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ABSTRACT Accurately detecting Parkinson’s disease (PD) at an early stage is certainly indispensable for
slowing down its progress and providing patients the possibility of accessing to disease-modifying therapy.
Towards this end, the premotor stage in PD should be carefully monitored. An innovative deep-learning
technique is introduced to early uncover whether an individual is affected with PD or not based on premotor
features. Specifically, to uncover PD at an early stage, several indicators have been considered in this
study, including Rapid Eye Movement and olfactory loss, Cerebrospinal fluid data, and dopaminergic
imagingmarkers. A comparison between the proposed deep learningmodel and twelve machine learning and
ensemble learning methods based on relatively small data including 183 healthy individuals and 401 early
PD patients shows the superior detection performance of the designed model, which achieves the highest
accuracy, 96.45% on average. Besides detecting the PD, we also provide the feature importance on the PD
detection process based on the Boosting method.

INDEX TERMS Parkinson’s disease, deep learning, ensemble learning, early detection, premotor features,
features importance.

I. INTRODUCTION
Parkinson’s disease (PD) is becoming an important degenera-
tive disease of the central nervous system, affecting the qual-
ity of lives of millions of seniors worldwide [1]. Symptoms
of PD can progress differently from one person to another
because of the variety of the disease. Patients with Parkinson
may show symptoms including tremors mainly at rest. Dif-
ferent types of tremors are possible: tremors in hands, limb
rigidity, and gait and balance problems. Generally, two types
of symptoms of PD can be distinguished: movement-related
(i.e., motor) and unrelated to movement (non-motor). In fact,
patients showing non-motor symptoms aremore affected than
whose main symptoms are motor. Non-motor symptoms may
include depression, sleep behavior disorders, loss of sense
of smell, and cognitive impairment. It has been reported
by the Centers for Disease Control and Prevention (CDC)
that PD complications are ranked as the 14th leading causes
of death in the United States. To date, the cause of PD
rests principally unknown. Particularly, the economic burden
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due to direct and indirect cost of PD covering treatment,
social security payments, and lost income is estimated to
be approximately $52 billion per year in the United States
alone. Actually, the number of people affected by PD has
exceeded 10 million worldwide. It should be noted that the
timely detection of the PD facilitates rapid treatment and
alleviate symptoms significantly as reported in [2]. Therefore,
detection of PD at an earlier stage is certainly a key element
to slowing down its progression and could give patients the
possibility of accessing to disease-modifying therapy, when
available.

Till now, there is no way to diagnose Parkinson’s dis-
ease (PD) [2]. However, there are various symptoms and diag-
nostic tests used in combination. Several biomarkers have
been investigated by scientists to early identify PD to slow
down the disease process. Currently, all therapies used for
PD improve symptoms without slowing or halting the disease
progression. Various methods have proposed to help detec-
tion PD based on different kinds of measurements including
speech data [3]–[6], gait patterns [7], force tracking data [8],
smell identification data [9] and spontaneous cardiovascular
oscillations [10]. In [11], an approach using the sawtooth
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inspired pitch estimator (SWIPE) scheme is used to assess
speech disorders recorded via smartphone caused by Parkin-
son’s disease. Acceptable results have been achieved by the
SWIPE scheme in discriminating PD from healthy patients.
However, at a lower signal to noise ratio level, an improved
algorithm is needed to obtain efficient robustness to noise.
In [12], an early detection algorithm of PD based on reduced
vocal features is designed. It has been illustrated that the
use of Wrappers subset selection is suitable because of the
low dimensionality of the selected feature and improved PD
detection capability. In [13], a PD detection system is intro-
duced using a 1D convolutional neural network based on the
gait signals. However, the performance of PD detection based
on both speech and gait analyses is generally limited by the
sensitivity to background noise in speech recording, causing
a high number of false alarms and missed detection. Also,
gait tracking and inspection need specialized devices and
sufficient space for walking [14]. The authors of [15] suggest
a method based on wavelet to analyze data collected from
smartwatches worn by nineteen patients affected by PD. This
method showed good ability in detecting symptoms of tremor,
bradykinesia, and dyskinesia. In [16], an approach to detect
motor impairment in PD based on mobile touchscreen typing
is introduced. Essentially, the proposed algorithm uncovers
signs of PD motor by analyzing touchscreen typing features
that include descriptive statistics (covariance, skewness, and
kurtosis) and time information. In [17], multi-source of data
including imaging, genetics, clinical and demographic data
are incorporated in developing models for PD prediction.
Other approaches employed handwriting measurement for
Parkinson’s diagnosis [14], [18], [19]. In [14], the PD diag-
nosis approach has been proposed based on handwriting
measurements gathered from patients with PD. It has been
shown that improved PD diagnosis is obtained when taking
into consideration the age and sex information in the decision
process [13], [14].

