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ABSTRACT The problem of motion estimation from images has been widely studied in the past. Although
manymature solutions exist, there are still open issues and challenges to be addressed. For instance, in spite of
the well-known performance of convolutional neural networks (CNNs) in many computer vision problems,
only very recent work has started to explore CNNs to learning to estimate motion, as an alternative to
manually-designed algorithms. These few initial efforts, however, have focused on conventional Cartesian
images, while other imagingmodels have not been studied. This work explores the yet unknown role of CNNs
in estimating global parametric motion in log-polar images. Despite its favourable properties, estimating
some motion components in this model has proven particularly challenging with past approaches. It is
therefore highly important to understand how CNNs behave when their input are log-polar images, since
they involve a complex mapping in the motion model, a polar image geometry, and space-variant resolution.
To this end, a CNN is considered in this work for regressing the motion parameters. Experiments on existing
image datasets using synthetic image deformations reveal that, interestingly, standard CNNs can successfully
learn to estimate global parametric motion on log-polar images with accuracies comparable to or better than
with Cartesian images.

INDEX TERMS Convolutional neural networks, log-polar images, motion estimation, parametric motion
models.

I. INTRODUCTION
Motion estimation from image sequences has been a
long-standing problem in computer vision [1]–[5], with many
approaches being investigated to deal robustly with the chal-
lenging real-world conditions. Parametric global motion are
one family of such approaches, and it has also been investi-
gated in log-polar images. Log-polar imaging is a foveal-like
spatial sampling of the visual scene where information is
acute at the center of the visual field but resolution decreases
towards the periphery. This biologically-inspired selection of
information brings benefits in some visual problems, most
notably in robotics [6], since it offers an interesting trade-off
solution between three competing factors: width of the field
of view, spatial resolution, and amount of data to process.
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Beyond significant computational saving, the log-polar and
other space-variant resolution strategies allow for storage-
and energy-economic solutions, which are particularly impor-
tant in low-power scenarios such as mobile applications [7].
Higher noise tolerance has also been reported from algo-
rithms based on log-polar images [8], [9]. However, these
advantages also come with some challenges. For instance,
for motion estimation, which is the problem addressed in this
work, the non-conventional space-variant resolution, and the
polar-like geometry preclude many existing methods devel-
oped for Cartesian images from being (directly) applicable.

One of the main and well-known benefits of the log-polar
sampling for motion estimation tasks is that rotation and
scaling can map to a simple space-invariant translation,
a property often known as edge invariance. However, a sim-
ple translation in the Cartesian domain maps to a complex
non-linear deformation in the cortical domain [10]. Actively
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tracking objects can facilitate the problem by keeping retinal
shift small [11], but this concept is not easy to exploit for
motion models that are more complex than the similarity
motion model [12]. Furthermore, motion estimation for mod-
els with components like shear, has proven to be hard, at least
following some algorithms [9]. Some other more general
approaches [13] benefit from the computational saving and
the implicit focus of attention, but may not naturally exploit
properties of the log-polar images that are more motion
specific. Hybrid solutions [8] that combine Cartesian and
log-polar images are interesting, but cannot be applied in
some practical scenarios such as when log-polar images come
directly from a foveal sensor.

Besides the direct and global use of log-polar images
as input to algorithms, another interesting application of
log-polar sampling is in the scope of local image detec-
tors and descriptors. Although the concept has been used
in the past (e.g. [14], [15]), it has recently been revisited
and shown to provide suitable representations for learning
descriptors [16], resulting in more robust matching of local
descriptors across larger scale ranges. By leveraging on the
scale and rotation invariance of log-polar images applied to
local patches, and including amechanism tomimic biological
visual saccades, an object recognition system has recently
been suggested [17].

Other space-variant image models [18]–[20] or sampling
techniques [21], [22] have been proposed to more efficiently
or effectively address specific visual problems or data. There-
fore, although this work focuses on the log-polar imaging
model, because of its biological motivation, its popularity,
and its suitability in egomotion estimation and several other
problems in robotics, the issue explored in this work may also
be relevant to other imaging and visual sampling approaches
in a variety of application domains. It is important to note
that, in addition to its natural application for robot naviga-
tion, egomotion has shown to play a role as a supervisory
signal [23], [24], for representational learning, which is a
topic of much recent interest (e.g. [25], [26]).

