 8, 2020

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

FIGURE 3. Distributed MEC network.

requests following a Poisson’s process. In our framework,
we assume that the edge nodes are using a single queue for
handling its service requests [46]. Hence, we use M/M/1
queue formodeling the edge nodes. Thus, the average number
of tasks (W e

j) at the j
th edge node can be represented in (9)

as:

W e
j =

λej

µej − λ
e
j

(9)

The MEC network’s total processing capacity can be
expressed as the summation of the service processing rate
(µej) of the M edge nodes, as shown below:

µeT =

M∑
j=1

µej (10)

Notice that, if the total offloaded service requests load (λmT)
is less than or equal to the total processing capability (µeT) of
the MEC network, then all the service requests can be pro-
cessed within the MEC network. In such a case, the fraction
of requests (φe) processed by the MEC network is equal to 1,
as shown below:

φe = 1, if µeT ≥ λ
m
T (11)

Correspondingly, the actual processing load on the MEC
network (λeT), is given as:

λeT = φ
eλmT = λ

m
T , if µeT ≥ λ

m
T (12)

Hence, we can use (12) to evaluate the total service request
delay (T e) of the MEC network, given below in (13):

T e(λeT) =

∑M
j=1W

e
j

λeT
(13)

D. CLOUD COMPUTING EXECUTION MODEL
When total offloaded service requests load (λmT) is greater
than the total processing capability (µeT) of the MEC net-
work. In that case, we utilize the huge computing resources
of the cloud infrastructure. Otherwise, the system loses its
equilibrium, resulting in system failure. We assume that the
edge nodes communicate and share their current processing
load with other nodes in the MEC network [48], which can be
performed by broadcasting or utilizing the cluster heads after
partitioning the network. Equation (14), shows the fraction of
requests (φe) processed by the MEC network:

φe =
µeT

λmT
, if µeT < λmT (14)

Thus, the actual processing load on the distributed MEC
network can be expressed as follows:

λeT = φ
eλmT = µ

e
T , if µeT < λmT (15)

The overloaded request (λc) that exceeds the processing
capability of the MEC network is transferred to the cloud for
execution. Hence, the total arrival rate of request at the cloud
(λc) is calculated as follows:

λc = λmT − µ
e
T , if µeT < λmT (16)

VOLUME 8, 2020 149921

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

In our model, we assume that the MEC network is con-
nected to the cloud over a high-speed network [21]. Thus,
the time required for transmitting the service requests to the
cloud is given by:

T ct (λ
c) =

λcdmi
rc

(17)

where rc is the uplink rate of the requests forwarded by the
MEC network to the cloud.

Moreover, we assume a M/M/∞ model at the cloud with
a service rate of µc, which is consistent with our assumption
that the cloud has sufficient resources for processing the
incoming service requests from the MEC network [7], [49].
Hence, the queuing delay is negligible, so the total delay
at the cloud (T c) includes only transmission and execution
time [40], given by:

T c = T ct +
1
µc

(18)

In our model, we ignore the timing overhead for delivering
the output data from the MEC or cloud server to the SDs.
The two main reasons for this assumption are as follows:
(a) the input size is generally much larger than the size of the
output, and (b) the downlink data rate is much higher than the
uplink data rate. Similar assumptions are also considered by
the researchers in their offloading models [23], [50].

E. ENERGY, DELAY AND COST MODEL
The total energy consumption (Ei) for executing a task, either
locally or remotely, by an ith SD can be obtained by combin-
ing (2) and (5), given in (19):

Ei(pmi ,Pi) = (1− pmi)E
m
i (p

m
i ,Pi)+ p

m
i E

t
i (p

m
i ,Pi) (19)

Similarly, (20) shows the total response time (Ti) for exe-
cuting a request by an ith SD, which is obtained by aggregat-
ing (1), (4), (13), and (18):

Ti(pmi ,Pi) = (1− pmi)T
m
i

+pmi
(
T ti + φ

eT e + (1− φe)T c
)

(20)

Finally, (21) and (22) show the average energy consump-
tion (E) and average response time (T) for executing the
service requests generated by all SDs in the system. More-
over, the SDs need to pay for utilizing the resources of the
MEC nodes and cloud. If we consider that a unit cost for
using the resources at the edge node is Ce and cloud is Cc,
then the average payment cost (C) can be expressed as (23).
In general, the cost of utilizing cloud resources is higher than
the cost of resources in the MEC network, both in terms
of transmission delay and monetary cost [51]. Therefore,
it is advisable to utilize the MEC resources for computation
offloading.

E(pmi ,Pi) =
1
N

{ N∑
i=1

Ei(pmi ,Pi)
}

(21)

T (pmi ,Pi) =
1
N

{ N∑
i=1

Ti(pmi ,Pi)
}

(22)

C(pmi) =
1
N

{
CeλmT + C

c(λmT − µ
e
T)
}

(23)

III. PROBLEM FORMULATION AND PROPOSED
ALGORITHM
As stated previously, the objective of the proposed model is
to optimize the offloading probability (pmi) and transmission
power (Pi) to minimize the execution delay, energy con-
sumption, and monetary cost of the SDs. In the following,
we discuss the problem formulation by introducing a mul-
tiobjective problem for minimizing the following objective
function, shown in (24).