Accurate and early detection of PD is vital due to its ability
to provide crucial information to slow down the progression
of PD. All over the years, various data-driven methods have
been developed to improve the detection of PD. In con-
trast to the model-based detection techniques, where prior
availability of an analytical model is required, in data-driven
techniques, only the availability of historical data is needed.
Recently, machine learning (ML) has emerged as a promising
field of research in PD diagnosis, both in academia and
industry [20]. Owing to its data-driven approaches, ML has
brought a paradigm shift in the way relevant information
in PD biomarkers are extracted and analyzed. Furthermore,
machine learning techniques provide pertinent information
that offers guidance related to PD classification and diagno-
sis to speed up decision making. Various machine learning
techniques have been applied in the literature to address
the PD detection problem. For instance, in [21], dysphonia
measurements have been used to detect patients with PD from
healthy people. The support vector machine (SVM) is applied
to only four dysphonic features for PD classification due to

its ability to extract nonlinearity by using nonlinear kernels.
In [6], three common machine learning algorithms, namely
Random Forest (RF) or Support Vector Machine (SVM)
and neural network, have been applied to detect Parkinson’s
disease based on acoustic analysis of speech. It has been
shown the promising results of RF an SVM in early PD detec-
tion. In [22], the performance of four classifiers, Decision
Trees, Regression, DMneural, and Neural Networks (NN),
has been compared in detecting PD, and the best accuracy
of 92.9% is obtained using NN algorithm. Recently, deep
learning-based techniques have gained special attention in PD
diagnosis due to their capacity to handle big data and achiev-
ing high accuracy with free-assumption on data distribu-
tion [3], [23]. Authors in [23] applied a Long short termmem-
ory algorithm to detect the Freezing of Gait (FOG), which a
good indicator of PD patients that may cause falling. It has
been shown that LSTM outperforms the SVM in detecting
FOG.

To guarantee early detection of PD, the premotor or pro-
dromal stage in PD should be carefully monitored [24], [25].
This premotor stage is generally characterized by different
symptoms than the usual motor symptoms, including Rapid
Eye Movement (REM) sleep Behaviour Disorder (RBD) and
olfactory loss [24]. The purpose of the present paper is three-
fold. Firstly, to uncover PD at an early stage, several indica-
tors have been considered in this study, including RBD and
olfactory loss, Cerebrospinal fluid (CSF) data, and SPECT
imaging markers. Secondly, Still within the data-driven tech-
niques, this paper is aimed at presenting a comparative study
between the most advanced data-driven prediction methods
in detecting PD. Here, three kinds of data-driven methods
are compared: shallow machine learning-based, ensemble
learning-based, and deep learning-based. In this work, a deep
learningmodel is designed to discriminate normal individuals
and patients affected by PD. Essentially, the aim of this
study is to provide a comparative study and throw light on
the performance of these advanced prediction methods when
applied to small PD data sets. Indeed, the used PD data
from the Parkinson’s Progression Markers Initiative (PPMI)
is relatively small and includes features from 183 healthy
individuals and 401 early PD patients, which may make
the application the machine learning methods attractive to
investigate under this small dataset problem. Results showed
that the designed deep learning offers superior detection per-
formance compared to the twelve considered machine learn-
ing models in discriminating normal people with patients
who have Parkinson’s disease. Lastly, feature importance
and selection frequency computed based on the Boosting
method highlight the largest impact of the imaging markers
of SBR’s for left and right putamen on the PD detection
process.