With the advent of deep learning and convolutional neu-
ral networks (CNNs), the possibility of avoiding manually
engineered solutions and learn the motion estimation task
from training examples in a unified way that is both problem-
and geometry-agnostic, is certainly intriguing and interesting.
This is particularly true for the most challenging problems,
like the unconventional geometry of log-polar images.

In the recent few years, significant work has been done
on the local motion estimation in terms of learning optical
flow estimation. Besides the initial approach and its deriva-
tions [27], [28], others proposed constraining weights to
facilitate learning [29], or imposed strong application-based
priors [30]. Some alternatives include pyramidal solu-
tions [31], [32], and learning while predicting [33]. Lately,
more powerful and innovative solutions have emerged, fol-
lowing the trend of unsupervised solutions [34] or self-
supervision [35], [36], and jointly estimating flow, depth,
camera motion, and motion segmentation [37].

Comparatively to optical flow, the global motion estima-
tion (i.e. estimating a motion affecting the whole image)
with CNNs has been much less explored, either using opti-
cal flow as input [38], exploring unsupervised [39] or hier-
archical approaches [40], or combining motion and depth
estimation [41]. After these first initial efforts, there are
still many open issues. For instance, given that CNNs have
essentially been designed for uniformly sampled Cartesian
images, it is not obvious whether they can also be used to
estimate motion on images with other geometric layouts such
as the log-polar one. Work on CNNs tangentially related
to the one presented in this article is limited, and explores
specific (non-standard) CNN architectures, and focuses on
spatial invariances [42], learning task-specific sampling [43],
or recognition tasks [44], and thus have no straightforward
connection to motion estimation on log-polar images.

Therefore, towards filling this knowledge gap, the main
contribution of this work is a first exploration of whether
a simple standard CNN can deal with image deformations
on these particular and less conventional log-polar images,
using their cortical representation. To the best of our knowl-
edge, this has not been studied before, despite the interest
of log-polar imaging for robotics and for computational and
biological vision sciences at large. Additionally, this work
compares the performance of CNNswith log-polar and Carte-
sian images, and analyses a few other issues of practical
interest. Note that it is not a goal of this work to propose a
novel approach or get superior performance with log-polar
images, but to gain some understanding of the possibilities
and limitations of CNNs with log-polar imaging.

II. METHODOLOGY
Our study considers a parametric motion model (Sec. II-A)
to produce and estimate global motion, a log-polar map-
ping (Sec. II-B) to generate log-polar images from conven-
tional Cartesian images, and a training procedure (Sec. II-C)
where synthetic deformations are produced to train a convo-
lutional neural network (Sec. II-D) whose prediction perfor-
mance is evaluated with geometric error metrics (Sec. II-E).

A. MOTION MODEL
The followingmotion parameters are considered in this work:
translational components (horizontal, tx , and vertical, ty),
rotation (θ ), change of scale factor (α), and shear (β). The
following simplified affine model is used,

f ≡

{
x ′ = α · cos θ · x − α · sin(θ + β) · y+ tx
y′ = α · sin θ · x + α · cos(θ + β) · y+ ty,

(1)

which maps any point p(x, y) in one image I1 to the corre-
sponding point p′(x ′, y′) in another related image I2. In our
case, the images come from a sequence, and therefore points
and images are related through the motion model f with
a motion parameter vector m = [tx , ty, θ, α, β] such that
I2 = f(I1;m) and p′ = f(p;m). Note that the zero-motion
values for these parameters are m0 = [0, 0, 0, 1, 0]. From
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this general model we will instantiate and test with different
motion models, defined as the combination of a subset of
motion parameters and particular ranges for them.

B. LOG-POLAR MAPPING
In this work, log-polar images are generated from input Carte-
sian images of size M × N , with M = N = 128, following
the log-polar transform [6] from Cartesian coordinates (x, y)
to log-polar coordinates (u, v),

u =
⌊
loga

(
ρ

ρ0

)⌋
v =

⌊
S
2π
φ

⌋
,

(2)

where u and v correspond, respectively, to the eccentricity
and angular axes in the retinal domain. The polar coordinates
(ρ, φ) are used as intermediate variables to simplify (2),{

ρ =
√
x2 + y2

φ = arctan
y
x
.