Min
pmi ,Pi
{E(pmi ,Pi),T (p

m
i ,Pi),C(p

m
i)} (24)

The above multiobjective problem is a nonlinear opti-
mization problem. We use the Scalarization method [52] to
modify (24) into a linear combination of single-objective
problems. The scalers/weights {α1, α2, α3}, where α1+α2+
α3 = 1, are assigned to the objective functions to reflect
their relative importance. The Ẽ , T̃ and C̃ are the maximum
energy consumption, execution delay, and payment cost of
the SDs [27]. The modified constrained multiobjective prob-
lem is given in (25), where ε � 1 is a small positive constant
to ensure the stability of the entire queuing system [39].

Min
pmi ,Pi

{
α1
E(pmi ,Pi)

Ẽ
+ α2

T (pmi ,Pi)

T̃
+ α3

C(pmi)

C̃

}
(25)

s.t. (1− pmi)λ
m
i ≤ µ

m
i − ε ∀i ∈ N (26)

M∑
i=1

λmi p
m
i ≤

M∑
j=1

µej − ε ∀i ∈ N ,∀j ∈ M (27)

3e
j +

M∑
k=1

pkjλk ≤ µej − ε ∀j, k ∈ M (28)

0 < Pi < Pmax ∀i ∈ N (29)

0 ≤ pmi ≤ 1 ∀i ∈ N (30)

Depending upon the total offloaded service arrival rate
from SDs to the MEC network, i.e., (λmT), the above problem
can further be divided into two sub-cases. First, the total ser-
vice arrival rate from the SDs (λmT) is less than the MEC net-
work’s total processing capability (µeT). That is, if λ

m
T ≤ µ

e
T ,

then φe = 1 (from (11)). Substituting this in (25), the opti-
mization problem reduces to the analytical expression (31),
as shown at the bottom of the next page. Next, we consider
the case of (λmT > µeT), hence, φ

e
= µeT /λ

m
T (from (14)).

Again substituting in (25), the optimization problem reduces
to (32), as shown at the bottom of the next page. Objective
functions L1 and L2, given in (31) and (32) have similar con-
straints from (26) to (30). Constraint (26) is derived from (1),
which ensures that the locally executed service request rate
is less than the processing rate of the SDs. Constraint (27)
restricts the total service requests load from the SDs (λmT),

149922 VOLUME 8, 2020

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

such that it does not exceed the service processing capac-
ity (µeT) of the MEC network, which is derived from (6)
and (10). Finally, constraint (28), which is obtained from (8),
enforces that the incoming service arrival rate at the individ-
ual edge node (λej) does not exceed its processing capability
(µej).The decision variables in the proposed multiobjective
optimization problem (formulated in (31) and (32)) that mini-
mizes the objectives (i.e., energy consumption (E), execution
delay (D) and monetary cost (C) under the constraints (26)
to (30), are offloading probability (pmi) and transmission
Power (Pi).
There are several methods for solving constrained opti-

mization problems, such as Penalty and Barrier method,
Primal method, Lagrange Multiplier, Frank-Wolfe method,
Quadratic Programming [53]. The major challenge in solving
the constrained optimization problem is to satisfy the feasible
region bounded by the constraints.We use thePenalty method
that remodels our problem into an unconstrained optimization
problem, which converges to the original problem’s solu-
tion [54]. Thus, a penalty is added to the objective function
to enforce obstacles on the boundary of the feasible region,
so that an iterative solving process remains within the feasi-
ble region. Considering X as the feasible space, the penalty
function 8 can be defined as (33), where f (x) is the value of
the function at point x in the feasible space X and gi(x) is the
constraint function value [55].

8(x) =

{
f (x)+

∑
i gi(x), if x 6∈ X

f (x) otherwise
(33)

After converting the multiobjective problem into a series
of linear combinations of single-objective functions and
transforming it into an unconstrained optimization problem,
we use a well-known Stochastic Gradient Descent (SGD)
based solution approach, initially developed by Robbins and
Monro [56]. SGD algorithm is a stochastic iterative tech-
nique that is frequently used in numerous applications such
as machine learning, optimization, classification, neural net-
works, and deep learning [57].

SGD is an extension of the standard gradient descent (GD)
algorithm in which the stochasticity arises at each iteration
step by randomly selecting a single training example. To min-
imize or maximize the objective function in the GD method,
the gradient is calculated from the whole training set, thus
referred to as batch gradient descent. Running the batch
GD on a huge dataset with millions of data points is costly
because the gradient is calculated from the whole training set
at each iteration. However, due to the random shuffling of the
training examples, the SGD path to the optimal solution is
noisier but much faster because it updates the weights after
every iteration. Thus, the SGD is also known as incremen-
tal or online gradient descent. The random shuffling of the
training sample has the advantage of escaping the local min-
ima/maxima easily. For the convex function, the SGD takes
O(1/ε) number of iterations to reach the ε-neighbourhood of
the optimal solution for a sufficiently large number of data
samples [58]. Therefore, the convergence of the SGD does
not depend upon the size of the dataset. In contrast, the GD
requires O(n) iterations [57], [59] (where n is sufficiently
large number of data samples and each iteration requires

Min
pmi ,Pi

L1(pmi ,Pi) = α1
1
N

1

Ẽ

N∑
i=1

{
(1− pmi)η

m
i

1
µmi − (1− pmi)λ

m
i
+ pmi

Pipmi λ
m
i d

m
i

B log2
(
1+ Pigi

σ 2+
∑

nεN ,n6=i Pjgj

)}

+α2
1
N

1

T̃

N∑
i=1

{
(1− pmi)

1
µmi − (1− pmi)λ

m
i
+ pmi

(
pmi λ

m
i d

m
i

B log2
(
1+ Pigi

σ 2+
∑

jεN ,j6=i Pjgj

) +
∑M

j=1
λej

µej−λ
e
j

λeT

)}

+α3
1
N

1

C̃

{
CeλeT

}
s.t. eqs. (26) to (30) (31)