The next section presents the involved PD dataset and pro-
vides a brief description of the proposed deep learning model
and the considered machine learning models. Section III
discusses the PD detection results and comparisons. Lastly,
conclusions are drawn in section IV.
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FIGURE 1. Flowchart of the proposed PD detection procedure.

II. DATA AND METHODS
This study proposes a deep learning framework for the early
detection of PD. The general framework of the proposed
detection approach is illustrated in Figure 1. PD detection is
done into two main stages: training and testing. In the first
stage, the raw data is preprocessed and standardized and then
it is used to construct the deep learning model. The values
of parameters of deep learning models are selected such that
the loss function is minimized during the training. After that,
in the testing stage, the previously constructed model with the
selected parameters are used for PD detection.

A. PPMI DATA
For our study, we prepare the data from the Parkin-
son’s Progression Markers Initiative (PPMI) database
(http://www.ppmi-info.org/data). The PPMI is a landmark
observational clinical study to comprehensively evaluate
cohorts of significant interest using advanced imaging, bio-
logic sampling and clinical and behavioral assessments to
identify biomarkers of Parkinson’s disease progression [26].

The PPMI cohort comprises 401 early PD patients and
183 healthy individuals followed longitudinally for clinical,
imaging and biospecimen biomarker assessment. All the PD
patients are in their earlier stages of PD (stage 1 or 2 in Hoehn
and Yahr scale [27]), and all the health subjects are 30 years
or older wihtout PD. To detect the early PD, we consider
thirteen features based on information from previous similar
studies [24], [25], as provided below.

• RBDSQ score. The REM sleep Behavior Disorder
Screening Questionnaire (RBDSQ) is a specific ques-
tionnaire for rapid eye movement behavior disorder
(RBD) [28]. The higher score indicates the more likely
to have RBD.

• UPSIT score. The University of Pennsylvania Smell
Identification Test (UPSIT) evaluates olfactory func-
tion [29]. It consists of comprehensive 40 questions.
The maximum test score is 40 when all the odors are
identified correctly.

• α-syn. A Cerebrospinal fluid (CSF) biomarker of
α-synuclein.

• Aβ1-42. ACSF biomarker of amyloid beta peptide 1-42.

• P-tau181. A CSF biomarker of tau phosphorylated at
threonine 181.

• T-tau. A CSF biomarker of total tau.
• P-tau181/Aβ1-42. The ratio between P-tau181 and
Aβ1-42.

• P-tau181/T-tau. The ratio between P-tau181 and T-tau.
• T-tau/Aβ1-42. The ratio between T-tau and Aβ1-42.
• CAUDATE_L. The striatal binding ratio (SBR) of the
left caudate from Single Photon Emission Computed
Tomography (SPECT) imaging.

• CAUDATE_R. The SBR of the right caudate from
SPECT imaging.

• PUTAMEN_L. The SBR of the left putamen from
SPECT imaging.

• PUTAMEN_R. The SBR of the right putamen from
SPECT imaging.

More details about CSF biomarkers and SPECT imaging can
be found in the PPMI manuals (Biologics Manual, SPECT
Manual, http://www.ppmi-info.org/study-design/research-
documents-and-sops/)

B. EXPLORATORY ANALYSIS
Figure 2 shows the histogram of the features. Most of the
covariates, except UPSIT scores, are severely right-skewed.
Some of the covariates, e.g., α-syn and T-tau, have large
outliers. The feature RBDSQ score takes discrete values.
To reduce the degree of skewness and reduce the influence
of outlier observations on the models to be built, we log-
transform all the features except RBDSQ scores in the fol-
lowing analysis. Also note that the scale of the features
varies from thousands, e.g., Aβ1-42, to less than 1, e.g.,
T-tau/Aβ1-42. We center and scale the features after the
log-transformation unifies the scales of the features.