The remaining parameters are ρ0, the size of a central blind
spot that is left unmapped; a, the radial growth factor of the
receptive fields, and ρmax, the maximum radius considered.
The size of the resulting log-polar image (also known as
cortical representation) is R × S, with R and S being the
number of concentric rings (axis u) and angular sectors (axis
v) of the resulting log-polar images. The number of sectors
S directly relates to the angular resolution, as in (2). The
number of rings R relates to ρ0, ρmax and a by substituting
u and ρ in (2) by their largest values (i.e. for the outermost
ring), u = R and ρ = ρmax.
In addition to the geometric transformation from Cartesian

coordinates (x, y) to log-polar coordinates (u, v), the log-polar
mapping involves an image sampling where photometric val-
ues inside the corresponding regions in the original space,
the so-called receptive fields, are averaged to define the val-
ues in the corresponding log-polar pixel. These concepts are
illustrated in Fig. 1 for an example with R = 4 rings and
S = 10 sectors.
We set ρmax = min(M ,N )/2, the size of the blind spot as

ρ0 = 5, and a maximum oversampling of 4, and then follow
the design criteria of having receptive fields of unit aspect
ratio [45]. Solving for these constraints results in R = 27 and
S = 64, which we approximate to R = 30 and S = 60. In
this article, Cartesian 128× 128 images will be referred to as
C images, and the 30×60 log-polar images as LP images. An
example of log-polar mapping from an actual input Cartesian
image is shown in Fig. 2.

C. TRAINING PROCEDURE
To generate synthetic motion, motion parametersm ∈ Rm are
sampled at random uniformly in a given range

[
pmin
i , pmax

i

]
for each parameter i ∈ {1, . . . , n} are applied to training
images. A central window of M × N pixels is cropped from
the larger M ′ × N ′ original and the deformed images. In the

FIGURE 1. Main elements that define the log-polar transform. Two
example receptive fields are marked in orange and blue, which
correspond, respectively, to the pixels in the log-polar image at
(u = R = 4, v = 2), i.e. at the outermost ring, and at (u = 2, v = S = 10),
i.e. at the last sector.

case of using log-polar images, the log-polar mapping is
also performed, and the original Cartesian images are then
ignored. After that, the gray levels of input images are scaled
to the range [0, 1]. Each ground-truth motion parameter is lin-
early normalized from their tested range to [−1, 1]. Figure 3
formalises these steps.

A CNN (Sec. II-D) is trained on E epochs (iterations)
of batches of B image pairs (I1, f(I1;m)) = (I1, I2) as input,
using m as the ground-truth vector of motion parameters.
A set of mtr training images is used as a pool from where
images are picked at random. Therefore, a total of mi = E ·B
training instances are used, which imply that, on average, r =
mi/mtr image deformations per training image are applied.
We used E = 9, 600 and B = 64, and thus mi = 614, 400.

D. NETWORK CONFIGURATION
A CNN with 4 convolutional (conv) layers and 2 fully con-
nected (FC) layers is used (Table 1). The convolutional filters
are of size 3 × 3 in all convolutional layers, with stride of 1
pixel in both directions. For the first convolutional layer,
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FIGURE 2. In the experiments, we use (a) original Cartesian images (C), (b) their conversion to log-polar image in the cortical representation (LP),
and (c) the resizing of C to the smaller Cartesian Cs to (approximately) match the number of pixels in LP. Image (d) C̃ is the LP image converted
back to Cartesian (‘‘retinal’’) space, but it is not used in the experiments; it is often useful for visualisation purposes. Images (b) LP and (c) Cs are
about 9 times smaller than C, and are shown enlarged in this figure for visualization purposes only.

FIGURE 3. Algorithm for the generation of one training instance, which
consists of an image pair, either the Cartesian images (C1,C2) or the
corresponding log-polar images (LP1, LP2), along with the
corresponding (scaled) ground-truth motion mn that geometrically relates
the images.

padding is used to get the output of the same size as the
input. No padding is applied to the other convolutional lay-
ers. After the convolutional layers, a max pooling of 2 × 2
and then a dropout layer (with a dropout rate of 0.25) is
applied. As for the activation functions, the ReLU is used in
the convolutional layers, and an hyperbolic tangent for the
first FC layer. Since the intended goal of the network is to
predict the values of the motion components corresponding
to the input images, a regression task is considered, and the
loss function L used is the mean squared error between
the true m = [tx , ty, θ, α, β] and predicted motion parame-
ters m̂ = [t̂x , t̂y, θ̂ , α̂, β̂] in their normalised ranges [−1, 1],

L (m, m̂) =
1
n
||m− m̂||22.