Min
pmi ,Pi

L2(pmi ,Pi) = α1
1
N

1

Ẽ

N∑
i=1

{
(1− pmi)η

m
i

1
µmi − (1− pmi)λ

m
i
+ pmi

Pipmi λ
m
i d

m
i

B log2
(
1+ Pigi

σ 2+
∑

nεN ,n 6=i Pjgj

)}

+α2
1
N

1

T̃

N∑
i=1

{
(1− pmi)

1
µmi − (1− pmi)λ

m
i
+ pmi

[
pmi λ

m
i d

m
i

B log2
(
1+ Pigi

σ 2+
∑

jεN ,j 6=i Pjgj

)
+φe

∑M
j=1

λej
µej−λ

e
j

λeT
+ (1− φe)

(
λcdmi
rc
+

1
µc

)]}
+α3

1
N

1

C̃

{
CeλeT + C

c
(N∑

i=1

λmi p
m
i − λ

e
T

)}
s.t. eqs. (26) to (30) (32)

VOLUME 8, 2020 149923

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

Algorithm 1OffloadingModules Executing at Different Net-
work Entities
Smart Devices (SDs)

1: Initialize: Offloading Prob. (pmi) and Trans. Power (Pi)
2: if (λmi < µmi) then
3: Offload (pmi λ

m
i)

4: Local Execution (1− pmi)λ
m
i

5: end if

Mobile Edge Computing (MEC) Nodes

1: if (λej ≤ µ
e
j) then

2: Execute Service Request on the MEC node
3: else if (λmT ≤ µ

e
T) then

4: Forward request to the neighboring MEC node
5: else
6: Send service requests to the cloud
7: end if
8: Execute SGD Algorithm

Centralized Cloud

1: Process the incoming service requests (λc = λmT − µ
e
T)

from MEC network on the cloud servers.

n gradient computations) for the same. Hence, solving the
optimization problem using SGD is independent of the size
of the dataset.

To solve the formulated nonlinear multiobjective optimiza-
tion problem in (31) and (32), we propose the Algorithm 1
and Algorithm 2. Algorithm 1 shows the execution of the
offloading modules on the various networking entities. The
proposed optimization problem that minimizes the offloading
objectives, i.e., E , D, and C under the constraints, is solved
by Algorithm 2. The initial input values of our decision
variables, i.e., offloading probability (pmi) and transmission
Power (Pi), are randomly generated. We provide the input
parameters and apply the penalty method to construct an
unconstrained optimization problem. Then we apply the iter-
ative approach and calculate the gradient of the objective
function to update the value of the (pmi ,Pi). The reduction
factor is a small positive number of βj � 1, resulting in a
faster decline in the penalty coefficient values. Hence, less
number of iterations are required to get close to the optimal
solution. Finally, the Algorithm 2 returns the optimal value of
(pmi ,Pi) corresponding to E , D and C .

IV. PERFORMANCE EVALUATION
In this section, we investigate the performance of the
proposed architecture by studying the effect of different
parameters on the offloading objectives and performing the
comparative analysis with the existing offloading schemes.
For experimental evaluation, we consider amulti-serverMEC
network with a large number of SDs (from 1 to 100) dis-
tributed randomly in a given area. For each SD, the local
service rate (µmi) lies within the range of [3.5, 5] MIPS

Algorithm 2 Proposed Stochastic Gradient Descent (SGD)
Based Algorithm

Input: N , µmi , η
m
i ,B, σ

2,M , µej , pkj, µ
c, rc

Output: Optimal values of pmi and Pi
1: Convert constrained optimization problem ((31)

and (32)) into unconstrained optimization problem using
the Penalty Method and employ the penalty coefficient
as discussed in [54].

2: Initialize: nitial feasible point of
(
(pmi)

0, (Pi)0
)N
i=1

,

reduction factor βj, iteration k = 0, initial value of
penalty coefficient

3: Define tol as a very small positive real number.
4: while ||((pmi)

k , (Pi)k)Ni=1 − ((pmi)
k+1, (Pi)k+1)Ni=1|| >

tol && k 6= 100 do
5: Calculate Gradient of L(pmi ,Pi) at ((p

m
i)

k , (Pi)k)Ni=1
6: (pmi)

(k+1)
= (pmi)

k
− βj ∗ grad(V (pmi ,Pi))

7: (Pi)(k+1) = (Pi)k − βj ∗ grad(V (pmi ,Pi))
8: Replace (pmi)

k
= (pmi)

(k+1) and (Pi)k = (Pi)(k+1)

9: k = k + 1
10: end while
11: return Optimal (pmi ,Pi) to the SDs.

(Million Instructions Per Second) and the service generation
rate (λmi) ranges between [1.5, 3.0] MIPS. The size of a
service request is randomly generated for each SD by incor-
porating theMATLAB rand function that uniformly generates
the request size between [300, 1000] Kb [22], [60]. The
energy consumption for local processing at the SDs is set
as 3 Joule/sec. We further consider that maximum energy
consumption (Ẽ) and execution delay (D̃) for the SDs is
15 Joule and 2 sec, respectively. The MEC network consists
of 6 heterogeneous edge nodes with the processing capability
lies between [8, 12] MIPS. The uplink data rate of the optical
fiber link connecting the MEC network and the cloud is
1Gb/s.We useMATLAB simulator for our evaluation, and all
results are averaged over a large number of simulation runs.
The background noise power (σ 2) is fixed as −100 dBm.
Furthermore, we give equal weights to all our offloading
objectives, i.e., energy, delay, and cost in the multiobjec-
tive optimization problem. Hence, the value assigned to the
alpha vector (α1, α2, α3) is (1/3, 1/3, 1/3). Finally, we set
the maximum payable cost of the SD as 0.2, where the cost
of executing a request at the MEC server and the cloud is
assumed to be 0.001 and 0.005, respectively. The simulation
parameters are taken from [26], [27].