From Figure 2, we can readily identify five features that
have significantly distinct distributions between healthy peo-
ple and patients with Parkinson’s disease. These five fea-
tures are CAUDATE_L, CAUDATE_R, PUTAMEN_L, PUT-
MEN_R, and UPSIT score. The patients with Parkinson’s
disease have lower scores in all of the five features. These
five features are critical in discriminating healthy people with
patients with Parkinson’s disease. Note that the marginal
relationship between features and disease indicators shown
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FIGURE 2. The histogram of the features.

in Figure 2 does not exclude the possibility that other features
might also be important in identifying Parkinson patients,
because the features may have a nonlinear relationship with
the disease indicator, and the features may interact with each
other and be distinguishable in high-dimensions.

The Pearson correlation coefficient among all the fea-
tures is shown in Figure 3. The features CAUDATE_L,
CAUDATE_R, PUTAMEN_L, and PUTMEN_R are highly
correlated with each other.

C. DESCRIPTION OF THE METHODS
In this article, we use machining learning methods to study
the link between Parkinson’s disease and build a model for
early diagnosis of Parkinson’s disease. Denote the training
data by {(X1, y1), . . . , (Xn, yn)}, the following classifiers are
used in our study.

• Deep Learning (DEEP). In recent years, deep learning
algorithms have achieved striking performances in fields
such as computer vision [30], natural language process-
ing [31], and speech recognition [32]. Deep learning is
also changing other fields such as biology [33] and engi-
neering [34]. The deep learning system is composed of
multiple layers of connected artificial neurons. The neu-
rons are information processing modules, which essen-
tially are simple nonlinear transformations of inputs.
For the supervised feed-forward neural network (FNN)
considered in this article, when raw-data are fed into the
network, the deep learning algorithm can automatically
extract hierarchical representations of the data which

FIGURE 3. The pearson correlation coefficient between the considered
features.

are best suited for the underlying learning task, e.g.,
classification in our paper. In this article, we construct
an FNN which has two hidden layers. The first hidden
layer has twenty neurons, and the second hidden layer
has ten neurons. The structure of the network is shown
in Figure 4. The deep learning algorithms also have
some weaknesses. Usually, training deep learning
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FIGURE 4. The architecture of the forward neural network model we
built.

algorithms needs large amount of data to achieve desired
accuracy. Deep learning is routinely used as a black
box algorithm, it is hard to interpret the trained neu-
ral networks. Also, theoretically, it is still hard to
understand why and how deep learning achieves good
performances.

• Classification trees (TREE). Classification tree [35]
recursively splits the feature space into sub-sets such that
the Gini impurity is minimized at each step. The Gini
impurity is defined as

Gini(p0, p1) = 1− p20 − p
2
1, (1)

where p0 and p1 are the proportion of normal people and
patients, respectively. The classification tree algorithm
first grows a tree to the maximum depth such that each
leaf node is pure, then prunes upwards to balance the
classification error and the number of terminal nodes of
the tree, that is minimizing

R(T )+ α|T |, (2)

where R(T ) is the classification error of a candidate tree
T , |T | is the number of terminal nodes of the tree T , and
the parameter α which is a trade-off between estimation
error and size is selected by cross-validation.

• Boosting. Boosting is an ensemble algorithm designed
to convert the performance of weak base learners, such
as shallow regression trees, to strong learners [36].
References [37] and [38] discovered the connection
between the Boosting algorithm and estimation in func-
tional space, thus opened the way for applications other
than classification. In this article, we implemented three
Boosting algorithms with different base learners. All the
Boosting algorithms use the cross-entropy as the loss
function. The first Boosting algorithm adopts classifica-
tion trees [35] as its base learner, and we abbreviate it as
BOOST_TREE. Moreover, we also employ linear mod-
els of one variable, i.e., βjXj where Xj is the jth element
of the features X and βj is a coefficient, and B-splines
of one variable, i.e., b(Xj) where b(.) is a cubic spline
function, as the base learners, and we abbreviate the

corresponding Boosting algorithms as BOOST_GLM
and BOOST_GAM, respectively. Besides classification,
BOOST_GLM and BOOST_GAM have the additional
feature of variable selection, i.e., they can automatically
select variables during the training process [39].