TABLE 1. Network topology. The number of units refers to the number of
filters in convolutional (conv) layers and to the number of neurons in
fully-connected (FC) layers. The size of the last FC layer matches the
number of motion parameters n considered. The total number of weights
differ in C and LP images because their input sizes are different (Sec. II-B).

All the networks weights are initialised randomly
with a normal distribution. For weight optimisation,
the ADADELTA [46] method, which adopts an adaptive
learning rate, is used.

E. EVALUATION
The estimation accuracy for each testedmotion parameter p ∈
m for a sampling set ofmte testing instances is evaluated with
the mean absolute error (MAE),

MAE =
1
mte

mte∑
i=1

|p(i) − p̂(i)|.

To account for the error in relation with the magnitude of the
true value of the parameter, the mean relative error (MRE) is
also defined,

MRE =
1
mte

mte∑
i=1

|p(i) − p̂(i)|
|p(i)|

.

We used mte = 10, 000.
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To quantify the estimation performance with a single mea-
sure even if several motion parameters are involved, a unified
geometric measure, the end-point error (EPE), is defined
over a set of np ‘‘canonical’’ points {pj}

np
j=1 as the deviation

between the true target points p(i)j = f(pj;mi) and the esti-

mated ones p̂(i)j = f(pj; m̂i) for a given test instance i, i ∈
{1, . . . ,mte}, as

EPE =
1
mte

mte∑
i=1

EPE(i),

with

EPE(i) =
1
np

np∑
j=1

||p(i)j − p̂(i)j ||2.

We used the four vertices (i.e. np = 4) of a unit square
centered at (0, 0) as an arbitrary choice for these canonical
points. The canonical points as used in the computation of
EPE are illustrated in Fig. 4.

FIGURE 4. How the end-point error (EPE) is computed. The blue points pj
correspond to the canonical points after the ground truth motion m,
whereas the red points p̂j are the canonical points transformed with the
estimated motion m̂. The measure EPE is given by the average pairwise
distance of the four points (pj , p̂j ), j ∈ {1,2,3,4}. For simplicity,
the superscript (i ) that denotes the test instance has been dropped
from p(i )

j .

For any of these three measures (MAE, MRE, EPE),
the lower their values, the better the performance.

III. EXPERIMENTS
A. DATASETS AND SOFTWARE
Existing datasets for visual recognition tasks can also be used
as a source of images for motion-estimation learning with
synthetic deformations. We split the Pascal Visual Object
Classes (VOC) dataset [47] into training and test sets using
the prefix of the image file names so that we get about
80%-20% ratio (Table 2). In particular, images whose file
names begin with 2010 are used for the test set and all
the others for training. Similarly, we use Caltech256 [48],
with 205 classes for training and 52 for test, and images
with any side length lower than 200 pixels are resized to this
minimum side length to facilitate the synthetic data genera-
tion procedure (Sec. II-C). Python packages for image and
numerical computing (Numpy, Scipy, PIL), and the Keras
framework [49] for CNNs, were used.

TABLE 2. Datasets used in the experiments.

B. INDIVIDUAL MOTION COMPONENTS
The estimation performances for C and LP are first compared
under single-parameter motions, with a discussion of the
motion component in these imaging formats.

1) TRANSLATION (tx )
Although translations are the simplest motionmodel in Carte-
sian domain (a constant, space-invariant shift), they map
to complex space-variant, non-linear model in the log-polar
domain [10]. Despite this complication, LP images result in
smaller estimation error than C images (Table 3, first row),
which provides some evidence that CNN can naturally and
inherently cope with geometries other than Cartesian images
without any particular design or modification.

2) ROTATION (θ) AND CHANGE OF SCALE (α)
For log-polar images following the model (2), centered rota-
tions and changes of scale map to simple shifts δv and δu
in log-polar images, respectively, due to their aforementioned
edge-invariance property. From (2), and given a rotation angle
θ and a change of scale α, the values for these shifts,
δv =

S
2π θ , and δu = loga α, can be derived [12]. For the

range of rotations and scale factors considered, this means
that we can expect the CNN to deal with location-invariant
translations of up to δu = 5 pixels along u and about δv = 8
pixels along v, unlike the Cartesian case. Higher performance
is also observed (Table 3, rows 2–3) with LP images than with
C images.