A. EFFECT ON THE OFFLOADING OBJECTIVES
In the following, we investigate the impact of offloading
probability (pmi), transmission power (pmi), and edge nodesM
on the offloading objectives (E , D, and C) with an increasing
number of SDs. In Fig. 4, we vary the initial offloading
probabilities (pmi) for the experiment, the initial transmit
power (Pi) of all the SDs is set as 10 dBm. Fig. 4a shows that

149924 VOLUME 8, 2020

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

FIGURE 4. Effect of multiple SDs on (a) energy consumption (b) execution delay and (c) payment cost for different offloading probabilities.

FIGURE 5. Effect of multiple SDs on (a) energy consumption (b) execution delay and (c) payment cost for different transmission power.

energy consumption increases with an increasing number of
SDs. This is because the background interference increases
with the increasing number of SDs; more transmission power
is required to generate a higher uplink rate for sending data
to the MEC network. Moreover, with an increasing offload-
ing probability, the number of offloaded service requests
increases. Hence, the average waiting time at the MEC
network increases, as evident from (13). Also, comparing
the three curves in fig. 4b, we find that as the number of
SDs increase the execution delay gradually decreases for
the low offloading probabilities. This is because the con-
gestion and waiting delay at the MEC node increases when
the offloading probability is high. Equation (4), also shows
that the transmission delay increases with increasing SDs.
Therefore, the overall execution delay increases, Fig. 4b.
The increment in transmission power and delay with the
increasing number of SDs in the system results in shifting
the preference more towards local execution. As a result,
the payment cost incurred for remote execution decreases
with increasing SDs, Fig. 4c.

In Fig. 5, we study the effect of varying transmission
powers (Pi) on the offloading objectives. For this, the initial
offloading probability (pmi) of all the SDs is 0.5. Fig. 5a shows
that energy consumption increases with an increasing number

of SDs. The energy consumption is directly proportional to
transmission power, which is also evident from (5). In Fig. 5b,
the execution delay reduces with an increase in transmission
power. This is because increasing the transmission power at
the SD generates a higher uplink rate, which in turn reduces
the transmission delay required for forwarding a request to
the MEC network, as given by (4). However, the payment
cost increases for low transmission power because the service
request takes more time to reach the edge nodes, which
causes less congestion in the MEC network. This encourages
offloading, and the payable cost increases, Fig. 5c.

In Fig. 6, we study the proposed scheme by varying the
number of edge nodes in the MEC network. For this set of
experiments, we set the initial offloading probability as 0.5
and transmit power 10 dBm for all the SDs. We perform the
simulation for three sets of edge nodes in the MEC network,
i.e., 4, 8, and 12. From Fig. 6a and Fig. 6b, we observe that
the energy consumption and execution delay decreases with
an increasing number of edge nodes. This is because, with
an increasing number of edge nodes, the processing load at
the MEC network decreases, allowing SDs to offload more
requests for the remote execution. As a result, the payment
cost increases with an increasing number of MEC nodes,
as shown in Fig. 6c.

VOLUME 8, 2020 149925

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

FIGURE 6. Effect of multiple SDs on (a) energy consumption (b) execution delay and (c) payment cost for different number of edge nodes.

FIGURE 7. Effect of load sharing on (a) energy consumption (b) execution delay and (c) payment cost for multiple SDs.

B. LOAD SHARING VS NO LOAD SHARING
In Fig. 7, we show the effect of load sharing between edge
nodes. For this set of experiments, we set the initial offloading
probability as 0.5 and transmit power 10 dBm for all the SDs.
By setting the routing probability pkj as 0.3 and 0, we compare
the performance of the proposed model with and without load
sharing between the edge nodes. If the load sharing is denied
between edge nodes, the processing load at an individual edge
node may increases resulting in high queuing delay, which
increases the total execution delay, Fig. 7b. Thus, more tasks
are preferred to be executed locally, which increases energy
consumption Fig. 7a, but the payment cost is reduced, Fig. 7c.
Therefore, the performance of the system improves with the
load sharing between MEC nodes.

The routing probability (pkj) is the probability that a job is
forwarded from an edge node k to the neighboring edge node
j and leaves the MEC network with probability 1−

∑M
j=1 pkj;

in other words, routing probability determines the load shar-
ing between the MEC nodes. For simplicity, we assume a
constant routing probability of pkj = 0.3, which yields a
better simulation result. We derive this value empirically by
using different values for the routing probabilities (i.e., pkj =
{0.1, 0.3, 0.5}), as shown in Fig. 8.

C. COMPARISON OF MEC BASED OFFLOADING WITH
MCC OFFLOADING AND LOCAL EXECUTION
In this section, we show the efficiency of the proposed MEC
scheme compared to cloud-based offloading (MCC) and local
execution. In the proposed MEC based offloading, we con-
sider the availability of edge resources with the collaboration
cloud infrastructure providing services to the SDs. On the
other hand, MCC-based offloading only considers the cloud
computing resources for executing the offloading requests,
and local execution indicates that all service requests are
executed locally on the SDs. For comparing these scenarios,
we define the Average Ratio (AR) [23], in (34). In the equa-
tion, ASMEC is the aggregated sum of the optimal values of
the offloading objectives (E , D, and C) obtained by the SGD
algorithm for the MEC based offloading. Whereas, ASadj is
the aggregated sum of the objective values computed by the
SGD algorithm for either MCC based offloading or the local
execution scenario.