• Random forest (RF). Random forest [40] is closely
related to the boosting algorithm because both algo-
rithms aggregate the results of a cluster of base learners.
RF trains a cluster of classification trees using bootstrap
samples of the training data. A key feature of random
forest is that it de-correlates the trees by randomizing
the candidate splits when building the trees. That is,
the actual splitting feature is selected from a random
subset of the features. Let Xs = {Xi1 , . . . ,Xik } be a
random subset of the features X = {X1, . . . ,Xp}, where
k ≤ p denotes the number of candidates. RF restricts the
input feature to be Xs when minimizing the Gini impu-
rity (1). The number k is a major parameter of RF, and
it is selected by cross-validation in our implementation.

• Logistic regression (LOGIS). Logistic regression is a
member of the generalized linear model family, which
is backed up by rich statistical theory. In logistic regres-
sion, we model the conditional probability of having the
disease πi = p(yi = 1|Xi) as

log
(

πi

1− πi

)
= X>i β, (3)

and the coefficient β is estimated by maximum the
log-likelihood function

n∑
i=1

{
yiX>i β − log

(
1+ exp

(
X>i β

))}
. (4)

Besides ordinary logistic regression, we also considered
penalized logistic regression (LOGIS_PEN), where β is
estimated by
n∑
i=1

{
yiX>i β − log

(
1+ exp

(
X>i β

))}
−

p∑
j=1

|βj|, (5)

where p is the number of features. The penalized logistic
regression can select features from the feature sets and
fit a parsimonious model [41].

• Discriminant analysis (DIS). In linear discriminant anal-
ysis, the conditional distribution p(Xi|yi = 0) and
p(Xi|yi = 1) are assumed to be normally distributedwith
common variance 6 and mean µ0 and µ1, respectively.
For a new input X, if

X>6−1(µ1−µ0) >
1
2

(
µ>1 6

−1µ1−µ>0 6
−1µ0

)
, (6)

then the case is classified to be a patient, otherwise the
case is classified as a normal people.

• K-nearest neighbor (KNN). In KNN, a new case is
classified as a patient if more than half of its k-nearest
neighbors measured by the distance between the corre-
sponding features are patients. The number of neighbors
k used in the algorithm is selected by cross-validation.
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• Support vector machines (SVM). SVM maps the fea-
tures into a high-dimensional space using the kernel trick
and builds a hyperplane in the mapped space which opti-
mally separate the patients and normal people. In SVM,
a patient is coded as y = 1 whereas a normal people is
coded as y = −1. Let k(Xi,Xj) = exp

(
−γ ‖Xi − Xj‖

2
)

be the Gaussian radial basis kernel where γ > 0 is a
parameter. SVM classifies a new case with featureX as a
patient if

∑n
i=1 ciyik(Xi,X) > 0, where ci, i = 1, . . . , n

are determined by the optimization problem

max
n∑
i=1

ci −
1
2

n∑
i=1

n∑
j=1

cicjyiyjk(Xi,Xj)

subject to
n∑
i=1

ciyi = 0, 0 ≤ ci ≤
1

2nλ
, for all i.

The parameters γ > 0 and λ > 0 are determined by
cross-validation.

D. IMPLEMENTATION DETAILS AND COMPUTATION
COSTS
To evaluate the accuracy of the above algorithms on Parkin-
son’s disease discrimination, we randomly split the data and
use 70% as training data and the rest as testing data. The ratio
of patients with healthy people in the training and testing
data is kept the same as the original data using stratified
sampling. We train the machine learning methods on the
training data, and predict whether the cases in the test data
are Parkinson patients or not using the trained model. The
splitting is repeated 100 times. We report the performance
measures on the testing data using accuracy, specificity, sen-
sitivity and area under the ROC curve (AUC), precision and
F1 in Section III.