TABLE 3. Estimation performance for per-parameter learning.

3) SHEAR (β)
Shear can be understood as a combination of rotation and an
isotropic scaling, and unlike rotation and scaling, its effect in
the cortical plane in LP is not simple, and not straightforward
to model. However, the estimation performance with LP is
competitively similar to C (Table 3, bottom row).
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This per-parameter study and comparison is completed
below (Sec. III-D) by performing a per-range analysis, and
by including smaller Cartesian images, of lower resolution,
into the comparison.

C. INCREASING MOTION MODEL COMPLEXITY
When using more than one parameter, the set of samplings
of all the possible ranges of arbitrary motion possibili-
ties increases exponentially with the number of parameters.
Therefore, to have estimation accuracies similar to those
in the single-parameter cases, a more complex architecture
(e.g. a multi-level one), and/or significantly more training
effort in terms of amount of data and/or iterations, might be
required. Another practical choice would be to learn only a
very reduced subset of all possible combinations of parameter
ranges, for instance by learning only from expected deforma-
tions, e.g. from real or realistic sequences, as in [38], [41].
In our synthetic-deformation scenario, we translate this lat-
ter choice into a reduced range of motion values for each
involved parameter. When using n motion parameters,
the sampling effort grows at the rate wn, where w measures
the range of values sampled for a single motion parameter.
This computational burden is dealt with by reducing w.

Results (Table 4) suggest that by reducing the range of
values in the parameters when combining them, the estima-
tion performance remains comparable to the single-parameter
cases, and LP images still outperform C ones. These results
also indicate that the difficulty in the estimation may come
more from the range of the expected deformations (say,
the size of the search space) than the fact of having several
motion components being combined, and that the CNN can
deal with this combinations both with C and LP images. This
analysis is completed below by including a variation of the
CNN considered (Sec. III-F).

TABLE 4. Estimation performance (EPE) for different motion models.

D. SMALLER CARTESIAN IMAGES
It has been observed that the estimation performance with C
images is inferior to that with LP images, which means that
learning is being less effective with C images. The fact that
the corresponding CNN has more weights than the log-polar
CNN may be a reason, and heavier training or an alternative
network might help. Alternatively, one way to reduce the
number of weights while keeping the network topology and,
at the same time, exploring the impact of different spatial
sampling in motion estimation, is to use smaller Cartesian

images matching the size of log-polar images, i.e. M · N ≈
R · S by setting M = N =

⌊√
R · S

⌋
. For R = 30, S = 60,

this implies M = N = 42. To that end, we keep the field-of-
view (FOV) and resize the image from 128× 128 to 42× 42.
Another choice would be cropping a central area of 42 × 42
from the 128×128 image, thus keeping the original resolution
but at the expense of a narrower FOV. With this smaller-sized
Cartesian image inputs, the resulting network has the same
number of weights as the network with LP images as input.
We refer to these smaller Cartesian images as Cs (Fig. 2)c.

We repeated the tests reported before (Sec. III-B, Table 3),
for Cs images, and a more detailed analysis was performed in
terms of the deformation range of the true motion parameters
(roughly, ‘‘small’’, ‘‘medium’’ and ‘‘large’’ deformations).
For each parameter p, the distribution of the estimation error
is visualized with kernel density estimation of e = p − p̂,
so the more peaked the distribution at e = 0, the better the
performance (i.e. lower errors happen more often).

Results for tx (Fig. 5) indicate that Cs images outperform
both C and LP images for the medium and large transla-
tions. This can be explained because of Cs’s smaller resolu-
tion. Additionally, and somehow surprisingly, for the smaller
translations, the performance of Cs is similar to that of LP,
which can be explained by a remarkable ability of the network
to estimate sub-pixel image shifts: a translation of tx = 1
pixel in the original C represents a motion of only about a
third of a pixel in Cs (42/128 ≈ 0.33). These plots also
reveal the difficulty of C images, particularly for the larger
translations.

For θ , Cs images have a performance in between C and
LP images for the medium and large ranges of the tested
rotations, and similar to C for the smaller rotations. This
behaviour can be explained by taking the lower resolution of
Cs in mind: it can cope better with larger rotations than with
more subtle ones.