AR =
ASMEC
ASadj

(34)

From Fig. 9, we see that MEC based offloading achieves
better performance than the MCC based offloading and local

149926 VOLUME 8, 2020

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

FIGURE 8. Comparison of the offloading objectives for different routing
probabilities.

FIGURE 9. Comparison of different offloading paradigms.

execution. We observe that the performance of the MEC
based offloading is approximately 20% better than MCC
based offloading because the MEC servers process most of
the services request; hence the execution delay and cost
reduce significantly. In the local execution scenario, there is
no execution cost and transmission delay. However, very high
energy consumption in processing all the service requests on
the SDs, therefore the offloading becomes beneficial in all
local execution. From Fig. 9, we observe that MEC based
offloading has a significant impact on the performance of the
SDs, as the performance of local execution reduces by 40%
compared to the MEC based offloading.

D. COMPARISON ANALYSIS AND DISCUSSION
In this section, we perform a comparative analysis of the
proposed offloading framework. We begin by comparing the
performance of the proposed model with the existing offload-
ing scheme. Further, we compare the performance of the SGD
based solution approach with the interior point method (IPM)
algorithm on the formulated multiobjective problem.

1) COMPARISON WITH PREVIOUS OFFLOADING SCHEMES
In [19] and [20] authors considers a distributed load sharing
fog layer for executing the offloading requests from the SDs.
The authors in [19] define three modes of processing, i.e., all

fog processing (AFP), light fog processing (LFP), and no
fog processing (NFP). In LFP, only light processing tasks are
offloaded to the fog nodes. In NFP, there is no intermediate
fog layer; hence tasks are executed on either SD or the cloud,
which represents the MCC-based offloading. While in AFP,
both light and heavy requests can be offloaded to the fog
layer or cloud for processing. Meanwhile, in [20], authors
have discussed a two-step process, i.e., network formation
stage and task distribution stage. In the network formation
stage, the fog network is formed without any prior informa-
tion on the neighboring nodes. The task distribution stage
offloads the tasks to the nodes on the fog network. From
Fig. 10a, we find that the average service delay reduces with
an increasing offloading probability. It can also be seen that
the performance of the offloading schemes in [19] and [20]
are slightly better than the proposed scheme. This is due to
the optimization of multiple objectives (E , D, and C) in our
model compared to single-objective optimization, i.e., mini-
mization of service delay in [19] and [20].

To show the effectiveness of the proposed model, we com-
pare it with existing offloading schemes, i.e., game-theory
based offloading scheme [26], IPM based algorithm [27], and
iterative search algorithm combining interior penalty func-
tion in [2]. Authors in [27] propose a centralized offloading
scheme by utilizing queuing theory and introduce an IPM
based algorithm for minimizing the energy consumption,
execution delay, and payment cost of the mobile devices.
Zhang et al. [2] propose an iterative search algorithm com-
bining the interior penalty function with D.C. program-
ming (IPDC) to solve the trade-off between the energy con-
sumption of SDs and execution latency of their tasks. Ref-
erence [26] propose a distributed collaborative computation
offloading scheme using game theory to minimize mobile
devices’ energy consumption while satisfying their execution
time. From Fig. 10b, we observe that, compared with the
existing schemes, the proposed model performs better for the
increasing number of SDs under variable service arrival rates,
which illustrates the effectiveness of this study.

2) PERFORMANCE OF THE OPTIMIZATION ALGORITHMS
In the following, we compare the stochastic gradient
descent (SGD) algorithm based solution approach with the
interior-point method (IPM). We solve the aforementioned
multiobjective problem formulated in (32) with the IPM
method to minimize the objective function (L2) under the
similar experimental setup. From Fig. 11a, we observe that
the optimal objective values obtained are slightly better using
the SDG algorithm compared to the IPM method. Moreover,
there is a huge difference in the execution overhead of both
the algorithms, shown in Fig. 11b. Based on our experimental
setup, it takes approximately 27 seconds for the SGD and
130 seconds for the IPM to solve the formulated problem for
the 100 SDs. This is because, the computational complexity
of the IPM algorithm require O(

√
n) iterations to yield an

ε-complimentary solution [61] (where n is the sufficiently
large number of data samples). SGD has the computational

VOLUME 8, 2020 149927

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

FIGURE 10. Comparative analysis of the proposed model.

FIGURE 11. Performance comparison of SGD with IPM algorithms on the proposed model.

TABLE 3. Optimal values of the offloading objectives for the SGD and IPM algorithm.

complexity of O(1/ε) [57], which is independent of the size
of the dataset. Hence, the SGD algorithm converges faster
to the optimal solution compared to the IPM algorithm.
Therefore, the SGD algorithm is best suited for the delay
sensitive application and solving large scale convex uncon-
strained optimization problems. Further, in Table 3, we show
the performance of both the algorithms for different sets of
weight factors (α1, α2, α3). The weights are selected such that
the system emphasizes more on one of the objectives (i.e.,
either energy, delay, or cost) than the others.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a computation offloading scheme
for efficient resource utilization of smart devices (SDs).
The model presents a generalized three-tier IoT-edge-cloud
framework, considering the collaboration of load sharing
distributed MEC network and the cloud infrastructure. The
goal is to find an optimal trade-off between the energy con-
sumption of SDs, execution latency of their tasks, and the
payment cost for remote execution a task on the edge or cloud
server. A nonlinear multiobjective optimization problem is

149928 VOLUME 8, 2020

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

formulated by applying queuing theory at the SDs, MEC
network, and cloud to analyze the delay performance, energy
consumption at different network entities, and the cost for
using edge and cloud services. For solving the formulated
problem, stochastic gradient descent (SGD) algorithm based
solution approach, in combination with the penalty method,
is used to optimize the offloading probability and transmis-
sion power jointly. Finally, we study the proposed system by
the simulation to understand its effectiveness under various
parameters and demonstrate its effectiveness over the avail-
able MEC offloading schemes.