We train deep learning models in mini-batches of 16 sam-
ples using the stochastic gradient descent (SGD) algorithm
with the cross-entropy function as the loss. The algorithm is
trained with dropouts [42] to prevent overfitting. We also use
batch normalization [43] to accelerate training. The history
of the loss function and the accuracy of the network on the
testing data in one of the cross-validation data for 100 epochs
is shown in Figure 5. For each epoch, the computational
cost of a naive implementation of SGD is about O(nm),
where n is the number of samples, and m is the number of
weights and biases in the network. That is, the computa-
tional cost of training a network increases as the number of
samples, the depth of the network and the number of neu-
rons in each layer increase. With modern parallel computing
devices, the training of deep learning methods can be largely
accelerated.

We train three deep learning models with different struc-
tures to show robustness of the results with respect to
the hyperparameters. The three trained models are all
feed-forwad neural networks with two hidden layers. The first
network, abbreviated as DEEP1, has 40 and 20 neurons in
the first and second hidden layers, respectively. The second

FIGURE 5. The history of the risk function and the accuracy on the testing
data in one cross-validation data set.

network (DEEP2) has has 20 and 20 neurons in the first
and second hidden layers, respectively. The third network
(DEEP3) has has 20 and 10 neurons in the first and second
hidden layers, respectively. Lastly, we combine the three
deep learning models to form an ensemble (DEEP_EN) by
averaging the outputs. The deep learning models are trained
with 25 and 50 epochs of data, the results are abbreviated as
DEEP1(25), DEEP1(50),. . . etc.

To make the comparisons as fair as possible, we tune
all other methods to achieve their best performance. For
example, the number of candidate splits in RF are selected
by out-of-bag error rates. This method is recommended by
Breiman [40]. The number of trees in the boosting methods,
the number of neighbors in KNN and the penalty parameter in
penalized logistic regression are all selected by 5-fold cross-
validation. For the TREEmethod, a large tree is first grown to
its maximum depth, and the pruned by 5-fold cross-validation
[35]. For the SVMmethod, we use a Gaussian kernel, and the
parameters are selected by 5-fold cross-validation.

III. RESULTS
A. METRICS
To evaluate the performance of machine methods for dis-
criminating Parkinson patients, we employ the following
criterion:

• Accuracy = TP+TN
TP+FP+TN+FN ,

• Sensitivity = TP
TP+FN ,

• Specificity = TN
TN+FP ,

• Precision = TP
TP+FP

• F1 = 2 Precision.Sensitivity
Precision+Sensitivity =

2TP
2TP+FP+FN .

where TP is the number of true positives, FP is the num-
ber of false positives, TN is the number of true nega-
tives and FN is the number of false negatives. Besides the
five metrics defined above, we also use the area under
the receiver operating characteristic curve (AUC). Accuracy
evaluates the proportion of correct predictions. A higher accu-
racy value means a better overall prediction performance.
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FIGURE 6. The boxplot of performance measures for all the competing methods.

Sensitivity refers to the ability to correctly detect Parkinson
patients. Note that the recall is identical to sensitivity in
binary classification. Specificity shows the proportion of
actual negatives that are correctly predicted. Specificity
refers to the ability to correctly detect normal people.
Precision refers to the relevance of the predicted posi-
tives. F1 score is the harmonic mean of the precision and
sensitivity.

B. RESULTS OF THE DEEP LEARNING METHODS
We first show the performance of deep learning methods for
discriminating Parkinson patients. We trained all the deep
learning models for 25 and 50 epochs on the training data
and summarize the prediction results on the testing data. The
average evaluation metrics are summarized in Table 1. The
distribution of the evaluation metrics over the 100 splits are
shown in Figure 6.