Regarding α, performance with Cs is similar or better than
that with C for the larger scale changes, but worse than C
for smaller scale changes. Both in θ and α, LP outperforms
both C and Cs for all ranges of the tested ranges, which is
in agreement of the expected benefit of the edge invariance
property of LP images.

Since Cs images have been shown to outperform C ones,
LP images are compared only to Cs ones from now on.

E. CONVOLUTIONAL FILTERS
It is interesting to inspect the activation maps corresponding
to different motion components for different image sam-
plings. These maps are a form of visualising what convolu-
tional filters have learned to represent the underlying motion,
and it can be noted they are motion- and image-sampling-
specific (Fig. 6). In same cases it can be appreciated that the
image areas that are mostly activated correspond to structures
roughly orthogonal to the relevant motion. For instance, for
the horizontal translation, vertical-like blobs are activated,
whereas under change of scale (zoom), radially-distributed

VOLUME 8, 2020 149127



V. J. Traver, R. Paredes: Study of CNNs for Global Parametric Motion Estimation on Log-Polar Imagery

FIGURE 5. Per-parameter, per-range estimation error.
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FIGURE 6. Activation maps after the fourth convolutional layer of networks trained for different motion models (a,b,c) and image samplings (left: Cs,
right: LP) using as input the images corresponding to the same source image pair and motion parameter values. For the LP case, the actual maps are in
the cortical domain, but the inverse log-polar mapping (Fig. 2d) is performed for visualisation. For visualisation purposes the activation maps have
been normalised and the jet colour map (d) used.

activations may emerge. For this particular input image, these
observations are somehow more noticeable in the log-polar
case.

Another important aspect has to do with how apt each
image geometry is for each motion component. As discussed
earlier, Cartesian translations are more naturally estimated
with Cartesian images than with log-polar images. As a con-
sequence, one or more of the following three facts tend to
happen: (1) there are fewer activation maps with significant
responses, (2) lower activations within some more maps,
or (3) more similar maps, in the Cartesian case than in the
log-polar case. Understandably, due to the space-variant and
polar-like nature of log-polar images, more diversity can be
appreciated (Fig. 6a). For the rotation and change of scale
(Fig. 6b–c), the situation is somehow the opposite, since these
motion components can be more easily characterised in the
log-polar representation.

To study this hypothesis that more filters are generally
required to capture how translations map to different regions
of a log-polar image, the number of convolutional filters
were halved in all the convolutional layers, and the resulting
network retrained. It was found (Table 5) that the estimation
performance degraded significantly more (error increased by
25%) for log-polar images than for Cartesian images (about
4%). Therefore, the convolutional filters are arguably one

TABLE 5. Change in the estimation performance (EPE) for motion
tx ∈ [−10,10] on Cs and LP images after halving the default number of
convolutional filters at each layer.

of the ingredients for the CNNs to implicitly cope with
space-variant image geometries.

F. EARLY VS MIDDLE MERGING
The network architecture used in previous tests
(Sec. III-B–III-E) consists of having the two motion-related
gray-level images as two channels of the input to the network
(Sec. II-D); we call this choice the ‘‘early’’ merge, since
input images are merged (concatenated) early along the
network’s depth. The rationale behind this is that low-level
features relating the two images as a two-channel input can
be captured with the learnable convolutional filters from the
very beginning, and this can be beneficial. Alternatively,
it can be argued that it can be better to relate higher-level
features at later layers and let parallel siamese branches
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of the network learn these features for each input image
before merging (concatenating) the corresponding feature
channels. To test this hypothesis, we tried keeping the input
images separated and merging their branches after the second
convolutional layer.We refer to this choice asmiddle (‘‘mid’’)
merge. We experienced convergence issues in our tests when
merging at later layers (after the first FC layer), and therefore
only the early and mid merges are compared.