In future, we intend to include parameters, like output
transmission delay and network delays within the MEC
network. We may also extend our model for multi-class
traffic and include routing probability optimization for bet-
ter resource utilization. Additionally, the formulated nonlin-
ear multiobjective problem can be solved using advanced
optimization algorithms like AdaBound, Non-dominated
Sorting Genetic Algorithm-II (NSGA-II), Strength Pareto
Evolutionary Algorithm-2 (SPEA-2), Multiobjective Evolu-
tionary Algorithm Based on Decomposition (MOEA/D) and
so on. The trade-off may be better analyzed using such
schemes as the results are provided in the form of Pareto-front
and may vary depending upon the choice of the algorithm.

REFERENCES
[1] B. Li, Z. Fei, J. Shen, X. Jiang, and X. Zhong, ‘‘Dynamic offloading for

energy harvesting mobile edge computing: Architecture, case studies, and
future directions,’’ IEEE Access, vol. 7, pp. 79877–79886, 2019.

[2] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng,
and B. Hu, ‘‘Energy-latency tradeoff for energy-aware offloading in
mobile edge computing networks,’’ IEEE Internet Things J., vol. 5, no. 4,
pp. 2633–2645, Aug. 2018.

[3] J. H. Anajemba, T. Yue, C. Iwendi, M. Alenezi, and M. Mittal, ‘‘Optimal
cooperative offloading scheme for energy efficient multi-access edge com-
putation,’’ IEEE Access, vol. 8, pp. 53931–53941, 2020.

[4] C. Garrido-Hidalgo, D. Hortelano, L. Roda-Sanchez, T. Olivares,
M. C. Ruiz, and V. Lopez, ‘‘IoT heterogeneous mesh network deployment
for Human-in-the-Loop challenges towards a social and sustainable indus-
try 4.0,’’ IEEE Access, vol. 6, pp. 28417–28437, 2018.

[5] Y. Hao,M. Chen, L. Hu,M. S. Hossain, andA. Ghoneim, ‘‘Energy efficient
task caching and offloading for mobile edge computing,’’ IEEE Access,
vol. 6, pp. 11365–11373, 2018.

[6] H. Ke, J. Wang, H. Wang, and Y. Ge, ‘‘Joint optimization of data
offloading and resource allocation with renewable energy aware for IoT
devices: A deep reinforcement learning approach,’’ IEEE Access, vol. 7,
pp. 179349–179363, 2019.

[7] X. Li, C. Zhang, B. Gu, K. Yamori, and Y. Tanaka, ‘‘Optimal pricing and
service selection in the mobile cloud architectures,’’ IEEE Access, vol. 7,
pp. 43564–43572, 2019.

[8] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, ‘‘Efficient mobility-aware
task offloading for vehicular edge computing networks,’’ IEEE Access,
vol. 7, pp. 26652–26664, 2019.

[9] H. Wu, H. Tian, G. Nie, and P. Zhao, ‘‘Wireless powered mobile edge
computing for industrial Internet of Things systems,’’ IEEE Access, vol. 8,
pp. 101539–101549, 2020.

[10] Q. Wu, H. Ge, H. Liu, Q. Fan, Z. Li, and Z. Wang, ‘‘A task offloading
scheme in vehicular fog and cloud computing system,’’ IEEE Access,
vol. 8, pp. 1173–1184, 2020.

[11] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf, ‘‘A deep
learning approach for energy efficient computational offloading in mobile
edge computing,’’ IEEE Access, vol. 7, pp. 149623–149633, 2019.

[12] H. Wu, ‘‘Multi-objective decision-making for mobile cloud offloading: A
survey,’’ IEEE Access, vol. 6, pp. 3962–3976, 2018.

[13] R. K. Balan and J. Flinn, ‘‘Cyber foraging: Fifteen years later,’’ IEEE
Pervas. Comput., vol. 16, no. 3, pp. 24–30, Jul. 2017.

[14] Y. Fan, L. Zhai, and H. Wang, ‘‘Cost-efficient dependent task offloading
for multiusers,’’ IEEE Access, vol. 7, pp. 115843–115856, 2019.

[15] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, ‘‘Delay-optimal computation
task scheduling for mobile-edge computing systems,’’ in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2016, pp. 1451–1455.

[16] Y. Mao, J. Zhang, and K. B. Letaief, ‘‘Joint task offloading scheduling and
transmit power allocation for mobile-edge computing systems,’’ in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2017, pp. 1–6.

[17] Z. Kuang, L. Li, J. Gao, L. Zhao, andA. Liu, ‘‘Partial offloading scheduling
and power allocation for mobile edge computing systems,’’ IEEE Internet
Things J., vol. 6, no. 4, pp. 6774–6785, Aug. 2019.