We observe from Table 1 and Figure 6 that the deep
learning models are robust to the structure of the networks,
e.g., number of neurons in the hidden layers, and the num-
ber of epochs when training. For example, the accuracy
of DEEP1, DEEP2 and DEEP3 are 96.55%, 96.15% and
96.33%, respectively, when trained for 25 epochs, with minor
difference to the accuracy 96.43%, 96.44% and 96.53%,
respectively, when the number of epochs increases to 50.
Larger networks (DEEP1) do not show higher accuracy in
discriminating Parkinson patients, and they do not show
signs of overfitting either. The second observation is that the
ensemble network (DEEP_EN), which combines the results
of DEEP1, DEEP2 and DEEP3, effectively boosts the per-
formance of individual networks. The ensemble network,
whether trained for 25 epochs or 50 epochs, achieves bet-
ter performance in every measure compared to any single
network.

TABLE 1. Performance measures over the testing sets for all the
competing methods.

C. COMPARISONS WITH OTHER MACHINE LEARNING
METHODS
In this section, we compare the deep learning methods with
other machine learning methods in discriminating Parkinson
patients. Since deep learning models are not sensitive to the
number of epochs explained in the last section, we only
compare the results for deep learning models trained for
50 epochs. The performance measures of the competing
methods are summarized in Table 2. The distribution of
accuracy, sensitivity, specificity, AUC, precision and F1 are
depicted in Figures 7. Overall, all the deep learning mod-
els have a highest accuracy than other machine learn-
ing methods in discriminating healthy people with patients
who have Parkinson’s disease. Especially, ensemble network
(DEEP_EN) achieves the highest accuracy over all methods,
96.68% on average over 100 splittings of the data. It also
achieves a better balance between sensitivity and specificity,
and has the highest F1 scores. The boosting methods, includ-
ing BOOST_GAM, BOOST_GLM, and BOOST_TREE, fol-
low Deep learning closely, and all have accuracy higher
than 96.2%. The linear discriminate analysis method per-
forms the best in terms of sensitivity; that is, it has the best
chance to distinguish a real patient. However, it has a low
sensitivity, 91.09%, and is prone to misclassify a normal
people. Tree-based methods, such as BOOST_TREE and
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FIGURE 7. The boxplot of performance measures for all the competing methods.

TABLE 2. Performance measures over the testing sets for all the
competing methods.

random forest, also have sensitivity above 97.3%. Deep learn-
ing has 97.17% sensitivity. BOOST_GLM has a specificity
of 95.31% on average, which is the highest among all the
competing methods. The specificity measures how accurate
a method identifies a true healthy people. Deep learning
achieves the second largest specificity 94.84%, which is a
little bit less than that of BOOST_GLM. BOOST_GLM and
Deep learning achieve a good balance in sensitivity and speci-
ficity, in the sense that these methods achieve the smallest
gap in sensitivity and specificity. Lastly, most of the methods,
except TREE, have AUC greater than 98%.

The feature importance and selection frequency calcu-
lated using the Boosting method with smooth base learn-
ers (BOOST_GAM) is reported in Figure 8. The imaging
markers of SBR’s for left and right putamen (PUTMEN_L
and PUTMEN_R) have the highest importance among all the
features, followed by UPSIT score. The importance of other
features is insignificant compared to that of the top three
features. The variable importance indicates that dopaminer-
gic imaging has a high value in discriminating Parkinson’s

FIGURE 8. The variable importance and selection frequency calculated
using the boosting model with smooth base learners.

disease. The selection frequency in Figure 8 shows the fre-
quency of features being selected as the base learners in the
training process. All important features, e.g., PUTMEN_L
and PUTMEN_R, are selected frequently in the training pro-
cess.

Figure 9 depicts the effect of the features estimated by
BOOST_GAM. The important features, e.g., PUTMEN_L,
PUTMEN_R, and UPSIT scores, have a monotonic effect
in discriminating Parkinson’s disease. That is, people with
small values of PUTMEN_L, PUTMEN_R, and UPSIT score
have a higher tendency in developing Parkinson’s disease.
This observation is consistent with Figure 2. Several features
have highly nonlinear effects, e.g., A.beta, P.tau.t.tau, and
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FIGURE 9. The effect of features calculated using the boosting model with smooth base learners.