Results (Table 6) suggest that the mid merge does not
generally bring a performance benefit over the early merge:
some performance decay can actually be observed, with some
exception (Cs and the model with parameters {tx , θ, α}). The
increase in the complexity of the motion models affects sim-
ilarly the Cs and LP images, and the merge choice does not
help in this sense, although it seems that the trend is that with
more complexmotions andCs, themidmergemight represent
a competitive or better choice over early merge. Despite
that LP exhibits better estimation performance for particular
ranges of individual motion components (Fig. 5), Cs images
offer generally lower mean EPE than LP do, although results
with LP can be on par or even superior in some case. This
may relate to the fact of conventional CNNs being generally
more effective for Cartesian images since the former were
essentially designed for the latter. This implies that some
adaptation of the CNN design might be required to make the
most of the particular characteristics of the log-polar images,
an hypothesis left as further work.

TABLE 6. Estimation performance (EPE) at early and mid merge for Cs
and LP images, and different motion models.

G. CROSS-DATASET PERFORMANCE
Previous tests have used images from the VOC dataset.
Although the training and test sets used are disjoint, images
within the same dataset may have some bias [50]. Thus,
to better evaluate the impact of the image contents and the
generalization ability, we include results when training and
testing with Caltech256 as well. With respect with training
and testing on the same dataset A, when training on dataset
A and testing on dataset B, results (Table 7) turn out to be
poorer for A = VOC and B = Caltech256, but better for
A = Caltech256 and B = VOC. This suggests that the
generalization ability in this case depends more on the dataset
than on the network itself. For the purpose and procedure of
our work, images in Caltech256 might be more varied or
richer, which poses a challenge not only when training on
the VOC dataset but also on other classes of Caltech256

TABLE 7. Cross-dataset (VOC and Caltech256) estimation performance
(EPE) for early merge, and motion model [tx ∈ [−5,5], θ ∈ [−10◦,10◦]],
using the same number of training and test images for Caltech256 as
used in VOC (Table 2).

TABLE 8. Estimation performance (EPE) for varying ratio r of training
instances mi to training images mtr (Sec. II-C), by fixing mi and varying
mtr for Caltech256, using early merge, and the same motion model used
in the cross-dataset test (Table 7).

itself. Consequently, after training with these more helpful
Caltech256 images, the VOC test images are found com-
paratively ‘‘easier’’. This observation essentially holds for
both Cs and LP. However, when comparing Cs and LP in
this cross-dataset scenario, the decay in performance is more
severe with LP images than with Cs images in the (A= VOC,
B = Caltech256) case, and similar in the other case (A =
Caltech256, B = VOC). The quality of the training images
is therefore very important but may affect differently distinct
image sampling choices.

H. VARIETY OF IMAGES VS DEFORMATIONS
For learning purposes, it can be expected that both the number
of training images mtr and the number of deformations mi
are important, so that a variety of both image contents and
image deformations are observed. However, it is unclear
which of these two ingredients affects more the estimation
performance. For instance, a reasonable hypothesis might be
that sampling many deformations of a few images can be
better than sampling fewer deformations of more images. To
gain some insight in this respect, we varied the number of
training images for the same number of training instances,
and results (Table 8) suggest that although a variety of images
is important, there seems to be a point of diminishing returns,
where more images do not bring a significant performance
improvement. In our case, this happens at mtr ≈ 13, 000 in
Cs and at mtr ≈ 6, 000 in LP.

IV. CONCLUSION
Convolutional neural networks (CNNs) have essentially been
designed having Cartesian images in mind, and it is still
largely unknown how they behave with other imaging mod-
els. Experiments with existing image datasets and synthetic
deformations reveal that CNNswith log-polar images as input

149130 VOLUME 8, 2020



V. J. Traver, R. Paredes: Study of CNNs for Global Parametric Motion Estimation on Log-Polar Imagery

perform reasonably well in learning to estimate parametric
global motion, despite the polar geometry of these images,
their space-variant resolution, and the non-linear mapping of
motion in the cortical domain. This can partially be explained
by the flexibility offered by multiple learnable convolutional
filters, which allows CNNs to cope with space-variant motion
effects. In comparison with Cartesian images, and using
exactly the same CNN topology, the estimation performance
has been found to be similar, log-polar images outperforming
the Cartesian ones, or vice versa, depending on the particular
experimental conditions or motion ranges considered. The
relevance of this work goes beyond the particular problem
of motion estimation, since it provides evidence that CNNs
and foveal imaging can work in tandem, thus encouraging
further investigation. Future work may address whether spe-
cific CNN architectures can be more suitable for log-polar
images, and whether fusing different imaging models might
bring some advantages by leveraging the benefits of each.
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