[18] F. Shan, J. Luo, J. Jin, andW.Wu, ‘‘Offloading delay constrained transpar-
ent computing tasks with energy-efficient transmission power scheduling
in wireless IoT environment,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4411–4422, Jun. 2019.

[19] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, ‘‘On reducing IoT
service delay via fog offloading,’’ IEEE Internet Things J., vol. 5, no. 2,
pp. 998–1010, Apr. 2018.

[20] G. Lee, W. Saad, and M. Bennis, ‘‘An online optimization framework for
distributed fog network formation with minimal latency,’’ IEEE Trans.
Wireless Commun., vol. 18, no. 4, pp. 2244–2258, Apr. 2019.

[21] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, ‘‘Mobile-edge computation
offloading for ultradense IoT networks,’’ IEEE Internet Things J., vol. 5,
no. 6, pp. 4977–4988, Dec. 2018.

[22] H. Guo, J. Zhang, J. Liu, and H. Zhang, ‘‘Energy-aware computation
offloading and transmit power allocation in ultradense IoT networks,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4317–4329, Jun. 2019.

[23] Z. Ning, P. Dong, X. Kong, and F. Xia, ‘‘A cooperative partial computation
offloading scheme for mobile edge computing enabled Internet of Things,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814, Jun. 2019.

[24] Z. Zhang, Z. Hong, W. Chen, Z. Zheng, and X. Chen, ‘‘Joint compu-
tation offloading and coin loaning for blockchain-empowered mobile-
edge computing,’’ IEEE Internet Things J., vol. 6, no. 6, pp. 9934–9950,
Dec. 2019.

[25] T. Yang, H. Feng, C. Yang, Y. Wang, J. Dong, and M. Xia, ‘‘Multivessel
computation offloading in maritime mobile edge computing network,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4063–4073, Jun. 2019.

[26] H. Guo and J. Liu, ‘‘Collaborative computation offloading for multiaccess
edge computing over fiber–wireless networks,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 5, pp. 4514–4526, May 2018.

[27] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, ‘‘Multiobjective
optimization for computation offloading in fog computing,’’ IEEE Internet
Things J., vol. 5, no. 1, pp. 283–294, Feb. 2018.

[28] L. Liu, Z. Chang, and X. Guo, ‘‘Socially aware dynamic computa-
tion offloading scheme for fog computing system with energy harvest-
ing devices,’’ IEEE Internet Things J., vol. 5, no. 3, pp. 1869–1879,
Jun. 2018.

[29] G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang, and M.-T. Zhou, ‘‘FEMTO:
Fair and energy-minimized task offloading for fog-enabled IoT networks,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4388–4400, Jun. 2019.

[30] G. Zhang, Y. Chen, Z. Shen, and L. Wang, ‘‘Distributed energy manage-
ment for multiuser mobile-edge computing systems with energy harvesting
devices and QoS constraints,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4035–4048, Jun. 2019.

[31] Y. Wu, J. Shi, K. Ni, L. Qian, W. Zhu, Z. Shi, and L. Meng, ‘‘Secrecy-
based delay-aware computation offloading via mobile edge computing for
Internet of Things,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4201–4213,
Jun. 2019.

[32] M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei, ‘‘Power-
constrained edge computing with maximum processing capacity for
IoT networks,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4330–4343,
Jun. 2019.

[33] M. Chao and R. Stoleru, ‘‘R-MStorm: A resilient mobile stream processing
system for dynamic edge networks,’’ in Proc. IEEE Int. Conf. Fog Comput.
(ICFC), Apr. 2020, pp. 64–72.

[34] M. Chao, C. Yang, Y. Zeng, and R. Stoleru, ‘‘F-MStorm: Feedback-based
online distributed mobile stream processing,’’ in Proc. IEEE/ACM Symp.
Edge Comput. (SEC), Oct. 2018, pp. 273–285.

[35] Q. Ning, C.-A. Chen, R. Stoleru, and C. Chen, ‘‘Mobile storm: Distributed
real-time stream processing for mobile clouds,’’ in Proc. IEEE 4th Int.
Conf. Cloud Netw. (CloudNet), Oct. 2015, pp. 139–145.

VOLUME 8, 2020 149929

F. Sufyan, A. Banerjee: Computation Offloading for Distributed MEC Network: A Multiobjective Approach

[36] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi,
F. Lo Presti, and V. Piccialli, ‘‘A game-theoretic approach to computa-
tion offloading in mobile cloud computing,’’ Math. Program., vol. 157,
pp. 421–449, Jun. 2016.

[37] S.-C. Hung, H. Hsu, S.-Y. Lien, and K.-C. Chen, ‘‘Architecture harmoniza-
tion between cloud radio access networks and fog networks,’’ IEEEAccess,
vol. 3, pp. 3019–3034, 2015.

[38] K.-K. Tse, ‘‘Some applications of the Poisson process,’’Appl.Math., vol. 5,
no. 19, p. 3011, 2014.

[39] Y. Wang, X. Lin, and M. Pedram, ‘‘A nested two stage game-based opti-
mization framework in mobile cloud computing system,’’ in Proc. IEEE
7th Int. Symp. Service-Oriented Syst. Eng., Mar. 2013, pp. 494–502.

[40] D. Gross, Fundamentals Queueing Theory. Hoboken, NJ, USA: Wiley,
2008.

[41] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, ‘‘Joint computation and
communication cooperation for energy-efficient mobile edge computing,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4188–4200, Jun. 2019.

[42] L. Rui, Y. Yang, Z. Gao, and X. Qiu, ‘‘Computation offloading in a mobile
edge communication network: A joint transmission delay and energy
consumption dynamic awareness mechanism,’’ IEEE Internet Things J.,
vol. 6, no. 6, pp. 10546–10559, Dec. 2019.