CAUDATE_L. The effects of these features illustrate the
complexity of discriminating patients with the Parkinson’s
disease. Three features are not selected by BOOST_GAM,
which are p.tau, P.tau.A.beta and CAUDATE_R. These fea-
tures do not contribute in the BOOST_GAM model.

D. PERFORMANCE WITH VARIABLE SELECTION
The features A.beta and P.tau.t.tau are unimportant in the
variable importance analysis, and they are marginally uncor-
related with the response. In this section, we show the perfor-
mance of machine learningmethods when these two variables
are removed from the analysis. The performance measures
of the competing methods are summarized in Table 3. The
distribution of accuracy, sensitivity, specificity, AUC, preci-
sion and F1 are depicted in Figures 10. The results are quite
similar to the results with all features involved in the anal-
ysis (Table 2). Especially, ensemble network (DEEP_EN)
achieves the highest accuracy over all methods, 96.60% on
average over 100 splittings of the data. Although, this accu-
racy is a little bit less than that when all features are involved
in the analysis.

E. COMPUTING TIME
All the methods are run on a workstation with a Intelr

Xeonr CPU E5-2680 V4 and 128 gigabytes of memory.
For the deep learning methods, we also use a NVIDIAr

Quadror K2200 graphical card with 4 gigabytes of mem-
ory for parallel computing. The discriminate analysis (DIS),

TABLE 3. Performance measures over the testing sets for all the
competing methods when A.beta and P.tau.t.tau are removed.

k-nearest neighbor (KNN), support vector machine (SVM)
and tree methods are implemented in Matlab 2020, all other
methods are implemented in R. Especially, the deep learning
methods are implemented using the keras package with the
tensorflow as the computational backend.

Table 4 shows the summary of computing time for all the
competing methods, where the interquartile range (IQR) is
defined as the difference between 75th and 25th percentiles.
All the deep learning methods are trained for 50 epochs. First,
we can see that the logistic regression (LOGIS), penalized
logistic regression (LOGIS_PEN), random forest (RF), dis-
criminate analysis (DIS), KNN, SVM and TREE methods
are very fast. On average, they use less than 1 second to
process the data. The deep learning methods and boosting
methods take significantly more time to train. The deep learn-
ingmethods take 11 seconds to train on average. Interestingly,
the training time for different networks are approximately the
same, irrespective of relatively larges networks (DEEP1) or
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FIGURE 10. The boxplot of performance measures for all the competing methods when A.beta and P.tau.t.tau are removed.

TABLE 4. The summary of computing time (in seconds) for each
competing methods.

small networks(DEEP3). This is mainly because the parallel
computing implemented in the tensorflow software.

IV. CONCLUSION
The early detection of PD is essential to a better understand-
ing of the disease causes, initiate therapeutic interventions,
and enable developing appropriate treatments. This study
proposed a deep learningmodel to automatically discriminate
normal individuals and patients affected by PD based on
premotor features (i.e., Rapid Eye Movement (REM) sleep
Behaviour Disorder (RBD) and olfactory loss). The pro-
posed deep learning model showed good detection capacity
by reaching an accuracy of 96.45%. This is mainly due to
the desirable characteristics of the deep learning model in
learning linear and nonlinear features from PD data without
the need for hand-crafted features extraction. Results showed

that the designed deep learning offers superior detection per-
formance compared to the twelve considered machine learn-
ing models in discriminating normal people with patients
who have Parkinson’s disease. The boosting methods also
provide comparable performances. Even though deep learn-
ing offers superior performance compared to the machine
learning models, it is hard to say that the deep learning dom-
inates the others. This is because we designed deep learning
using small PD data that are collected from 584 individuals
(183 healthy and 401 early PD). However, it is expected
that deep learning will demonstrate its capacity when the
data is getting bigger and more complicated as day goes by.
Accordingly, this outcome of this work can be viewed as a
promising first step towards the application of cutting-edge
research for early disease detection.
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