[43] D. P. Bertsekas, Network Optimization: Continuous and Discrete Models.
Belmont, MA, USA: Athena Scientific, 1998.

[44] J. R. Jackson, ‘‘Jobshop-like queueing systems,’’ Manage. Sci., vol. 50,
no. 12, pp. 1796–1802, Dec. 2004.

[45] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
‘‘A queuing theory model for cloud computing,’’ J. Supercomput., vol. 69,
no. 1, pp. 492–507, Jul. 2014.

[46] S. Sthapit, J. Thompson, N. M. Robertson, and J. R. Hopgood, ‘‘Compu-
tational load balancing on the edge in absence of cloud and fog,’’ IEEE
Trans. Mobile Comput., vol. 18, no. 7, pp. 1499–1512, Jul. 2019.

[47] E. P. Kao, An Introduction to Stochastic Processes. New York, NY, USA:
Dover, 2019.

[48] A. Jonathan, A. Chandra, and J. Weissman, ‘‘Locality-aware load sharing
in mobile cloud computing,’’ in Proc. the10th Int. Conf. Utility Cloud
Comput., Dec. 2017, pp. 141–150.

[49] L. Li, Q. Guan, L. Jin, and M. Guo, ‘‘Resource allocation and task offload-
ing for heterogeneous real-time tasks with uncertain duration time in a fog
queueing system,’’ IEEE Access, vol. 7, pp. 9912–9925, 2019.

[50] J. Liu and Q. Zhang, ‘‘Offloading schemes in mobile edge computing
for ultra-reliable low latency communications,’’ IEEE Access, vol. 6,
pp. 12825–12837, 2018.

[51] X.-Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E.-N. Huh,
‘‘A cost- and performance-effective approach for task scheduling based on
collaboration between cloud and fog computing,’’ Int. J. Distrib. Sensor
Netw., vol. 13, no. 11, p. 1550147717742073, 2017.

[52] N. Gunantara, ‘‘A review of multi-objective optimization: Methods and its
applications,’’ Cogent Eng., vol. 5, no. 1, Jul. 2018, Art. no. 1502242.

[53] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
vol. 2. Cham, Switzerland: Springer, 2016. [Online]. Available:
https://doi.org/10.1007%2F978-3-319-18842-3, doi: 10.1007/978-3-
319-18842-3.

[54] S. Koziel and X.-S. Yang, Eds., Computational Optimization, Methods
and Algorithms. Berlin, Germany: Springer, 2011. [Online]. Available:
https://doi.org/10.1007%2F978-3-642-20859-1, doi: 10.1007/978-3-642-
20859-1.

[55] Z. Ashraf, D. Malhotra, P. K. Muhuri, and Q. M. D. Lohani, ‘‘Hybrid
biogeography-based optimization for solving vendor managed inven-
tory system,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2017,
pp. 2598–2605.

[56] H. Robbins and S. Monro, ‘‘A stochastic approximation method,’’ Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, Sep. 1951.

[57] Y. Mu, W. Liu, X. Liu, and W. Fan, ‘‘Stochastic gradient made stable: A
manifold propagation approach for large-scale optimization,’’ IEEE Trans.
Knowl. Data Eng., vol. 29, no. 2, pp. 458–471, Feb. 2017.

[58] L. Bottou, ‘‘Large-scale machine learning with stochastic gradient
descent,’’ in Proc. COMPSTAT, Y. Lechevallier and G. Saporta, Eds.
Berlin, Germany: Physica-Verlag, 2010, pp. 177–186.

[59] J. Fliege, A. I. F. Vaz, and L. N. Vicente, ‘‘Complexity of gradient descent
for multiobjective optimization,’’ Optim. Methods Softw., vol. 34, no. 5,
pp. 949–959, Sep. 2019.

[60] H. Shah-Mansouri and V.W. S. Wong, ‘‘Hierarchical fog-cloud computing
for IoT systems: A computation offloading game,’’ IEEE Internet Things
J., vol. 5, no. 4, pp. 3246–3257, Aug. 2018.

[61] I. Pólik and T. Terlaky, Interior Point Methods for Nonlinear Optimization.
Berlin, Germany: Springer, 2010, pp. 215–276.

FARHAN SUFYAN (Graduate Student Member,
IEEE) received the B.Sc. and master’s degrees in
computer science and applications from Aligarh
Muslim University, Aligarh, India, in 2010 and
2014, respectively. He is currently pursuing the
Ph.D. degree in computer science with South
Asian University (SAU), New Delhi, India. His
current research interests include the Internet of
Things, mobile cloud computing, and fog comput-
ing.

AMIT BANERJEE (Member, IEEE) received the
Ph.D. degree in computer science from National
Tsing Hua University, Hsinchu, Taiwan, in 2009.
After that, he worked for two years as an Engi-
neer with the SoC Technology Center, Industrial
Technology Research Institute (ITRI), Taiwan.
He is currently working as an Assistant Professor
with the Department of Computer Science, South
Asian University (SAU), New Delhi, India. He has
authored or coauthored papers in peer-reviewed

journals and conferences, including the IEEE TRANSACTIONS. His current
research interests include distributed computing, the Internet of Things, and
edge computing.

149930 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-319-18842-3
http://dx.doi.org/10.1007/978-3-319-18842-3
http://dx.doi.org/10.1007/978-3-642-20859-1
http://dx.doi.org/10.1007/978-3-642-20859-1

